Skip to main content

Sunlight Exposure and Skin Thickness Measurements as a Function of Age: Risk Factors for Melanoma

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Epidermal thickness is used for studying tissue weight, protein, and/or DNA content since epidermal metabolism occurs at the level of single keratinocytes [1] and varies significantly over anatomic sites but not significantly from person to person [2]. Epidermal thickness is greater in males than in females [2] and can be further evaluated in regard to risk factors for melanoma. In fact, centuries ago, heliotherapy via intense sun exposure was used to treat illness [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergstresser PR, Pariser RJ, Taylor JR. Counting and sizing of epidermal cells in normal skin. J Invest Dermatol. 1978;70(5):280–4.

    Article  CAS  PubMed  Google Scholar 

  2. Sandy-Moller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type, and smoking habits. Acta Dermato-Venereologica. 2003;83(6):410–3.

    Article  Google Scholar 

  3. Ackerman B. The Sun and the “epidemic” of melanoma: myth on myth! New York: Ardor Scribendi; 2008.

    Google Scholar 

  4. Wulf HC, Sandby-Møller J, Kobayasi T, Gniadecki R. Skin aging and natural photoprotection. Micron. 2004;35(3):185–91.

    Article  CAS  PubMed  Google Scholar 

  5. Dennis LK, Vanbeek MJ, Beane Freeman LE, Smith BJ, Dawson DV, Coughlin JA. Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol. 2008;18(8):614–27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br J Dermatol. 2007;157(5):874–87.

    Article  CAS  PubMed  Google Scholar 

  7. Reichrath J. The challenge resulting from positive and negative effects of sunlight: how much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer? Prog Biophys Mol Biol. 2006;92(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  8. Daniels Jr F. Sun exposure and skin aging. N Y State J Med. 1964;64:2066–9.

    PubMed  Google Scholar 

  9. Zanetti R, Franceschi S, Rosso S, Colonna S, Bidoli E. Cutaneous melanoma and sunburns in childhood in a southern European population. Eur J Cancer. 1992;28A(6–7):1172–6.

    Article  CAS  PubMed  Google Scholar 

  10. Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiological studies. Cancer Causes Control. 2001;12(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  11. Rager EL, Bridgeford EP, Ollila DW. Cutaneous melanoma: update on prevention, screening, diagnosis, and treatment. Am Fam Physician. 2005;72(2):269–76.

    PubMed  Google Scholar 

  12. Autier P, Dore JF. Influence of sun exposure during childhood and during adulthood on melanoma risk. EPIMEL and EORTC Melanoma Cooperative Group. European, Organization for Research and Treatment of Cancer. Int J Cancer. 1998;77(4):533–7.

    Article  CAS  PubMed  Google Scholar 

  13. Thieden E, Philipsen PA, Sandby-Moller J, Wulf HC. Sunburn related to UV radiation exposure, age, sex, occupation, and sun bed use based on time-stamped personal dosimetry and sun behavior diaries. Arch Dermatol. 2005;141(4):482–8.

    Article  PubMed  Google Scholar 

  14. Youl P, Aitken J, Hayward N, Hogg D, Liu L, Lassam N, Martin N, Green A. Melanoma in adolescents: a case–control study of risk factors in Queensland. Australia Int J Cancer. 2002;98(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  15. Pfahlberg A, Kolmel KF, Geffeller O. Timing of excessive ultraviolet radiation and melanoma: epidemiology does not support the existence of a critical period of high susceptibility to solar ultraviolet radiation-induced melanoma. Br J Dermatol. 2001;144(3):471–5.

    Article  CAS  PubMed  Google Scholar 

  16. Bullough WS. The control of epidermal thickness. Br J Dermatol. 1972;87(3):187–99.

    Article  CAS  PubMed  Google Scholar 

  17. Huzaira M, Rius F, Rajadhyaksha M, Anderson RR, Gonzalez S. Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J Invest Dermatol. 2001;116(6):846–52.

    Article  CAS  PubMed  Google Scholar 

  18. Whitton JT, Everall JD. The thickness of the epidermis. Br J Dermatol. 1973;89(5):467–76.

    Article  CAS  PubMed  Google Scholar 

  19. Sauermann K, Clemann S, Jaspers S, Gambichler T, Altmeyer P, Hoffmann K, Ennen J. Age related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo. Skin Res Technol. 2002;8(1):52–6.

    Article  PubMed  Google Scholar 

  20. Smith Jr JG, Davidson EA, Sams Jr WM, Clark RD. Alterations in human dermal connective tissue with age and chronic sun damage. J Invest Dermatol. 1962;39:347–50.

    Article  CAS  PubMed  Google Scholar 

  21. Na R, Stender IM, Henriksen M, Wulf HC. Autofluorescence of human skin is age-related after correction for skin pigmentation and redness. J Invest Dermatol. 2001;116(4):536–40.

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell RE. The effect of prolonged solar radiation on melanocytes of the human epidermis. J Invest Dermatol. 1963;41:199–212.

    Article  CAS  PubMed  Google Scholar 

  23. Waller JM, Maibach HI. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol. 2005;11(4):221–35.

    Article  PubMed  Google Scholar 

  24. Serup J, editor. Handbook of non-invasive methods and the skin. Boca Ratton: Taylor & Francis; 2006. p. 512–3.

    Google Scholar 

  25. Zinabu GM, Thomas B. The effects of formalin and Lugol’s iodine solution on protozoan cell volume. Limnolog Ecol Manage Inland Waters. 2000;30(1):59–63.

    Article  CAS  Google Scholar 

  26. Ohno N, et al. Application of cryobiopsy to morphological and immunohistochemical analysisÉvessels. Cancer. 2008;113:1068–79.

    Article  PubMed  Google Scholar 

  27. Westerdahl J, Olsson H, Ingvar C. At what age do sunburn episodes play a crucial role for the development of malignant melanoma. Eur J Cancer. 1994;30A(11):1647–54.

    Article  CAS  PubMed  Google Scholar 

  28. Elwood JM, Whitehead SM, Davison J, Stewart M, Galt M. Malignant melanoma in England: risks associated with naevi, freckles, social class, hair colour, and sunburn. Int J Epidemiol. 1990;19(4):801–10.

    Article  CAS  PubMed  Google Scholar 

  29. Linos E, Swetter SM, Cockburn MG, Colditz GA, Clarke CA. Increasing burden of melanoma in the United States. J Invest Dermatol. 2009;129(7):1604–6.

    Article  Google Scholar 

  30. Gaddameedhi S, Selby CP, Kemp MG, et al. The circadian clock controls sunburn apoptosis and erythema in mouse skin. J Invest Dermatol. 2015;135:1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogel RI, Ahmed RL, Nelson HH et al. Exposure to indoor tanning without burning and melanoma risk by sunburn history. J Natl Cancer Inst. 2014;106.

    Google Scholar 

  32. Mancebo SE, Hu JY, Wang SQ. Sunscreens: a review of health benefits, regulations, and controversies. Dermatol Clin. 2014;32:427–38. x.

    Article  CAS  PubMed  Google Scholar 

  33. Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31:65–74.

    Article  CAS  PubMed  Google Scholar 

  34. Berwick M. Counterpoint: sunscreen use is a safe and effective approach to skin cancer prevention. Cancer Epidemiol Biomarkers Prev. 2007;16:1923–4.

    Article  CAS  PubMed  Google Scholar 

  35. Vyas S, Meyerle J, Burlina P. Non-invasive estimation of skin thickness from hyperspectral imaging and validation using echography. Comput Biol Med. 2015;57:173–81.

    Article  PubMed  Google Scholar 

  36. Longo C, Casari A, Beretti F, et al. Skin aging: in vivo microscopic assessment of epidermal and dermal changes by means of confocal microscopy. J Am Acad Dermatol. 2013;68:e73–82.

    Article  PubMed  Google Scholar 

  37. Koehler MJ, Vogel T, Elsner P, et al. In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography. Skin Res Technol. 2010;16:259–64.

    PubMed  Google Scholar 

  38. Tsugita T, Nishijima T, Kitahara T, Takema Y. Positional differences and aging changes in Japanese woman epidermal thickness and corneous thickness determined by OCT (optical coherence tomography). Skin Res Technol. 2013;19:242–50.

    Article  PubMed  Google Scholar 

  39. Randerson-Moor JA, Taylor JC, Elliott F, et al. Vitamin D receptor gene polymorphisms, serum 25-hydroxyvitamin D levels, and melanoma: UK case–control comparisons and a meta-analysis of published VDR data. Eur J Cancer. 2009;45(18):3271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Elmahdy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Elmahdy, A., Maibach, H.I. (2016). Sunlight Exposure and Skin Thickness Measurements as a Function of Age: Risk Factors for Melanoma. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_60-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_60-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics