Skip to main content

Reconstructed Skin To Create In Vitro Flexible Models Of Skin Aging: New Results And Prospects

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Despite the fact that a fully differentiated and keratinized epidermis can be produced at the air-liquid interface on acellular dermal substrates or even on membranes it appeared necessary in order to investigate adequately skin physiology and skin aging to deal with a full thickness skin construct made with a living dermis which contains fibroblasts. Based on the pioneering work of Bell and coworkers we have developed such a system in our laboratory which allowed us to investigate skin aging with two separate but complementary approaches. One way was to look at modifications occurring in the dermal matrix like collagen glycation which allowed us to propose for the first time a model of skin aging. Another way was to look at the actual actors of the dermis which are the fibroblasts and to study their destiny during aging which led us to show the key evolution of the papillary fibroblast population during skin aging. In addition to these important findings we have created a skin model for dermal filler studies and we are on the way to create ethnic specific models of skin in vitro.

Combining several parameters like the type of the fibroblast population, the age of the donors, the glycation status, and UV exposure, we now look forward to obtaining more complex but more realistic models of skin aging closer to the in vivo situation. An example of this is shown in which the glycation status, the nature of the fibroblast population used, and the age of the donors were combined.

Moreover, based on a new way to prepare dermal equivalents, we show that it becomes possible to make them with more than two layers which allows to add hypodermis to dermis in our system. Finally in order to escape from the current flat dermal-epidermal junction of our reconstructed skin this method allows us to start investigating the possibility to create reliefs like rete ridge-like or wrinkle-like structures.

Dedication

In Memoriam Jean-François Grollier (1944–2015), L’Oréal former Vice-President and General Director Research and Development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yaar M, Eller MS, Gilchrest BA, et al. Fifty years of skin aging. J Investig Dermatol Symp Proc. 2002;7:51–8.

    Article  PubMed  Google Scholar 

  2. Farage MA, Miller KW, Elsner P, et al. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008;30:87–95.

    Article  CAS  PubMed  Google Scholar 

  3. Zouboulis CC, Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Clin Dermatol. 2011;29:3–14.

    Article  PubMed  Google Scholar 

  4. Prunieras M, Regnier M, Schlotterer M. New procedure for culturing human epidermal cells on allogenic or xenogenic skin: preparation of recombined grafts. Ann Chir Plast. 1979;24:357–62.

    CAS  PubMed  Google Scholar 

  5. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 1979;76:5665–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A. 1979;76:1274–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14:65–81.

    Article  CAS  PubMed  Google Scholar 

  8. Boyce ST. Cultured skin substitutes: a review. Tissue Eng. 1996;2:255–66.

    Article  CAS  PubMed  Google Scholar 

  9. Bernstam LI, Vaughan FL, Bernstein IA. Keratinocytes grown at the air-liquid interface. In Vitro Cell Dev Biol. 1986;22:695–705.

    Article  CAS  PubMed  Google Scholar 

  10. Rosdy M, Clauss LC. Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface. J Invest Dermatol. 1990;95:409–14.

    Article  CAS  PubMed  Google Scholar 

  11. Lillie JH, MacCallum DK, Jepsen A. Growth of stratified squamous epithelium on reconstituted extracellular matrices: long-term culture. J Invest Dermatol. 1988;90:100–9.

    Article  CAS  PubMed  Google Scholar 

  12. Coulomb B, Saiag P, Bell E, Breitburd F, Lebreton C, Heslan M, Dubertret L. A new method for studying epidermalization in vitro. Br J Dermatol. 1986;114:91–101.

    Article  CAS  PubMed  Google Scholar 

  13. Coulomb B, Lebreton C, Dubertret L. Influence of human dermal fibroblasts on epidermalization. J Invest Dermatol. 1989;92:122–5.

    Article  CAS  PubMed  Google Scholar 

  14. Bell E, Sher S, Hull B, et al. The reconstitution of living skin. J Invest Dermatol. 1983;81:2S–10.

    Article  CAS  PubMed  Google Scholar 

  15. Asselineau D, Prunieras M. Reconstruction of ‘simplified’ skin: control of fabrication. Br J Dermatol. 1984;111:219–21.

    Article  PubMed  Google Scholar 

  16. Asselineau D, Bernhard B, Bailly C, et al. Epidermal morphogenesis and induction of the 67 kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp Cell Res. 1985;159:536–9.

    Article  CAS  PubMed  Google Scholar 

  17. Regnier M, Prunieras M. Growth and differentiation of adult human epidermal cells on dermal substrates. Front Matrix Biol. 1981;9:4–35.

    Google Scholar 

  18. Siegenthaler G, Saurat JH, Ponec M. Terminal differentiation in cultured human keratinocytes is associated with increased levels of cellular retinoic acid-binding protein. Exp Cell Res. 1988;178:114–26.

    Article  CAS  PubMed  Google Scholar 

  19. Asselineau D, Bernard B, Bailly C, et al. Retinoic acid improves epidermal morphogenesis. Dev Biol. 1989;133:322–35.

    Article  CAS  PubMed  Google Scholar 

  20. Marionnet C, Vioux-Chagnoleau C, Pierrard C, et al. Morphogenesis of dermo-epidermal junction in a model of reconstructed skin: beneficial effects of vitamin C. Exp Dermatol. 2006;15:625–33.

    Article  CAS  PubMed  Google Scholar 

  21. Coulomb B, Dubertret L, Bell E, Merrill C, Fosse M, Breton-Gorius J, Prost C, Touraine R. Endogenous peroxidases in normal human dermis: a marker of fibroblast differentiation. J Invest Dermatol. 1983;81:75–8.

    Article  CAS  PubMed  Google Scholar 

  22. Sarber R, Hull B, Merrill C, Soranno T, Bell E. Regulation of proliferation of fibroblasts of low and high population doubling levels. Mech Ageing Dev. 1981;17:107–17.

    Article  CAS  PubMed  Google Scholar 

  23. Rhee S, Grinnell F. Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev. 2007;59:1299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Asselineau D, Bernard BA, Darmon M. Three dimensional culture of human keratinocytes on a dermal equivalent: a model system to study epidermal morphogenesis and differentiation in vitro. In: Lowe N, Maibach HI, editors. Models of dermatology, vol. 3. Basel: Karger; 1987. p. 1–17.

    Google Scholar 

  25. Oikarinen A, Karvonen J, Uitto J, et al. Connective tissue alterations in skin exposed to natural and therapeutic UV-radiation. Photodermatol. 1985;2:15–26.

    CAS  PubMed  Google Scholar 

  26. Bernerd F, Asselineau D. Successive alteration and recovery of epidermal differentiation and morphogenesis after specific UVB-damages in skin reconstructed in vitro. Dev Biol. 1997;183:123–38.

    Article  CAS  PubMed  Google Scholar 

  27. Bernerd F, Asselineau D. UVA exposure of human skin reconstructed in vitro induces apoptosis of dermal fibroblasts: subsequent connective tissue repair and implications in photoaging. Cell Death Differ. 1998;5:792–802.

    Article  CAS  PubMed  Google Scholar 

  28. Marionnet C, Pierrard C, Golebiewski C, et al. Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin. PLoS One. 2014;9, e105263.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bernerd F, Asselineau D. An organotypic model of skin to study photodamage and photoprotection in vitro. J Am Acad Dermatol. 2008;58:S155–9.

    Article  PubMed  Google Scholar 

  30. Bernerd F, Vioux C, Asselineau D. Evaluation of the protective effect of sunscreens on in vitro reconstructed human skin exposed to UVB or UVA irradiation. Photochem Photobiol. 2000;71:314–20.

    Article  CAS  PubMed  Google Scholar 

  31. Frye EB, Degenhardt TP, Thorpe SR, et al. Role of the maillard reaction in aging of tissue proteins. J Biol Chem. 1998;273:18714–9.

    Article  CAS  PubMed  Google Scholar 

  32. Asselineau D, Ricois S, Pageon H, et al. The use of reconstructed skin to create new in vitro models of skin aging with special emphasis on the flexibility of reconstructed skin. In: Farage MA, Miller W, Maibach HI, editors. Text book of aging skin. 1st ed. Berlin/Heidelberg: Springer; 2010. p. 461–75.

    Chapter  Google Scholar 

  33. Pageon H, Bakala H, Monnier VM, et al. Collagen glycation triggers the formation of aged skin in vitro. Eur J Dermatol. 2007;17:12–20.

    CAS  PubMed  Google Scholar 

  34. Pageon H, Zucchi H, Dai Z, et al. Biological effects induced by specific advanced glycation end products in the reconstructed skin model of aging. Biores Open Access. 2015;4:54–64.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pageon H, Poumes-Ballihaut C, Zucchi H, et al. Aged human skin is more susceptible than young skin to accumulate advanced glycoxidation products induced by sun exposure. J Aging Sci. 2013;1:1–5.

    Google Scholar 

  36. Pageon H, Zucchi H, Rousset F, et al. Skin aging by glycation: lessons from the reconstructed skin model. Clin Chem Lab Med. 2014;52:169–74.

    Article  CAS  PubMed  Google Scholar 

  37. Pageon H, Técher MP, Asselineau D, et al. Reconstructed skin modified by glycation of the dermal equivalent as a model for skin aging and its potential use to evaluate anti-glycation molecules. Exp Gerontol. 2008;43:584–8.

    Article  CAS  PubMed  Google Scholar 

  38. Harper RA, Grove G. Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science. 1979;204:526–7.

    Article  CAS  PubMed  Google Scholar 

  39. Sriram G, Bigliardi PL, Bigliardi-Qi M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol. 2015;94:483–512.

    Article  CAS  PubMed  Google Scholar 

  40. Pageon H, Zucchi H, Asselineau D. Distinct and complementary roles of papillary and reticular fibroblasts in skin morphogenesis and homeostasis. Eur J Dermatol. 2012;22:324–32.

    CAS  PubMed  Google Scholar 

  41. Mine S, Fortunel NO, Pageon H, et al. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and ageing. PLoS One. 2008;3, e4066.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Janson D, Saintigny G, Mahé C, et al. Papillary fibroblasts differentiate into reticular fibroblasts after prolonged in vitro culture. Exp Dermatol. 2013;22:48–53.

    Article  CAS  PubMed  Google Scholar 

  43. Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Girardeau-Hubert S, Teluob S, Pageon H, et al. The reconstructed skin model as a new tool for investigating in vitro dermal fillers: increased fibroblast activity by hyaluronic acid. Eur J Dermatol. 2015;25:312–22.

    CAS  PubMed  Google Scholar 

  45. Brown RA, Wiseman M, Chuo C, et al. Ultra rapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater. 2005;15:1762–70.

    Article  CAS  Google Scholar 

  46. Labbé B, Marceau-Fortier G, Fradette J. Cell sheet technology for tissue engineering: the self-assembly approach using adipose-derived stromal cells. Methods Mol Biol. 2011;702:429–41.

    Article  PubMed  Google Scholar 

  47. Bosca AR, Tinois E, Faure M, et al. Epithelial differentiation of human skin equivalents after grafting onto nude mice. J Invest Dermatol. 1988;91:136–41.

    Article  CAS  PubMed  Google Scholar 

  48. Demarchez M, Hartmann DJ, Regnier M, et al. The role of fibroblasts in dermal vascularization and remodeling of reconstructed human skin after transplantation onto the nude mouse. Transplantation. 1992;54:317–26.

    Article  CAS  PubMed  Google Scholar 

  49. Black AF, Berthod F, L'heureux N, et al. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 1998;12:1331–40.

    CAS  PubMed  Google Scholar 

  50. Sorrell JM, Baber MA, Caplan AI. Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: nonsoluble factors in the extracellular matrix influence interactions. Wound Repair Regen. 2008;16:300–9.

    Article  PubMed  Google Scholar 

  51. Asselineau D, Técher MP, Caplan AI, et al. Complex reconstructed skin equivalents made with papillary and reticular fibroblast populations incorporated in distinct layers: re-expression of papillary and reticular fibroblast characteristics after grafting onto nude mice. J Invest Dermatol. 2000;114:863.

    Google Scholar 

  52. Boyce ST, Hansbrough JF. Biologic attachment, growth, and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin-6-sulfate substrate. Surgery. 1988;103:421–31.

    CAS  PubMed  Google Scholar 

  53. Yang C, Hillas PJ, Báez JA, Nokelainen M, Balan J, et al. The application of recombinant human collagen in tissue engineering. BioDrugs. 2004;104:103–19.

    Article  Google Scholar 

  54. Bernerd F, Asselineau D, Vioux C, et al. Clues to epidermal cancer proneness revealed by reconstruction of DNA repair-deficient xeroderma pigmentosum skin in vitro. Proc Natl Acad Sci U S A. 2001;93:7817–22.

    Article  Google Scholar 

  55. Girardeau S, Mine S, Pageon H, et al. The Caucasian and African skin types differ morphologically and functionally in their dermal component. Exp Dermatol. 2009;18:704–11.

    Article  PubMed  Google Scholar 

  56. Girardeau-Hubert S, Pageon H, Asselineau D. In vivo and in vitro approaches in understanding the differences between Caucasian and African skin types: specific involvement of the papillary dermis. Int J Dermatol. 2012;51:1–4.

    PubMed  Google Scholar 

  57. Asselineau D, Darmon M. Retinoic acid provokes metaplasia of epithelium formed in vitro by adult human epidermal keratinocytes. Differentiation. 1995; 58:297–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Asselineau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Asselineau, D. et al. (2015). Reconstructed Skin To Create In Vitro Flexible Models Of Skin Aging: New Results And Prospects. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_48-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_48-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics