Skip to main content

Cellular Energy Metabolism and Oxidative Stress

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

The objective of this chapter is to provide an overview of how changes to the skin’s energy metabolism systems lead to a decline in function and hence contribute to skin aging. This chapter first discusses how the skin uses energy to maintain its appearance followed by a background on energy production in cells. Defects in energy production are part of the mitochondrial theory of aging, which will be introduced next. Skin-specific examples that support this theory of aging will be given as well as evidence that questions this theory. The examples are divided into chronological skin aging and extrinsic skin aging. Recent advances in understanding how environmental stresses, such as UV radiation, especially in the regions of ultraviolet-A (UVA), visible and near infrared (NIR), contribute to skin aging will be discussed. Lastly, examples of antiaging therapies that improve or maintain metabolic functions of the skin are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tamiji S, et al. Induction of apoptosis-like mitochondrial impairment triggers antioxidant and Bcl-2-dependent keratinocyte differentiation. J Invest Dermatol. 2005;125:647–58.

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. New York: Oxford University Press; 2007.

    Google Scholar 

  3. Marchi S, et al. Mitochondria-Ros crosstalk in the control of cell death and aging. J Signal Transduct. 2012;2012:329635.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–19.

    Article  CAS  PubMed  Google Scholar 

  5. Linnane A, et al. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989;1:642–5.

    Article  CAS  PubMed  Google Scholar 

  6. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med. 1990;8:523–39.

    Article  CAS  PubMed  Google Scholar 

  7. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.

    Article  CAS  PubMed  Google Scholar 

  8. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7.

    Article  CAS  PubMed  Google Scholar 

  9. Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci. 1998;854:224–38.

    Article  CAS  PubMed  Google Scholar 

  10. Moghaddas S, Hoppel C, Lesnefsky EJ. Aging defect at the QO site of complex III augments oxyradical production in rat heart interfibrillar mitochondria. Arch Biochem Biophys. 2003;414:59–66.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Q, et al. Production of reactive oxygen species by mitochondria central role of complex III. J Biol Chem. 2003;278(38):36027–31.

    Article  CAS  PubMed  Google Scholar 

  12. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997;17(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  13. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr. 1999;31(4):347–66.

    Article  CAS  PubMed  Google Scholar 

  15. Harper ME, et al. Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes. Am J Physiol Endocrinol Metab. 1998;275:197–206.

    Google Scholar 

  16. Qian T, Nieminen AL, Herman B, Lemasters JJ. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol. 1997;273:C1783–92.

    CAS  PubMed  Google Scholar 

  17. Chen Q, Lesnefsky EJ. Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med. 2006;40:976–82.

    Article  CAS  PubMed  Google Scholar 

  18. Chen JJ, Yu BP. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med. 1994;17:411–8.

    Article  CAS  PubMed  Google Scholar 

  19. Sohal RS, Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic Biol Med. 1994;16:621–6.

    Article  CAS  PubMed  Google Scholar 

  20. Agarwal S, Sohal RS. DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci U S A. 1994;91:12332–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. Mutat Res. 2002;509:127–51.

    Article  CAS  PubMed  Google Scholar 

  22. Muller F, et al. Trends in oxidative aging theories. Free Radic Biol Med. 2007;43(4):477–503.

    Article  CAS  PubMed  Google Scholar 

  23. Speakman JR, et al. The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays. 2011;33(4):255–9.

    Article  PubMed  Google Scholar 

  24. Kujoth GC, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–4.

    Article  CAS  PubMed  Google Scholar 

  25. Doonan R, et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 2008;22:3236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Melov S, et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science. 2000;289(5484):1567–9.

    Article  CAS  PubMed  Google Scholar 

  27. Brand MD, et al. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol. 2013;169:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greco M, et al. Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J. 2003;17:1706–8.

    CAS  PubMed  Google Scholar 

  29. Laderman KA, et al. Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells. J Biol Chem. 1996;271:15891–7.

    Article  CAS  PubMed  Google Scholar 

  30. Quinlan CL, et al. The role of mitochondrial function and cellular bioenergetics in aging and disease. Br J Dermatol. 2013;169(02):1–8.

    PubMed  PubMed Central  Google Scholar 

  31. Declercq L, et al. Age-dependent response of energy metabolism of human skin to UVA exposure: an in vivo study by 31P nuclear magnetic resonance spectroscopy. Skin Res Technol. 2002;8:125–32.

    Article  PubMed  Google Scholar 

  32. Cristofalo VJ, et al. Use of the fibroblast model in the study of cellular senescence. In: Barnett Y, Barnett C, editors. Aging methods and protocols. Totowa: Humana Press; 2000. p. 26.

    Google Scholar 

  33. Stockl P, et al. Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts. Exp Gerontol. 2006;41:674–82.

    Article  PubMed  Google Scholar 

  34. Mammone T, Gan D, Foyouzi-Youss R. Apoptotic cell death increases with senescence in normal human dermal fibroblast cultures. Cell Biol Int. 2006;30:903–9.

    Article  CAS  PubMed  Google Scholar 

  35. Zwerschke W, et al. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J. 2003;376(Pt 2):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bulteau AL, Petropoulos I, Friguet B. Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol. 2000;35:767–77.

    Article  CAS  PubMed  Google Scholar 

  37. Petropoulos I, et al. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol Biol Sci Med Sci. 2000;55:B220–7.

    Article  CAS  Google Scholar 

  38. Torres CA, Perez VI. Proteasome modulates mitochondrial function during cellular senescence. Free Radic Biol Med. 2008;44:403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jansen-Durr P, et al. Functional interplay between mitochondrial and proteasome activity in skin aging. J Invest Dermatol. 2011;131:594–603.

    Article  PubMed  Google Scholar 

  40. Poljsak B. General overview of skin: extrinsic (external) and intrinsic (free radical mediated internal) factors. In Skin aging, free radicals and antioxidants. Nova Science Publishers; pp. 39–66.

    Google Scholar 

  41. Krutmann J. Skin aging. In Nutrition for healthy skin. Springer-Verlag Berlin Heidelberg; 2011 pp. 15–24.

    Google Scholar 

  42. Yang JH, Lee HC, Lin J, Wei YH. A specific 4977-bp deletion of mitochondrial DNA in human ageing skin. Arch Dermatol Res. 1994;286:386–90.

    Article  CAS  PubMed  Google Scholar 

  43. Berneburg M, et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem. 1999;274(22):15345–9.

    Article  CAS  PubMed  Google Scholar 

  44. Berneburg M, et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol. 2004;122(5):1277–83.

    Article  CAS  PubMed  Google Scholar 

  45. Birch-Machin MA, et al. Mitochondrial DNA deletions in human skin reflect photo-rather than chronologic aging. J Invest Dermatol. 1998;111(4):709–10.

    Article  Google Scholar 

  46. Ray A, et al. The spectrum of mitochondrial DNA deletions is a ubiquitous marker of ultraviolet radiation exposure in human skin. J Invest Dermatol. 2000;115:674–9.

    Article  CAS  PubMed  Google Scholar 

  47. Koch H, Wittern K-P, Bergemann J. In human keratinocytes the common deletion reflects donor variabilities rather than chronologic aging and can be induced by ultraviolet a irradiation. J Invest Dermatol. 2001;117:892–7.

    Article  CAS  PubMed  Google Scholar 

  48. Krishnan K, Harbottle A, Birch-Machin MA. The use of a 3895 bp mitochondrial DNA deletion as a marker for sunlight exposure in human skin. J Invest Dermatol. 2004;123:1020–4.

    Article  CAS  PubMed  Google Scholar 

  49. Eshaghian A, et al. Mitochondrial DNA deletions serve as biomarkers of aging in the skin, but are typically absent in nonmelanoma skin cancers. J Invest Dermatol. 2006;126:336–44.

    Article  CAS  PubMed  Google Scholar 

  50. Ji F, et al. Novel mitochondrial deletions in human epithelial cells irradiated with an FS20 ultraviolet light source in vitro. J Photochem Photobiol. 2006;184(3):340–6.

    Article  CAS  Google Scholar 

  51. Cortopassi GA, et al. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A. 1992;89:7370–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gebhard D et al. Mitochondrial DNA copy number – but not a mitochondrial tandem CC to TT transition – is increased in sun-exposed skin. Exper Dermatol. 2014;23(3):209–11.

    Article  CAS  Google Scholar 

  53. Berneburg M, et al. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J Invest Dermatol. 2005;125:213–20.

    CAS  PubMed  Google Scholar 

  54. Brennan M, et al. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol. 2003;78(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  55. Lahmann C, et al. Matrix metalloproteinase-1 and skin ageing in smokers. Lancet. 2001;357(9260):935–6.

    Article  CAS  PubMed  Google Scholar 

  56. Varani J, et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol. 2000;114:480–6.

    Article  CAS  PubMed  Google Scholar 

  57. Schroeder P, Haendeler J, Krutmann J. The role of near infrared radiation in photoaging of the skin. Exp Gerontol. 2008;43:629–32.

    Article  CAS  PubMed  Google Scholar 

  58. Schroeder P, et al. Cellular response to infrared radiation involves retrograde mitochondrial signaling. Free Radic Biol Med. 2007;43(1):128–35.

    Article  CAS  PubMed  Google Scholar 

  59. Schroeder P, et al. Infrared radiation-induced matrix metalloproteinase in human skin: implications for protection. J Invest Dermatol. 2008;128:2491–7.

    Article  CAS  PubMed  Google Scholar 

  60. Podda M, et al. UV radiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic Biol Med. 1998;24:55–65.

    Article  CAS  PubMed  Google Scholar 

  61. Hoppe U, et al. Coenzyme Q10, a cutaneous antioxidant and energizer. Biofactors. 1999;9(2–4):371–8.

    Article  CAS  PubMed  Google Scholar 

  62. Zafarullah M, et al. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci. 2003;60(1):6–20.

    Article  CAS  PubMed  Google Scholar 

  63. Moreira P, et al. Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimer’s Dis. 2007;12(2):195–206.

    CAS  Google Scholar 

  64. Miquel J, et al. N-Acetylcysteine protects against age-related decline of oxidative phosphorylation in liver mitochondria. Eur J Pharmacol. 1995;292:333–5.

    CAS  PubMed  Google Scholar 

  65. Ganceviciene R, et al. Skin anti-aging strategies. Dermatoenocrinol. 2012;4(3):308–19.

    Article  CAS  Google Scholar 

  66. Mukherjee S, et al. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1(4):327–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lenz H, et al. The creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo. J Invest Dermatol. 2005;124:443–52.

    Article  CAS  PubMed  Google Scholar 

  68. Maes D, et al. Improving cellular function through modulation of energy metabolism. IFSCC Mag. 2002;2:121–6.

    Google Scholar 

  69. Declerq L, et al. Cosmetic benefits from modulation of cellular energy metabolism. In: Wille JJ, editor. Energy skin delivery systems: transdermals, dermatologicals, and cosmetic actives. 1st ed. Ames: Wiley-Blackwell; 2006. p. 117–24.

    Google Scholar 

  70. Blatt T, et al. Stimulation of skin’s energy metabolism provides multiple benefits for mature skin. The Fourth Conference of the International Coenzyme Q10 Association. BioFactors Special Issue. 2005;25(1–4):179–85.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Hourigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cheng, S.(., Hourigan, R., Nabi, Z., Du-Thumm, L. (2015). Cellular Energy Metabolism and Oxidative Stress. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_30-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_30-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics