Skip to main content

The New Face of Pigmentation and Aging

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Pigmentation is a universal physiological process that occurs in all organisms from bacteria, fish, and amphibians to birds, mammals, and humans (Bagnara JT, Matsumoto J (2006) Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oettig WS, Ortonne JP (eds) The pigmentary system. Blackwell, Oxford, pp 11–59). Pigmentation provides camouflage and protection from UV, but also in some lower organisms, pigmentation is involved in wound healing (Sugumaran et al., Pigment Cell Res 12:118–125, 1999; Sugumaran et al., Arch Biochem Biophys 378:393–403, 2000; Sugumaran, Pigment Cell Res 15:2–9, 2002). In humans, the major determinant of skin color is the pigment/complex polymer, melanin. The variation in human skin color is striking and has great physiological and sociological implications. The color of one’s skin is a strong predictor of social interactions. That skin color has immense psychosocial impact is evidenced by the billions of dollars spent annually in search of the perfect skin color. Tanning beds and artificial tanners are used to achieve a bronzed glow, while fairness creams and bleaches are used to lighten skin color and achieve even skin tone. The concept of ideal skin color varies across cultures and geographies and has great significance on the perception of beauty. With age, changes in the amount and distribution of melanin are evident. Increases in skin pigmentation as well as the appearance of mottled and discrete hyperpigmented lesions are a hallmark of photoexposure and advancing age. To better understand the changes that may occur in aging skin, a closer look at the pigmentation system and its components is needed. In this chapter, an overview of melanogenesis is provided, from the production of melanin to its transfer to keratinocytes, as well as the genetic and biological pathways that regulate pigment production. Studies on the clinical and biological manifestations of hyperpigmentation in Asian populations will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bagnara JT, Matsumoto J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oettig WS, Ortonne JP, editors. The pigmentary system. Oxford: Blackwell; 2006. p. 11–59.

    Chapter  Google Scholar 

  2. Sugumaran M, Duggaraju R, Generozova F, Ito S. Insect melanogenesis. II. Inability of Manduca phenoloxidase to act on 5,6-dihydroxyindole-2-carboxylic acid. Pigment Cell Res. 1999;12:118–25.

    Article  CAS  PubMed  Google Scholar 

  3. Sugumaran M, Nellaiappan K, Amaratunga C, Cardinale S, Scott T. Insect melanogenesis. III. Metabolon formation in the melanogenic pathway-regulation of phenoloxidase activity by endogenous dopachrome isomerase (decarboxylating) from Manduca sexta. Arch Biochem Biophys. 2000;378:393–403.

    Article  CAS  PubMed  Google Scholar 

  4. Sugumaran M. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res. 2002;15:2–9.

    Article  CAS  PubMed  Google Scholar 

  5. Tachibana M. Sound needs sound melanocytes to be heard. Pigment Cell Res. 1999;12:344–54.

    Article  CAS  PubMed  Google Scholar 

  6. Boissy RE. Extracutaneous melanocytes. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Ortonne JP, editors. The pigmentary system physiology and pathophysiology. New York: Oxford University Press; 1998. p. 59–72.

    Google Scholar 

  7. d’Ischia M, Prota G. Biosynthesis, structure, and function of neuromelanin and its relation to Parkinson’s disease: a critical update. Pigment Cell Res. 1997;10:370–6.

    Article  PubMed  Google Scholar 

  8. Li W, Hill HZ. Induced melanin reduces mutations and cell killing in mouse melanoma. Photochem Photobiol. 1997;65:480–5.

    Article  CAS  PubMed  Google Scholar 

  9. Black HS, de Gruijl FR, Forbes PD, Cleaver JE, Ananthaswamy HN, de Fabo EC, Ullrich SE, Tyrrell RM. Photocarcinogenesis: an overview. J Photochem Photobiol B. 1997;40:29–47.

    Article  CAS  PubMed  Google Scholar 

  10. Pathak MA. Ultraviolet radiation and the development of non-melanoma and melanoma skin cancer: clinical and experimental evidence. Skin Pharmacol. 1991;4 Suppl 1:85–94.

    Article  PubMed  Google Scholar 

  11. Kollias N, Sayre RM, Zeise L, Chedekel MR. Photoprotection by melanin. J Photochem Photobiol B. 1991;9:135–60.

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi N, Muramatsu T, Yamashina Y, Shirai T, Ohnishi T, Mori T. Melanin reduces ultraviolet-induced DNA damage formation and killing rate in cultured human melanoma cells. J Invest Dermatol. 1993;101:685–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ardic FN, Aktan S, Kara CO, Sanli B. High-frequency hearing and reflex latency in patients with pigment disorder. Am J Otolaryngol. 1998;19:365–9.

    Article  CAS  PubMed  Google Scholar 

  14. Jimbow K, Fitzpatrick TB, Wick MM. Biochemistry and physiology of melanin pigmentation. In: Golsmith LA, editor. Physiology, biology, and molecular biology of the skin. New York: Oxford University Press; 1991. p. 893.

    Google Scholar 

  15. Inazu M, Mishima Y. Detection of eumelanogenic and pheomelanogenic melanosomes in the same normal human melanocyte. J Invest Dermatol. 1993;100:172S–5.

    CAS  PubMed  Google Scholar 

  16. Jimbow K, Oikawa O, Sugiyama S, Takeuchi T. Comparison of eumelanogenesis and pheomelanogenesis in retinal and follicular melanocytes; role of vesiculo-globular bodies in melanosome differentiation. J Invest Dermatol. 1979;73:278–84.

    Article  CAS  PubMed  Google Scholar 

  17. Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis – controversies and new concepts. Exp Dermatol. 2008;17:395–404.

    Article  CAS  PubMed  Google Scholar 

  18. Alaluf S, Heath A, Carter N, Atkins D, Mahalingam H, Barrett K, Kolb R, Smit N. Variation in melanin content and composition in type V and VI photoexposed and photoprotected human skin: the dominant role of DHI. Pigment Cell Res. 2001;14:337–47.

    Article  CAS  PubMed  Google Scholar 

  19. Thong HY, Jee SH, Sun CC, Boissy RE. The patterns of melanosome distribution in keratinocytes of human skin as one determining factor of skin colour. Br J Dermatol. 2003;149:498–505.

    Article  PubMed  Google Scholar 

  20. Yoshida Y, Hachiya A, Sriwiriyanont P, Ohuchi A, Kitahara T, Takema Y, Visscher MO, Boissy RE. Functional analysis of keratinocytes in skin color using a human skin substitute model composed of cells derived from different skin pigmentation types. FASEB J. 2007;21:2829–39.

    Article  CAS  PubMed  Google Scholar 

  21. Alaluf S, Barrett K, Blount M, Carter N. Ethnic variation in tyrosinase and TYRP1 expression in photoexposed and photoprotected human skin. Pigment Cell Res. 2003;16:35–42.

    Article  CAS  PubMed  Google Scholar 

  22. Van Den BK, Naeyaert JM, Lambert J. The quest for the mechanism of melanin transfer. Traffic. 2006;7:769–78.

    Article  Google Scholar 

  23. Wasmeier C, Hume AN, Bolasco G, Seabra MC. Melanosomes at a glance. J Cell Sci. 2008;121:3995–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto O, Bhawan J. Three modes of melanosome transfers in Caucasian facial skin: hypothesis based on an ultrastructural study. Pigment Cell Res. 1994;7:158–69.

    Article  CAS  PubMed  Google Scholar 

  25. Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci. 1994;107(Pt 4):983–92.

    CAS  PubMed  Google Scholar 

  26. Greatens A, Hakozaki T, Koshoffer A, Epstein H, Schwemberger S, Babcock G, Bissett D, Takiwaki H, Arase S, Wickett RR, et al. Effective inhibition of melanosome transfer to keratinocytes by lectins and niacinamide is reversible. Exp Dermatol. 2005;14:498–508.

    Article  CAS  PubMed  Google Scholar 

  27. Minwalla L, Zhao Y, Cornelius J, Babcock GF, Wickett RR, Le PI, Boissy RE. Inhibition of melanosome transfer from melanocytes to keratinocytes by lectins and neoglycoproteins in an in vitro model system. Pigment Cell Res. 2001;14:185–94.

    Article  CAS  PubMed  Google Scholar 

  28. Boissy RE. Melanosome transfer to and translocation in the keratinocyte. Exp Dermatol. 2003;12 Suppl 2:5–12.

    Article  PubMed  Google Scholar 

  29. Cardinali G, Ceccarelli S, Kovacs D, Aspite N, Lotti LV, Torrisi MR, Picardo M. Keratinocyte growth factor promotes melanosome transfer to keratinocytes. J Invest Dermatol. 2005;125:1190–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cardinali G, Bolasco G, Aspite N, Lucania G, Lotti LV, Torrisi MR, Picardo M. Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes. J Invest Dermatol. 2008;128:558–67.

    CAS  PubMed  Google Scholar 

  31. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res. 2000;254:25–32.

    Article  CAS  PubMed  Google Scholar 

  32. Seiberg M. Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res. 2001;14:236–42.

    Article  CAS  PubMed  Google Scholar 

  33. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS. Inhibition of melanosome transfer results in skin lightening. J Invest Dermatol. 2000;115:162–7.

    Article  CAS  PubMed  Google Scholar 

  34. Scott G, Deng A, Rodriguez-Burford C, Seiberg M, Han R, Babiarz L, Grizzle W, Bell W, Pentland A. Protease-activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation. J Invest Dermatol. 2001;117:1412–20.

    Article  CAS  PubMed  Google Scholar 

  35. Qu X, Wei H, Zhai Y, Que H, Chen Q, Tang F, Wu Y, Xing G, Zhu Y, Liu S, et al. Identification, characterization, and functional study of the two novel human members of the semaphorin gene family. J Biol Chem. 2002;277:35574–85.

    Article  CAS  PubMed  Google Scholar 

  36. Scott GA, McClelland LA, Fricke AF. Semaphorin 7a promotes spreading and dendricity in human melanocytes through beta1-integrins. J Invest Dermatol. 2008;128:151–61.

    Article  CAS  PubMed  Google Scholar 

  37. Scott G, Leopardi S, Printup S, Madden BC. Filopodia are conduits for melanosome transfer to keratinocytes. J Cell Sci. 2002;115:1441–51.

    CAS  PubMed  Google Scholar 

  38. Joshi PG, Nair N, Begum G, Joshi NB, Sinkar VP, Vora S. Melanocyte-keratinocyte interaction induces calcium signalling and melanin transfer to keratinocytes. Pigment Cell Res. 2007;20:380–4.

    CAS  PubMed  Google Scholar 

  39. Virador V, Matsunaga N, Matsunaga J, Valencia J, Oldham RJ, Kameyama K, Peck GL, Ferrans VJ, Vieira WD, Bdel-Malek ZA, et al. Production of melanocyte-specific antibodies to human melanosomal proteins: expression patterns in normal human skin and in cutaneous pigmented lesions. Pigment Cell Res. 2001;14:289–97.

    Article  CAS  PubMed  Google Scholar 

  40. Hume AN, Collinson LM, Hopkins CR, Strom M, Barral DC, Bossi G, Griffiths GM, Seabra MC. The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic. 2002;3:193–202.

    Article  CAS  PubMed  Google Scholar 

  41. Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature. 1991;349:709–13.

    Article  CAS  PubMed  Google Scholar 

  42. Moore KJ, Swing DA, Rinchik EM, Mucenski ML, Buchberg AM, Copeland NG, Jenkins NA. The murine dilute suppressor gene dsu suppresses the coat-color phenotype of three pigment mutations that alter melanocyte morphology, d, ash and ln. Genetics. 1988;119:933–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Moore KJ, Swing DA, Copeland NG, Jenkins NA. The murine dilute suppressor gene encodes a cell autonomous suppressor. Genetics. 1994;138:491–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Nagashima K, Torii S, Yi Z, Igarashi M, Okamoto K, Takeuchi T, Izumi T. Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett. 2002;517:233–8.

    Article  CAS  PubMed  Google Scholar 

  45. Provance DW, James TL, Mercer JA. Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes. Traffic. 2002;3:124–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wilson SM, Yip R, Swing DA, O’Sullivan TN, Zhang Y, Novak EK, Swank RT, Russell LB, Copeland NG, Jenkins NA. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci U S A. 2000;97:7933–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Provance Jr DW, Wei M, Ipe V, Mercer JA. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc Natl Acad Sci U S A. 1996;93:14554–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pereira-Leal JB, Hume AN, Seabra MC. Prenylation of Rab GTPases: molecular mechanisms and involvement in genetic disease. FEBS Lett. 2001;498:197–200.

    Article  CAS  PubMed  Google Scholar 

  49. Wu X, Rao K, Bowers MB, Copeland NG, Jenkins NA, Hammer III JA. Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle. J Cell Sci. 2001;114:1091–100.

    CAS  PubMed  Google Scholar 

  50. Hammer III JA, Wu XS. Rabs grab motors: defining the connections between Rab GTPases and motor proteins. Curr Opin Cell Biol. 2002;14:69–75.

    Article  CAS  PubMed  Google Scholar 

  51. Wu X, Bowers B, Rao K, Wei Q, Hammer III JA. Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo. J Cell Biol. 1998;143:1899–918.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Chen D, Guo J, Miki T, Tachibana M, Gahl WA. Molecular cloning and characterization of rab27a and rab27b, novel human rab proteins shared by melanocytes and platelets. Biochem Mol Med. 1997;60:27–37.

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Samaraweera P, Sun TT, Kreibich G, Orlow SJ. Rab27b association with melanosomes: dominant negative mutants disrupt melanosomal movement. J Invest Dermatol. 2002;118:933–40.

    Article  CAS  PubMed  Google Scholar 

  54. Lambert J, Onderwater J, Vander HY, Vancoillie G, Koerten HK, Mommaas AM, Naeyaert JM. Myosin V colocalizes with melanosomes and subcortical actin bundles not associated with stress fibers in human epidermal melanocytes. J Invest Dermatol. 1998;111:835–40.

    Article  CAS  PubMed  Google Scholar 

  55. Nascimento AA, Amaral RG, Bizario JC, Larson RE, Espreafico EM. Subcellular localization of myosin-V in the B16 melanoma cells, a wild-type cell line for the dilute gene. Mol Biol Cell. 1997;8:1971–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wei Q, Wu X, Hammer III JA. The predominant defect in dilute melanocytes is in melanosome distribution and not cell shape, supporting a role for myosin V in melanosome transport. J Muscle Res Cell Motil. 1997;18:517–27.

    Article  CAS  PubMed  Google Scholar 

  57. Wu X, Bowers B, Wei Q, Kocher B, Hammer III JA. Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. J Cell Sci. 1997;110(Pt 7):847–59.

    CAS  PubMed  Google Scholar 

  58. Reck-Peterson SL, Provance Jr DW, Mooseker MS, Mercer JA. Class V myosins. Biochim Biophys Acta. 2000;1496:36–51.

    Article  CAS  PubMed  Google Scholar 

  59. Seperack PK, Mercer JA, Strobel MC, Copeland NG, Jenkins NA. Retroviral sequences located within an intron of the dilute gene alter dilute expression in a tissue-specific manner. EMBO J. 1995;14:2326–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Fukuda M, Kuroda TS, Mikoshiba K. Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein complex for melanosome transport. J Biol Chem. 2002;277:12432–6.

    Article  CAS  PubMed  Google Scholar 

  61. Kuroda TS, Fukuda M, Ariga H, Mikoshiba K. The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain. J Biol Chem. 2002;277:9212–8.

    Article  CAS  PubMed  Google Scholar 

  62. Strom M, Hume AN, Tarafder AK, Barkagianni E, Seabra MC. A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J Biol Chem. 2002;277:25423–30.

    Article  CAS  PubMed  Google Scholar 

  63. Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer III JA. Identification of an organelle receptor for myosin-Va. Nat Cell Biol. 2002;4:271–8.

    Article  CAS  PubMed  Google Scholar 

  64. Griscelli C, Prunieras M. Pigment dilution and immunodeficiency: a new syndrome. Int J Dermatol. 1978;17:788–91.

    Article  CAS  PubMed  Google Scholar 

  65. Griscelli C, Durandy A, Guy-Grand D, Daguillard F, Herzog C, Prunieras M. A syndrome associating partial albinism and immunodeficiency. Am J Med. 1978;65:691–702.

    Article  CAS  PubMed  Google Scholar 

  66. Pastural E, Barrat FJ, Dufourcq-Lagelouse R, Certain S, Sanal O, Jabado N, Seger R, Griscelli C, Fischer A, de Saint BG. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet. 1997;16:289–92.

    Article  CAS  PubMed  Google Scholar 

  67. Menasche G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, Wulffraat N, Bianchi D, Fischer A, Le DF, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet. 2000;25:173–6.

    Article  CAS  PubMed  Google Scholar 

  68. Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, Seabra MC, Griffiths GM. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol. 2001;152:825–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Menasche G, Ho CH, Sanal O, Feldmann J, Tezcan I, Ersoy F, Houdusse A, Fischer A, de Saint BG. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest. 2003;112:450–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Jablonski NG, Chaplin G. The evolution of human skin coloration. J Hum Evol. 2000;39:57–106.

    Article  CAS  PubMed  Google Scholar 

  71. Chaplin G, Jablonski NG. Hemispheric difference in human skin color. Am J Phys Anthropol. 1998;107:221–3.

    Article  CAS  PubMed  Google Scholar 

  72. Online Mendelian Inheritance in Man (OMIM). 2009.

    Google Scholar 

  73. Schaffer JV, Bolognia JL. The melanocortin-1 receptor: red hair and beyond. Arch Dermatol. 2001;137:1477–85.

    Article  CAS  PubMed  Google Scholar 

  74. The international HapMap consortium a haplotype map for the human genome. 2005; 1299–1320.

    Google Scholar 

  75. Stokowski RP, Pant PV, Dadd T, Fereday A, Hinds DA, Jarman C, Filsell W, Ginger RS, Green MR, van der Ouderaa FJ, et al. A genomewide association study of skin pigmentation in a South Asian population. Am J Hum Genet. 2007;81:1119–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, Hankinson SE, Hu FB, Duffy DL, Zhao ZZ, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008;4, e1000074.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Ginger RS, Askew SE, Ogborne RM, Wilson S, Ferdinando D, Dadd T, Smith AM, Kazi S, Szerencsei RT, Winkfein RJ, et al. SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis. J Biol Chem. 2008;283:5486–95.

    Article  CAS  PubMed  Google Scholar 

  78. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84:1155–228.

    Article  CAS  PubMed  Google Scholar 

  79. Lerner AB, McGuire JS. Effect of alpha- and betamelanocyte stimulating hormones on the skin colour of man. Nature. 1961;189:176–9.

    Article  CAS  PubMed  Google Scholar 

  80. Garcia RJ, Ittah A, Mirabal S, Figueroa J, Lopez L, Glick AB, Kos L. Endothelin 3 induces skin pigmentation in a keratin-driven inducible mouse model. J Invest Dermatol. 2008;128:131–42.

    Article  CAS  PubMed  Google Scholar 

  81. Reid K, Nishikawa S, Bartlett PF, Murphy M. Steel factor directs melanocyte development in vitro through selective regulation of the number of c-kit+ progenitors. Dev Biol. 1995;169:568–79.

    Article  CAS  PubMed  Google Scholar 

  82. Spritz RA. Piebaldism, Waardenburg syndrome, and related disorders of melanocyte development. Semin Cutan Med Surg. 1997;16:15–23.

    Article  CAS  PubMed  Google Scholar 

  83. Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res. 2004;17:96–110.

    Article  CAS  PubMed  Google Scholar 

  84. Cario-Andre M, Lepreux S, Pain C, Nizard C, Noblesse E, Taieb A. Perilesional vs. lesional skin changes in senile lentigo. J Cutan Pathol. 2004;31:441–7.

    Article  PubMed  Google Scholar 

  85. Motokawa T, Kato T, Katagiri T, Matsunaga J, Takeuchi I, Tomita Y, Suzuki I. Messenger RNA levels of melanogenesis-associated genes in lentigo senilis lesions. J Dermatol Sci. 2005;37:120–3.

    Article  CAS  PubMed  Google Scholar 

  86. Aoki H, Moro O, Tagami H, Kishimoto J. Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics. Br J Dermatol. 2007;156:1214–23.

    Article  CAS  PubMed  Google Scholar 

  87. Unver N, Freyschmidt-Paul P, Horster S, Wenck H, Stab F, Blatt T, Elsasser HP. Alterations in the epidermal-dermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin. Br J Dermatol. 2006;155:119–28.

    Article  CAS  PubMed  Google Scholar 

  88. Kadono S, Manaka I, Kawashima M, Kobayashi T, Imokawa G. The role of the epidermal endothelin cascade in the hyperpigmentation mechanism of lentigo senilis. J Invest Dermatol. 2001;116:571–7.

    Article  CAS  PubMed  Google Scholar 

  89. Maeda K, Ono T, Matsunaga J. The mechanism of hyperpigmentation in senile lentigo and the efficacy of skin lightening agents. Fragr J. 2006;5:21–9.

    Google Scholar 

  90. Manaka L, Kadono S, Kawashima M, Kobayashi T, Imokawa G. The mechanism of hyperpigmentation in seborrhoeic keratosis involves the high expression of endothelin-converting enzyme-1alpha and TNF-alpha, which stimulate secretion of endothelin 1. Br J Dermatol. 2001;145:895–903.

    Article  CAS  PubMed  Google Scholar 

  91. Teraki E, Tajima S, Manaka I, Kawashima M, Miyagishi M, Imokawa G. Role of endothelin-1 in hyperpigmentation in seborrhoeic keratosis. Br J Dermatol. 1996;135:918–23.

    Article  CAS  PubMed  Google Scholar 

  92. Nouveau-Richard S, Yang Z, Mac-Mary S, Li L, Bastien P, Tardy I, Bouillon C, Humbert P, de Lacharrière O. Skin ageing: a comparison between Chinese and European populations. A pilot study. J Dermatol Sci. 2005;40:187–93.

    Article  CAS  PubMed  Google Scholar 

  93. Tsukahara K, Fujimura T, Yoshida Y, Kitahara T, Hotta M, Moriwaki S, Witt PS, Simion FA, Takema Y. Comparison of age-related changes in wrinkling and sagging of the skin in Caucasian females and in Japanese females. J Cosmet Sci. 2004;55:351–71.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Nip, J., Potterf, S.B., Rocha, S., Vora, S., Bosko, C. (2015). The New Face of Pigmentation and Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_53-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_53-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics