Skip to main content

Therapeutic Alternatives for the Treatment of Epidermal Aging

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Over a lifetime, the epidermal layer of skin changes in structure and functionality, which contributes to the appearance of the clinical signs that characterize cutaneous aging, such as the appearance of wrinkles and pigmentation disorders, hydration dysfunction, and even cancer development. The search for effective treatments should consider the main biological functions of the epidermis affected by aging, including cell renewal and barrier integrity, antioxidant mechanisms and response to ultraviolet (UV) radiation, water-ion balance, and epidermal defense mechanisms. Several natural extracts and isolated compounds have been suggested in the literature as antiaging agents. However, a critical evaluation is essential to understand their mechanisms of action and how they could contribute to the development of promising therapeutic alternatives, in particular for the specific case of epidermal aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Farage MA, et al. Psychological and social implications of aging skin: normal aging and the effects of cutaneous disease. In: Farage MA, Miller KW, Maibach HI, editors. Textbook of aging skin. 1st ed. Heidelberg: Springer; 2010. p. 949–57.

    Chapter  Google Scholar 

  2. El-Domyati M, et al. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol. 2002;11(5):398–405.

    Article  CAS  PubMed  Google Scholar 

  3. Nobile V, et al. Anti-aging and filling efficacy of six types hyaluronic acid based dermo-cosmetic treatment: double blind, randomized clinical trial of efficacy and safety. J Cosmet Dermatol. 2014;13(4):277–87. doi:10.1111/jocd.12120.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Madison KC. Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol. 2003;121(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  5. Baroni A, et al. Structure and function of the epidermis related to barrier properties. Clin Dermatol. 2012;30(3):257–62. doi:10.1016/j.clindermatol.2011.08.007.

    Article  PubMed  Google Scholar 

  6. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet. 2002;3(3):199–209.

    Article  CAS  PubMed  Google Scholar 

  7. Brohem CA, et al. Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res. 2011;24(1):35–50. doi:10.1111/j.1755-148X.2010.00786.x.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eckhart L, et al. Cell death by cornification. Biochim Biophys Acta. 2013;1833(12):3471–80. doi:10.1016/j.bbamcr.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  9. Lorencini M, et al. Active ingredients against human epidermal aging. Ageing Res Rev. 2014;15:100–15. doi:10.1016/j.arr.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  10. Rinnerthaler M, et al. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. doi:10.3390/biom5020545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi HR, et al. Niche interactions in epidermal stem cells. World J Stem Cells. 2015;7(2):495–501. doi:10.4252/wjsc.v7.i2.495.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Elias PM, Ghadially R. The aged epidermal permeability barrier: basis for functional abnormalities. Clin Geriatr Med. 2002;18(1):103–20.

    Article  PubMed  Google Scholar 

  13. Dos Santos M, et al. In vitro 3-D model based on extending time of culture for studying chronological epidermis aging. Matrix Biol. 2015;47:85–97. doi:10.1016/j.matbio.2015.03.009.

    Article  PubMed  CAS  Google Scholar 

  14. Sextius P, et al. Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin. Arch Dermatol Res. 2015;307(4):351–64. doi:10.1007/s00403-015-1551-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu YP, et al. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile. Aging (Albany NY). 2012;4(11):742–54.

    Article  CAS  Google Scholar 

  16. Lee KO, Kim SN, Kim YC. Anti-wrinkle effects of water extracts of teas in hairless mouse. Toxicol Res. 2014;30(4):283–9. doi:10.5487/TR.2014.30.4.283.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pérez-Sánchez A, et al. Protective effects of citrus and rosemary extracts on UV-induced damage in skin cell model and human volunteers. J Photochem Photobiol B. 2014;136:12–8. doi:10.1016/j.jphotobiol.2014.04.007.

    Article  PubMed  CAS  Google Scholar 

  18. Cangkrama M, Ting SB, Darido C. Stem cells behind the barrier. Int J Mol Sci. 2013;14(7):13670–86. doi:10.3390/ijms140713670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lock-Andersen J, et al. Epidermal thickness, skin pigmentation and constitutive photosensitivity. Photodermatol Photoimmunol Photomed. 1997;13(4):153–8.

    Article  CAS  PubMed  Google Scholar 

  20. Crisan D, et al. Ultrasonographic assessment of skin structure according to age. Indian J Dermatol Venereol Leprol. 2012;78(4):519. doi:10.4103/0378-6323.98096.

    Article  PubMed  Google Scholar 

  21. Tsugita T, et al. Positional differences and aging changes in Japanese woman epidermal thickness and corneous thickness determined by OCT (optical coherence tomography). Skin Res Technol. 2013;19(3):242–50. doi:10.1111/srt.12021.

    Article  PubMed  Google Scholar 

  22. Orringer JS, et al. Molecular effects of photodynamic therapy for photoaging. Arch Dermatol. 2008;144(10):1296–302. doi:10.1001/archderm.144.10.1296.

    Article  CAS  PubMed  Google Scholar 

  23. Sjerobabski Masnec I, Situm M. Photorejuvenation – topical photodynamic therapy as therapeutic opportunity for skin rejuvenation. Coll Antropol. 2014;38(4):1245–8.

    PubMed  Google Scholar 

  24. Stuzin JM, et al. Histologic effects of the high-energy pulsed CO2 laser on photoaged facial skin. Plast Reconstr Surg. 1997;99(7):2036–50.

    Article  CAS  PubMed  Google Scholar 

  25. Ratner D, et al. Pilot ultrastructural evaluation of human preauricular skin before and after high-energy pulsed carbon dioxide laser treatment. Arch Dermatol. 1998;134(5):582–7.

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki GH, Travis HM, Tucker B. Fractional CO2 laser resurfacing of photoaged facial and non-facial skin: histologic and clinical results and side effects. J Cosmet Laser Ther. 2009;11(4):190–201. doi:10.3109/14764170903356465.

    Article  PubMed  Google Scholar 

  27. Oram Y, Akkaya AD. Neck rejuvenation with fractional CO2 laser: long-term results. J Clin Aesthet Dermatol. 2014;7(8):23–9.

    PubMed  PubMed Central  Google Scholar 

  28. Pain S, et al. Surface rejuvenating effect of Achillea millefolium extract. Int J Cosmet Sci. 2011;33(6):535–42. doi:10.1111/j.1468-2494.2011.00667.x.

    Article  CAS  PubMed  Google Scholar 

  29. Bonté F, et al. Simarouba amara extract increases human skin keratinocyte differentiation. J Ethnopharmacol. 1996;53(2):65–74.

    Article  PubMed  Google Scholar 

  30. Hou M, et al. Topical hesperidin improves epidermal permeability barrier function and epidermal differentiation in normal murine skin. Exp Dermatol. 2012;21(5):337–40. doi:10.1111/j.1600-0625.2012.01455.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu S, et al. Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes. J Pharmacol Exp Ther. 2003;306(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu S, et al. Green tea polyphenol-induced epidermal keratinocyte differentiation is associated with coordinated expression of p57/KIP2 and caspase 14. J Pharmacol Exp Ther. 2005;312(3):884–90.

    Article  CAS  PubMed  Google Scholar 

  33. Bellemère G, et al. Antiaging action of retinol: from molecular to clinical. Skin Pharmacol Physiol. 2009;22(4):200–9. doi:10.1159/000231525.

    Article  PubMed  CAS  Google Scholar 

  34. Sorg O, Saurat JH. Topical retinoids in skin ageing: a focused update with reference to sun-induced epidermal vitamin A deficiency. Dermatology. 2014;228(4):314–25. doi:10.1159/000360527.

    Article  CAS  PubMed  Google Scholar 

  35. Kim H, et al. Retinyl retinoate, a novel hybrid vitamin derivative, improves photoaged skin: a double-blind, randomized-controlled trial. Skin Res Technol. 2011;17(3):380–5. doi:10.1111/j.1600-0846.2011.00512.x.

    Article  CAS  PubMed  Google Scholar 

  36. Kim H, et al. Water extract of gromwell (Lithospermum erythrorhizon) enhances migration of human keratinocytes and dermal fibroblasts with increased lipid synthesis in an in vitro wound scratch model. Skin Pharmacol Physiol. 2012;25(2):57–64. doi:10.1159/000330897.

    Article  CAS  PubMed  Google Scholar 

  37. Ro J, et al. Pectin micro- and nano-capsules of retinyl palmitate as cosmeceutical carriers for stabilized skin transport. Korean J Physiol Pharmacol. 2015;19(1):59–64. doi:10.4196/kjpp.2015.19.1.59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gold MH, et al. Treatment of facial photodamage using a novel retinol formulation. J Drugs Dermatol. 2013;12(5):533–40.

    CAS  PubMed  Google Scholar 

  39. Jurzak M, et al. Influence of retinoids on skin fibroblasts metabolism in vitro. Acta Pol Pharm. 2008;65(1):85–91.

    CAS  PubMed  Google Scholar 

  40. Sayo T, Sugiyama Y, Inoue S. Lutein, a nonprovitamin A, activates the retinoic acid receptor to induce HAS3-dependent hyaluronan synthesis in keratinocytes. Biosci Biotechnol Biochem. 2013;77(6):1282–6.

    Article  CAS  PubMed  Google Scholar 

  41. Rendl M, et al. Topically applied lactic acid increases spontaneous secretion of vascular endothelial growth factor by human reconstructed epidermis. Br J Dermatol. 2001;145(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto Y, et al. Effects of alpha-hydroxy acids on the human skin of Japanese subjects: the rationale for chemical peeling. J Dermatol. 2006;33(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  43. Bhattacharyya TK, et al. Comparison of epidermal morphologic response to commercial antiwrinkle agents in the hairless mouse. Dermatol Surg. 2009;35(7):1109–18. doi:10.1111/j.1524-4725.2009.01196.x.

    Article  CAS  PubMed  Google Scholar 

  44. Wang X. A theory for the mechanism of action of the alpha-hydroxy acids applied to the skin. Med Hypotheses. 1999;53(5):380–2.

    Article  CAS  PubMed  Google Scholar 

  45. Gehring W. Nicotinic acid/niacinamide and the skin. J Cosmet Dermatol. 2004;3(2):88–93.

    Article  CAS  PubMed  Google Scholar 

  46. Jacobson EL, et al. A topical lipophilic niacin derivative increases NAD, epidermal differentiation and barrier function in photodamaged skin. Exp Dermatol. 2007;16(6):490–9.

    Article  CAS  PubMed  Google Scholar 

  47. Burke KE. Photoaging: the role of oxidative stress. G Ital Dermatol Venereol. 2010;145(4):445–59.

    CAS  PubMed  Google Scholar 

  48. Rahimpour Y, Hamishehkar H. Liposomes in cosmeceutics. Expert Opin Drug Deliv. 2012;9(4):443–55. doi:10.1517/17425247.2012.666968.

    Article  CAS  PubMed  Google Scholar 

  49. Schäfer M, et al. Nrf2: a central regulator of UV protection in the epidermis. Cell Cycle. 2010;9(15):2917–8. doi:10.4161/cc.9.15.12701.

    Article  PubMed  CAS  Google Scholar 

  50. Keogh BP, et al. Expression of hydrogen peroxide and glutathione metabolizing enzymes in human skin fibroblasts derived from donors of different ages. J Cell Physiol. 1996;167(3):512–22.

    Article  CAS  PubMed  Google Scholar 

  51. Rhie G, et al. Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol. 2001;117(5):1212–7.

    Article  CAS  PubMed  Google Scholar 

  52. Yamada M, et al. Aged human skin removes UVB-induced pyrimidine dimers from the epidermis more slowly than younger adult skin in vivo. Arch Dermatol Res. 2006;297(7):294–302.

    Article  PubMed  Google Scholar 

  53. Sander CS, et al. Photoaging is associated with protein oxidation in human skin in vivo. J Invest Dermatol. 2002;118(4):618–25.

    Article  CAS  PubMed  Google Scholar 

  54. Palmer DM, Kitchin JS. Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system. J Drugs Dermatol. 2010;9(1):11–5.

    PubMed  Google Scholar 

  55. Stamford NP. Stability, transdermal penetration, and cutaneous effects of ascorbic acid and its derivatives. J Cosmet Dermatol. 2012;11(4):310–7. doi:10.1111/jocd.12006.

    Article  PubMed  Google Scholar 

  56. Olteanu ED, et al. Photochemoprotective effect of Calluna vulgaris extract on skin exposed to multiple doses of ultraviolet B in SKH-1 hairless mice. J Environ Pathol Toxicol Oncol. 2012;31(3):233–43.

    Article  PubMed  Google Scholar 

  57. Mnich CD, et al. Green tea extract reduces induction of p53 and apoptosis in UVB-irradiated human skin independent of transcriptional controls. Exp Dermatol. 2009;18(1):69–77. doi:10.1111/j.1600-0625.2008.00765.x.

    Article  CAS  PubMed  Google Scholar 

  58. Tomaino A, et al. In vitro protective effect of a Jacquez grapes wine extract on UVB-induced skin damage. Toxicol In Vitro. 2006;20(8):1395–402.

    Article  CAS  PubMed  Google Scholar 

  59. Zaid MA, et al. Inhibition of UVB-mediated oxidative stress and markers of photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx. Photochem Photobiol. 2007;83(4):882–8.

    Article  PubMed  CAS  Google Scholar 

  60. Cimino F, et al. Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors. 2007;30(2):129–38.

    Article  CAS  PubMed  Google Scholar 

  61. Chiu TM, et al. In vitro and in vivo anti-photoaging effects of an isoflavone extract from soybean cake. J Ethnopharmacol. 2009;126(1):108–13. doi:10.1016/j.jep.2009.07.039.

    Article  CAS  PubMed  Google Scholar 

  62. Cornacchione S, et al. In vivo skin antioxidant effect of a new combination based on a specific Vitis vinifera shoot extract and a biotechnological extract. J Drugs Dermatol. 2007;6 Suppl 6:s8–13.

    PubMed  Google Scholar 

  63. Fraternale D, et al. Aqueous extract from Vitis vinifera tendrils is able to enrich keratinocyte antioxidant defences. Nat Prod Commun. 2011;6(9):1315–9.

    CAS  PubMed  Google Scholar 

  64. Heinrich U, et al. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J Nutr. 2006;136(6):1565–9.

    CAS  PubMed  Google Scholar 

  65. Tominaga K, et al. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim Pol. 2012;59(1):43–7.

    CAS  PubMed  Google Scholar 

  66. Wertz K, et al. Beta-Carotene interferes with ultraviolet light A-induced gene expression by multiple pathways. J Investig Dermatol. 2005;124(2):428–34.

    Article  CAS  PubMed  Google Scholar 

  67. Tobi SE, et al. The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation. Int J Cancer. 2002;102(5):439–44.

    Article  CAS  PubMed  Google Scholar 

  68. Chung JH, et al. Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. FASEB J. 2003;17(13):1913–5.

    CAS  PubMed  Google Scholar 

  69. Luo D, et al. Effect of epigallocatechingallate on ultraviolet B-induced photo-damage in keratinocyte cell line. Am J Chin Med. 2006;34(5):911–22.

    Article  CAS  PubMed  Google Scholar 

  70. Song XZ, Bi ZG, Xu AE. Green tea polyphenol epigallocatechin-3-gallate inhibits the expression of nitric oxide synthase and generation of nitric oxide induced by ultraviolet B in HaCaT cells. Chin Med J (Engl). 2006;119(4):282–7.

    CAS  Google Scholar 

  71. Huang CC, et al. (−)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules. 2007;12(8):1845–58.

    Article  CAS  PubMed  Google Scholar 

  72. Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302(2):71–83. doi:10.1007/s00403-009-1001-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fazekas Z, et al. Protective effects of lycopene against ultraviolet B-induced photodamage. Nutr Cancer. 2003;47(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  74. Andreassi M, et al. Antioxidant activity of topically applied lycopene. J Eur Acad Dermatol Venereol. 2004;18(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  75. Lademann J, et al. Carotenoids in human skin. Exp Dermatol. 2011;20(5):377–82. doi:10.1111/j.1600-0625.2010.01189.x.

    Article  CAS  PubMed  Google Scholar 

  76. Yasuda S, et al. Suppressive effects of ascorbate derivatives on ultraviolet-B-induced injury in HaCaT human keratinocytes. In Vitro Cell Dev Biol Anim. 2004;40(3–4):71–3.

    Article  CAS  PubMed  Google Scholar 

  77. Haftek M, et al. Clinical, biometric and structural evaluation of the long-term effects of a topical treatment with ascorbic acid and madecassoside in photoaged human skin. Exp Dermatol. 2008;17(11):946–52. doi:10.1111/j.1600-0625.2008.00732.x.

    Article  CAS  PubMed  Google Scholar 

  78. Wu S, et al. IL-8 production and AP-1 transactivation induced by UVA in human keratinocytes: roles of D-alpha-tocopherol. Mol Immunol. 2008;45(8):2288–96. doi:10.1016/j.molimm.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  79. Tzaphlidou M. The role of collagen and elastin in aged skin: an image processing approach. Micron. 2004;35(3):173–7.

    Article  CAS  PubMed  Google Scholar 

  80. Lampe MA, Williams ML, Elias PM. Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res. 1983;24(2):131–40.

    CAS  PubMed  Google Scholar 

  81. Kezic S, et al. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods. Br J Dermatol. 2009;161(5):1098–104. doi:10.1111/j.1365-2133.2009.09342.x.

    Article  CAS  PubMed  Google Scholar 

  82. Jacobson TM, et al. Effects of aging and xerosis on the amino acid composition of human skin. J Invest Dermatol. 1990;95(3):296–300.

    Article  CAS  PubMed  Google Scholar 

  83. Ghadially R, et al. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95(5):2281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li J, et al. Aquaporin-3 gene and protein expression in sun-protected human skin decreases with skin ageing. Australas J Dermatol. 2010;51(2):106–12. doi:10.1111/j.1440-0960.2010.00629.x.

    Article  PubMed  Google Scholar 

  85. del Pereda MC, et al. Expression of differential genes involved in the maintenance of water balance in human skin by Piptadenia colubrina extract. J Cosmet Dermatol. 2010;9(1):35–43. doi:10.1111/j.1473-2165.2009.00458.x.

    Article  Google Scholar 

  86. Buono S, et al. Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Arch Dermatol Res. 2012;304(9):755–64. doi:10.1007/s00403-012-1250-4.

    Article  PubMed  Google Scholar 

  87. Schrader A, et al. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol Physiol. 2012;25(4):192–9. doi:10.1159/000338190.

    Article  CAS  PubMed  Google Scholar 

  88. Grether-Beck S, et al. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol. 2012;132(6):1561–72. doi:10.1038/jid.2012.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shimoda H, et al. Changes in ceramides and glucosylceramides in mouse skin and human epidermal equivalents by rice-derived glucosylceramide. J Med Food. 2012;15(12):1064–72. doi:10.1089/jmf.2011.2137.

    Article  CAS  PubMed  Google Scholar 

  90. Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules. 2009;14(1):540–54. doi:10.3390/molecules14010540.

    Article  CAS  PubMed  Google Scholar 

  91. Budai L, et al. Natural oils and waxes: studies on stick bases. J Cosmet Sci. 2012;63(2):93–101.

    PubMed  Google Scholar 

  92. de Waroux Yle P. The social and environmental context of argan oil production. Nat Prod Commun. 2013;8(1):1–4.

    PubMed  Google Scholar 

  93. Corsini E, Galli CL. Epidermal cytokines in experimental contact dermatitis. Toxicology. 2000;142(3):203–11.

    Article  CAS  PubMed  Google Scholar 

  94. Cumberbatch M, et al. Epidermal Langerhans cell migration and sensitisation to chemical allergens. APMIS. 2003;111(7–8):797–804.

    Article  CAS  PubMed  Google Scholar 

  95. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004;4(3):211–22.

    Article  CAS  PubMed  Google Scholar 

  96. Ye J, et al. Alterations in cytokine regulation in aged epidermis: implications for permeability barrier homeostasis and inflammation. I. IL-1 gene family. Exp Dermatol. 2002;11(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  97. Choi EH, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol. 2007;127(12):2847–56.

    Article  CAS  PubMed  Google Scholar 

  98. Vierkötter A, Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Dermatoendocrinol. 2012;4(3):227–31. doi:10.4161/derm.19858.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Morita A, et al. Molecular basis of tobacco smoke-induced premature skin aging. J Investig Dermatol Symp Proc. 2009;14(1):53–5. doi:10.1038/jidsymp.2009.13.

    Article  CAS  PubMed  Google Scholar 

  100. Pedata P, et al. Interaction between combustion-generated organic nanoparticles and biological systems: in vitro study of cell toxicity and apoptosis in human keratinocytes. Nanotoxicology. 2012;6(4):338–52. doi:10.3109/17435390.2011.579630.

    Article  CAS  PubMed  Google Scholar 

  101. Daniela L, et al. Anti-inflammatory effects of concentrated ethanol extracts of Edelweiss (Leontopodium alpinum Cass.) callus cultures towards human keratinocytes and endothelial cells. Mediators Inflamm. 2012;2012:498373. doi:10.1155/2012/498373.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hong CE, Lyu SY. Anti-inflammatory and anti-oxidative effects of Korean red ginseng extract in human keratinocytes. Immune Netw. 2011;11(1):42–9. doi:10.4110/in.2011.11.1.42.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cardile V, et al. Antiinflammatory effects of a red orange extract in human keratinocytes treated with interferon-gamma and histamine. Phytother Res. 2010;24(3):414–8. doi:10.1002/ptr.2973.

    Article  CAS  PubMed  Google Scholar 

  104. Ravagnan G, et al. Polydatin, a natural precursor of resveratrol, induces β-defensin production and reduces inflammatory response. Inflammation. 2013;36(1):26–34. doi:10.1007/s10753-012-9516-8.

    Article  CAS  PubMed  Google Scholar 

  105. Lorencini M, Feferman IHS, Maibach HI. New perspectives in the control of the skin aging process. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology. 4th ed. Boca Raton: CRC Press; 2014. p. 245–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Lorencini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Brohem, C.A., Di Mambro, V.M., Lorencini, M. (2015). Therapeutic Alternatives for the Treatment of Epidermal Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_140-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_140-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics