Skip to main content

The Ontogeny-Phylogeny Nexus in a Nutshell: Implications for Primatology and Paleoanthropology

  • Living reference work entry
  • First Online:
Handbook of Paleoanthropology
  • 269 Accesses

Abstract

This chapter aims to review the relevance of ontogenic data in an evolutionary perspective. Phylogenetic investigation through developmental information is one of the most promising avenues to the elucidation of our natural history. First, the problematic integration of biological subdisciplines into the evo-devo synthesis is considered: the homeobox as Pandora’s box is discussed and the important role of a comparative morphology program is emphasized. Second, the study of development reveals essential aspects of primate supraordinal relationships and does not support an archontan reality. A special note defines the traditional superorder Archonta as (1) an artifact of the Scala naturae concept, since archontans were supreme public servants of the Greek ancient world. On the other hand, it is (2) a vehicle to explain the existence of flying mammals (Chiroptera) via a gliding intermediate stage (Dermoptera). Third, the impact of neotenic ideas on paleoanthropology is retraced, and current contributions describing the evolution of the human cranial base and bipedalism are presented. Man’s domination by neoteny seems to be a burlesque, accurately related as pithecocentrism.

Partout où quelque chose vit, il y a, ouvert quelque part, un registre où le temps s'inscrit.

Henri Bergson

Bestimmt sich nicht auch unsere Erwartung und unsere Bereitschaft, das Neue zu hören, notwendig von dem Alten her, das uns schon eingenommen hat?

Hans-Georg Gadamer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    “It can be observed that in the course of art, knowledge, and science, several efforts are made to create and cultivate a doctrine that we may call morphology…One abstracts the reality of fluctuation by supposing that a belonging together and a fixation of its character can be fulfilled. Considering all shaping, especially in organic forms, we can state that there is no stability, no resting or completing-but rather a fluctuation of all phenomena” (pp 55, my translation and emphasis).

References

  • Abitol MM (1991) Ontogeny and evolution of pelvic diameters in anthropoid primates and in Australopithecus afarensis (Al 288–1). Am J Phys Anthropol 85:135–148

    Google Scholar 

  • Ackermann RR (2005) Ontogenetic integration of the hominoid face. J Hum Evol 48:175–197

    PubMed  Google Scholar 

  • Ackermann RR, Krovitz GE (2002) Common patterns of facial ontogeny in the hominid lineage. Anat Rec (New Anat) 269:142–147

    Google Scholar 

  • Adkins RM, Honeycutt RL (1993) A molecular examination of archontan and chiropteran monophyly. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York/London, pp 227–249

    Google Scholar 

  • Alba DM (2002) Shape and stage in heterochronic models. In: Minugh-Purvis N, McNamara JK (eds) Human evolution through developmental change. The Johns Hopkins University Press, Baltimore, pp 28–50

    Google Scholar 

  • Alberch P (1982) Developmental constraints in evolutionary processes. In: Bonner JT (ed) Evolution and development. Springer, Berlin, pp 313–332

    Google Scholar 

  • Alemseged Z, Spoor F, Kimbel WH, Bobe R, Geraads D, Reed D, Wynn JG (2006) A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443:296–301

    PubMed  CAS  Google Scholar 

  • Allin EF (1975) Evolution of the mammalian middle ear. J Morphol 147:403–438

    PubMed  CAS  Google Scholar 

  • Anemone RL, Watts E (1992) Dental development in apes and humans: a comment on Simpson, Lovejoy, and Meindl (1990). J Hum Evol 22:149–153

    Google Scholar 

  • Antón SC, Leigh SR (1998) Paedomorphosis and neoteny in human evolution. J Hum Evol 34:A2

    Google Scholar 

  • Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764

    PubMed  CAS  Google Scholar 

  • Asfaw B, White T, Lovejoy O, Latimer B, Simpson S, Suwa G (1999) Australopithecus garhi: a new species of early hominid from Ethiopia. Science 284:629–635

    PubMed  CAS  Google Scholar 

  • Asher RJ, Meng J, Wible JR, McKenna MC, Rougier GW, Dashzeveg D, Novacek MJ (2005) Stem Lagomorpha and the antiquity of Glires. Science 307:1091–1094

    PubMed  CAS  Google Scholar 

  • Atchley WR, Hall BK (1991) A model for development and evolution of complex morphological structures. Biol Rev Camb Philos Soc 66:101–157

    PubMed  CAS  Google Scholar 

  • Baron G, Stephan H, Frahm HD (1987) Comparison of brain structure volumes in Insectivora and primates. VI. Paleocortical components. J Hirnforsch 28:463–477

    PubMed  CAS  Google Scholar 

  • Baron G, Stephan H, Frahm HD (1990) Comparison of brain structure volumes in insectivora and primates IX. Trigeminal complex. J Hirnforsch 31:193–200

    PubMed  CAS  Google Scholar 

  • Beard KC (1993) Origin and evolution of gliding in early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York/London, pp 63–90

    Google Scholar 

  • Berge C (1998) Heterochronic processes in human evolution: an ontogenetic analysis of the hominid pelvis. Am J Phys Anthropol 105:441–459

    PubMed  CAS  Google Scholar 

  • Bjork A (1955) Cranial base development. Am J Orthod 41:198–225

    Google Scholar 

  • Bock WJ, von Wahlert G (1965) Adaptation and the form-function-complex. Evolution 19:217–227

    Google Scholar 

  • Bogin B (1997) Evolutionary hypotheses for human childhood. Yearb Phys Anthropol 40:63–89

    Google Scholar 

  • Bolk L (1926) Das Problem der Menschwerdung. Fischer-Verlag, Jena

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • Bosma JF (ed) (1976) Symposium on development of the basicranium. US Department of Health, Education and Welfare, Bethesda

    Google Scholar 

  • Brakefield PM (2006) Evo-devo and constraints on selection. Trends Ecol Evol 21(7):362–368

    PubMed  Google Scholar 

  • Britz R, Bartsch P (2003) The myth of dorsal ribs in gnathostome vertebrates. Proc R Soc Lond B 270(Suppl):S1–S4

    Google Scholar 

  • Buschang PH (1982) Differential long bone growth of children between two months and eleven years of age. Am J Phys Anthropol 58:291–295

    PubMed  CAS  Google Scholar 

  • Carroll SB (2005) Endless forms most beautiful: the new science of evo devo. W. W Norton and Company, New York

    Google Scholar 

  • Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347

    PubMed  CAS  Google Scholar 

  • Cobb SN, O’Higgins P (2004) Hominins do not share a common postnatal facial ontogenetic shape trajectory. J Exp Zool (Mol Dev Evol) 302B:302–321

    Google Scholar 

  • Connour JR, Glander K, Vincent F (2000) Postcranial adaptations for leaping in primates. J Zool 251(1):79–103

    Google Scholar 

  • Coqueuniot H, Hublin J-J, Veillon F, Houët F, Jacob T (2004) Early brain growth in Homo erectus and implications for cognitive ability. Nature 431:299–302

    Google Scholar 

  • Cracraft J (2005) Phylogeny and evo-devo: characters, homology, and the historical analysis of the evolution of development. Zoology 108:345–356

    PubMed  Google Scholar 

  • Crockford SJ (2002) Animal domestication and heterochronic speciation: the role of thyroid hormone. In: Minugh-Purvis N, McNamara JK (eds) Human evolution through developmental change. Baltimore, Maryland

    Google Scholar 

  • Darwin C (1859) The origin of species. Wordsworth editions, Hertfordshire. Published in 1998

    Google Scholar 

  • De Beer GR (1930) Embryology and evolution. Clarendon, Oxford

    Google Scholar 

  • De Beer GR (1948) Embryology and the evolution of man. Robert Broom Commem. Vol. Cape town. Royal Society of South Africa

    Google Scholar 

  • De Beer GR (1951) Embryos and ancestors. Clarendon, Oxford

    Google Scholar 

  • De Beer GR (1985) The development of the vertebrate skull. The University of Chicago Press, Chicago

    Google Scholar 

  • Dean MC (1988) Growth processes in the cranial base of hominoids and the bearing on morphological similarities that exist in the cranial base of Homo and Paranthropus. In: Grine FE (ed) Evolutionary history of the “robust” australopithecines. Aldine de Gruyter, New York, pp 107–112

    Google Scholar 

  • Dean MC, Wood BA (1984) Phylogeny, neoteny and growth of the cranial base in hominoids. Folia Primatol 43:157–180

    PubMed  CAS  Google Scholar 

  • Demes B, Jungers WL (1993) Long bone cross-sectional dimensions, locomotor adaptations and body size in prosimian primates. J Hum Evol 25:57–74

    Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

    Google Scholar 

  • Duboule D (1994) In: Akam M, Holland P, Ingham P, Wray G (eds) The evolution of developmental mechanisms. Development (Suppl.). Company of Biologists, Cambridge

    Google Scholar 

  • Dubrul EL, Laskin DM (1961) Preadaptive potentials of the mammalian skull: an experiment in growth and form. Am J Anat 109:107–132

    Google Scholar 

  • Dullemeijer P (1975) Bolk’s foetalization theory. Acta Morphol Neerl Scand 13:77–86

    PubMed  CAS  Google Scholar 

  • Enard W, Przeworski M, Fisher SE, Lai CSL, Wiebe V, Kitano T, Monaco AP, Pääbo S (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418:869–872

    PubMed  CAS  Google Scholar 

  • Enlow DH (1976) The prenatal and postnatal growth of the human basicranium. In: Bosma JF (ed) Symposium on development of the basicranium. Publication no NIH 76–989.. Government DHEW, US Bethesda, pp 192–205

    Google Scholar 

  • Enlow DH (1990) Facial growth. Saunders and Co, Philadelphia

    Google Scholar 

  • Enlow DH, Hunter WS (1968) The growth of the face in relation to the cranial base. Rep Congr Eur Orthod Soc 44:321–335

    PubMed  CAS  Google Scholar 

  • Enlow DH, Moyers RE (1971) Growth and architecture of the face. J Am Dent Assoc 82:763–774

    PubMed  CAS  Google Scholar 

  • Ford ERH (1956) Growth of the foetal skull. J Anat 90:63–72

    PubMed Central  PubMed  CAS  Google Scholar 

  • Frahm HD, Stephan H, Stephan M (1982) Comparison of brain structure volumes on insectivora and primates. I Neocortex. J Hirnforsch 23:375–389

    PubMed  CAS  Google Scholar 

  • Frahm HD, Zilles K, Schleicher A, Stephan H (1998) The size of the middle temporal area in primates. J Hirnforsch 39:45–54

    PubMed  CAS  Google Scholar 

  • Garstang W (1929) The morphology of the Tunicata and its bearings on the phylogeny of the Chordata. Q J Microsc Sci 72:52

    Google Scholar 

  • Gerhart J (2000) Inversion of the chordate body axis: are there alternatives? Proc Natl Acad Sci USA 97(9):4445–4448

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giles E (1956) Cranial allometry in the great apes. Hum Biol 28:43–58

    PubMed  CAS  Google Scholar 

  • Godfrey LR, Sutherland MR (1996) The paradox of peramorphic paedomorphosis: heterochrony and human evolution. Am J Phys Anthropol 99:17–42

    PubMed  CAS  Google Scholar 

  • Goodman CS, Coughlin BC (2000) The evolution of evo-devo biology. Proc Natl Acad Sci USA 97(9):4424–4425

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goodwin BC, Holder N, Wylie CC (eds) (1983) Development and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gould SJ (1991) The uses of heterochrony. In: McKinney ML (ed) Heterochrony in evolution. Plenum Press, New York/London, pp 1–13

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. The Belknap Press of Harvard University Press, Cambridge, MA/London

    Google Scholar 

  • Grande L, Rieppel O (eds) (1994) Interpreting the hierarchy of nature: from systematic patterns to evolutionary process theories. Academic, San Diego

    Google Scholar 

  • Grausz HM (1991) Ontogenetic allometry in 3D: patterns of human craniofacial growth. Am J Phys Anthropol 12(Suppl):81

    Google Scholar 

  • Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27:1–524

    Google Scholar 

  • Guihard-Costa AM, Larroche JC (1990) Differential growth between the fetal brain and its infratentorial part. Early Hum Dev 23:47–40

    Google Scholar 

  • Guihard-Costa AM, Larroche JC (1992) Growth velocity of some fetal parameters. I. Brain weight and brain dimensions. Biol Neonate 62:309–316

    PubMed  CAS  Google Scholar 

  • Haeckel E (1896) The evolution of man: a popular exposition of the principal points of human ontogeny and phylogeny. Appleton, New York

    Google Scholar 

  • Haeckel E (1923) Das Weltbild von Darwin und Lamarck. Alfred Kröner Verlag, Leipzig

    Google Scholar 

  • Hall BK (1990) Heterochronic change in vertebrate development. Sem Dev Biol 1:237–243

    Google Scholar 

  • Hall BK (1998a) Evolutionary developmental biology, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Hall BK (1998b) Epigenetics: regulation not replication. J Evol Biol 11:201–205

    Google Scholar 

  • Hall BK (1998c) Germ layers and the germ-layer theory revisited: primary and secondary germ layers, neural crest as a fourth germ layer, homology, demise of the germ-layer theory. Evol Biol 30:121–186

    Google Scholar 

  • Hall BK (2002) Evolutionary developmental biology: where embryos and fossil meet. In: Minugh-Purvis N, McNamara JK (eds) Human evolution through developmental change. Den Haag, Baltimore, pp 7–27

    Google Scholar 

  • Hallgrímsson B, Willmore K, Hall BK (2002) Canalization, developmental stability, and morphological integration in primate limbs. Yearb Am J Phys Anthropol 45:131–158

    Google Scholar 

  • Hamrick MW (2001) Primate origins: evolutionary change in digital ray patterning and segmentation. J Hum Evol 40:339–351

    PubMed  CAS  Google Scholar 

  • Hamrick MW (2002) Developmental mechanisms of digit reduction. Evol Dev 4(4):247–248

    PubMed  Google Scholar 

  • Hardt T, Menke P, Henke W (2006) Innovative morphologische Ansätze der primatologischen Anthropologie. Mainzer Naturwissenschaftliches Archiv 44:1–62

    Google Scholar 

  • Hartwig-Scherer S, Martin RD (1991) Was “Lucy” more human than her “child”? Observations on early hominid postcranial skeleton. J Hum Evol 21:439–450

    Google Scholar 

  • Helms JA, Schneider RA (2003) Cranial skeletal biology. Nature 423:326–331

    PubMed  CAS  Google Scholar 

  • Hennig W (1950) Grundzüge einer Theorie der phylogenetischen Systematik. Aufbau Verlag, Berlin

    Google Scholar 

  • Heteren V (2008) Homo floresiensis as an island form. PalArch’s J Verteb Palaeontol 5(2):1–12

    Google Scholar 

  • Hillis DM, Moritz C (1990) An overview of applications of molecular systematics. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 502–515

    Google Scholar 

  • Hilzheimer M (1926) Natürliche Rassengeschichte der Haussäugetiere. De Gruyter, Berlin/Leipzig, 235p

    Google Scholar 

  • Hilzheimer M (1927) Historisches und Kritisches zu Bolks Problem der Menschwerdung. Anat Anz 62:110–121

    Google Scholar 

  • Hofer H (1958) Zur Kenntnis der Kyphosen des Primatenschädels. Verh Anat Ges 54. Vers Freiburg Br, pp 54–76

    Google Scholar 

  • Hofer H (1960) Studien zum Gestaltwandel des Schädels der Säugetiere, insbesondere der Primaten. Z Morph Anthropol 50:299–316

    Google Scholar 

  • Hofer HO (1969) On the evolution of the craniocerebral topography in primates. Ann NY Acad Sci 162:15–24

    PubMed  CAS  Google Scholar 

  • Holland PWH, Holland LZ, Williams NA, Holland ND (1992) An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 116:653–661

    PubMed  CAS  Google Scholar 

  • Hooker JJ (2001) Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132(4):501–529

    Google Scholar 

  • Houpt MI (1970) Growth of the craniofacial complex of the human fetus. Am J Orthod 58:373–383

    PubMed  CAS  Google Scholar 

  • Howell FC (2002) Foreword. In: Human evolution through developmental change. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Hunt RM, Korth WK (1980) The auditory region of Dermoptera: morphology and function relative to other living mammals. J Morphol 164:167–211

    Google Scholar 

  • Illiger C (1811) Prodromus systematis mammalium et avium additis terminis zoographicis utriusque classis, eorumque versione germanica. Berolini

    Google Scholar 

  • Jacob T, Indriati E, Soejono RP, Hsü K, Frayer DW, Eckhardt RB, Kuperavage AJ, Thorne A, Henneberg M (2006) Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, Flores: population affinities and pathological abnormalities. Proc Natl Acad Sci USA 103:13421–13426

    PubMed Central  PubMed  CAS  Google Scholar 

  • Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ (2007) Molecular and genomic data identify the closest living relative of primates. Science 318:792–794

    PubMed  CAS  Google Scholar 

  • Jeffery N (2002) Differential regional brain growth and rotation of the prenatal human tentorium cerebelli. J Anat 200:135–144

    PubMed Central  PubMed  Google Scholar 

  • Jeffery N (2003) Brain expansion and comparative prenatal ontogeny of the non-hominoid primate cranial base. J Hum Evol 45:263–284

    PubMed  Google Scholar 

  • Jeffery N, Spoor F (2002) Brain size and the human cranial base: a prenatal perspective. Am J Phys Anthropol 118(4):324–340

    PubMed  Google Scholar 

  • Johanson DC, Lovejoy CO, Kimbel WH, White TD, Ward SC, Bush ME, Latimer BM, Coppens Y (1982) Morphology of the Pliocene partial hominid skeleton. (AL 288–1) from the Hadar formation, Ethiopia. Am J Phys Anthropol 57:403–451

    Google Scholar 

  • Jungers WL (1982) Lucy’s limbs: skeletal allometry and locomotion in Australopithecus afarensis. Nature 297:676–678

    Google Scholar 

  • Jungers WL, Fleagle JG (1980) Postnatal growth allometry of the extremities in Cebus albifrons and Cebus apella: a longitudinal and comparative study. Am J Phys Anthropol 53:471–478

    PubMed  CAS  Google Scholar 

  • Jungers WL, Hartman SE (1988) Relative growth of the locomotor skeleton in orang- utans and other large-bodied hominoids. In: Schwartz J (ed) Orang-utan biology. Oxford University Press, Oxford, pp 347–359

    Google Scholar 

  • Jungers WL, Susman RL (1984) Body size and skeletal allometry in African apes. In: Susman RL (ed) The pygmy chimpanzee: evolutionary morphology and behaviour. Plenum Press, New York

    Google Scholar 

  • Kaessmann H, Päabo S (2002) The genetical history of humans and the great apes. J Int Med 251:1–18

    CAS  Google Scholar 

  • Karsenty G (2003) The complexities of skeletal biology. Nature 423:316–318

    PubMed  CAS  Google Scholar 

  • Klingenberg CP (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev 73:79–123

    PubMed  CAS  Google Scholar 

  • Kronenberg HM (2003) Developmental growth regulation of the growth plate. Nature 423:332–336

    PubMed  CAS  Google Scholar 

  • Krovitz GE, Nelson AJ, Thompson JL (2003) Introduction. In: Thompson JL, Krovitz GE, Nelson AJ (eds) Patterns of growth and development in the genus Homo. Cambridge University Press, Cambridge

    Google Scholar 

  • Kubo D, Kono RT, KaifuY (2013) Brain size of Homo floresiensis and its evolutionary implications. Proc R Soc B 2013, 280, 1760, 20130338; (published 17 April 2013), pp1471–2954. doi:10.1098/rspb.2013.0338

    Google Scholar 

  • Kummer B (1960) Zum Problem der Fetalisation. Zool Anz 164:391–393

    Google Scholar 

  • Kuratani S (2003) Evolutionary developmental biology and vertebrate head segmentation: a perspective from developmental constraint. Theory Biosci 122:230–251

    Google Scholar 

  • Kvinnsland S (1971a) The sagittal growth of the lower face during foetal life. Acta Odontol Scand 29:171–731

    Google Scholar 

  • Laubichler MD (2003) Carl Gegenbaur (1826–1903): integrating comparative anatomy and embryology. J Mol Dev Evol 300B:23–31

    Google Scholar 

  • Lavelle CLB (1974) An analysis of foetal craniofacial growth. Ann Hum Biol 1:269–287

    PubMed  CAS  Google Scholar 

  • Leche W (1886) Über die Säugetiergattung Galeopithecus. Eine morphologische Untersuchung. K Svenska Vet Akad Handl 21:1–92

    Google Scholar 

  • Lemons D, McGinnis W (2006) Genomic evolution of Hox gene clusters. Science 313(5795):1918–1922

    PubMed  CAS  Google Scholar 

  • Lestrel PE, Moore RN (1978) The cranial base in fetal Macaca nemestrina: a quantitative analysis of size and shape. J Dent Res 57:395–401

    PubMed  CAS  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    PubMed  CAS  Google Scholar 

  • Lieberman D, Ross C, Ravosa M (2000) The primate cranial base: ontogeny, function, and integration. Am J Phys Anthropol 31:117–169

    PubMed  Google Scholar 

  • Lumer H (1939) Relative growth of the limb bones in the anthropoid apes. Hum Biol 13:283–305

    Google Scholar 

  • MacPhee RDE (1979) Entotympanics, ontogeny, and primates. Folia Primatol 27:245–283

    Google Scholar 

  • MacPhee RDE (1981) Auditory regions of primates and eutherian insectivores: morphology, ontogeny and character analysis. Contrib Primatol 18:1–282

    Google Scholar 

  • MacPhee RDE (1993) Summary. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 363–373

    Google Scholar 

  • Maier W (1987) Der Processus angularis bei Monodelphis domestica (Didelphidae, Marsupialia) und seine Beziehungen zum Mittelohr: Eine ontogenetische und evolutionsmorphologische Untersuchung. Gegenbaurs Morphol Jahrb 133:123–161

    PubMed  CAS  Google Scholar 

  • Maier W (1999) On the evolutionary biology of early mammals-with methodological remarks on the interaction between ontogenetic adaptation and phylogenetic transformation. Zool Anz 238:55–74

    Google Scholar 

  • Mann A, Weiss M (1996) Hominoid phylogeny and taxonomy: a consideration of the molecular and fossil evidence in a historical perspective. Mol Phylogenet Evol 5:169–181

    PubMed  CAS  Google Scholar 

  • Marcus LF (1996) Advances in morphometrics. Plenum Press, New York

    Google Scholar 

  • Mariani FV, Martin GR (2003) Deciphering skeletal patterning: clues from the limb. Nature 423:319–325

    PubMed  CAS  Google Scholar 

  • Martin RD (1973) Comparative anatomy and primate systematics. Symp Zool Soc Lond 33:301–337

    Google Scholar 

  • Martin T, Luo Z-X (2005) Homoplasy in the mammalian ear. Science 307:861–862

    CAS  Google Scholar 

  • McBratney-Owen B, Lieberman DE (2003) Postnatal ontogeny of facial position in Homo sapiens and Pan troglodytes. In: Thompson JL, Krovitz GE, Nelson AJ (eds) Patterns of growth and development in the Genus Homo. Cambridge University Press, Cambridge, pp 45–72

    Google Scholar 

  • McCarthy RC (2001) Anthropoid cranial base architecture and scaling relationships. J Hum Evol 40:41–66

    PubMed  CAS  Google Scholar 

  • McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ (1984) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37:403–408

    PubMed  CAS  Google Scholar 

  • McHenry HM (1978) Fore- and hindlimb proportions of Plio-Pleistocene hominids. Am J Phys Anthropol 49:15–22

    PubMed  CAS  Google Scholar 

  • McHenry HM, Berger LR (1998) Body proportions of Australopithecus afarensis and africanus and the origin of the genus Homo. J Hum Evol 35:1–22

    PubMed  CAS  Google Scholar 

  • McKinney ML (1998) The juvenilized ape myth-our overdeveloped brain. Bioscience 48:109–116

    Google Scholar 

  • McKinney ML, McNamara KJ (1991) Heterochrony: the evolution of ontogeny. Plenum Press, New York

    Google Scholar 

  • McNamara KJ (1983) Progenesis in trilobites. Spec Pap Paleontol 30:59–68

    Google Scholar 

  • McNamara KJ (1997) Shapes of time: the evolution of growth and development. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • McNamara KJ (2002) What is heterochrony? In: Minugh-Purvis N, McNamara JK (eds) Human evolution through developmental change. The Johns Hopkins University Press, Baltimore, pp 102–121

    Google Scholar 

  • Menke PR, Henke W (2008) The hyo-laryngeal complex of Tarsius bancanus (Mammalia, Primates): a developmental and phylogenetic aspect. Anthropol Anz 66(3):257–272

    PubMed  Google Scholar 

  • Mestre JC (1959) A cephalometric appraisal of cranial and facial relationships at various stages of human development. Am J Orthod 45:473

    Google Scholar 

  • Minugh-Purvis N, McNamara KJ (eds) (2002) Human evolution through developmental change. The John Hopkins University Press, Baltimore/London

    Google Scholar 

  • Mitteroecker P, Gunz P, Bernhard M, Schaefer K, Bookstein FL (2004) Comparison of cranial ontogenetic trajectories among great apes and humans. J Hum Evol 46(6):679–698

    PubMed  Google Scholar 

  • Mivart G (1881) The cat. An introduction to the study of backboned animals, especially mammals. Scribner’s, New York, p 557

    Google Scholar 

  • Montagu A (1989) Growing young. McGraw Hill, New York

    Google Scholar 

  • Moore RN (1978) A cephalometric and histological study of the cranial base in foetal monkeys (Macaca nemestrina). Arch Oral Biol 23:57–67

    PubMed  CAS  Google Scholar 

  • Moore RN, Phillips C (1980) Sagittal craniofacial growth in the fetal macaque monkey Macaca nemestrina. Arch Oral Biol 25:19–22

    PubMed  CAS  Google Scholar 

  • Morris SC (2000) The Cambrian “explosion”: slow-fuse or megatonnage? Proc Natl Acad Sci USA 97(9):4426–4429

    CAS  Google Scholar 

  • Moss M (1973) A functional cranial analysis of primate craniofacial growth. Symposium on IVth international congresson primatology, pp 191–208

    Google Scholar 

  • Moss M, Salentijn L (1969) The primary role of functional matrices in facial growth. Am J Orthod 55:566–577

    PubMed  CAS  Google Scholar 

  • Moss ML, Noback CR, Robertson GG (1956) Growth of certain human fetal cranial bones. Am J Anat 98:191–204

    PubMed  CAS  Google Scholar 

  • Moss ML, Moss-Salentijn L, Vilmann H, Newell-Morris L (1982) Neuro-skeletal topology of the primate basicranium: its implications for the “fetalization hypothesis.”. Gegenb Morphol Jahrb 128:58–67

    CAS  Google Scholar 

  • Müller GB (2005) Evolutionary developmental biology. In: Wuketis FM, Ayala FJ (eds) Handbook of evolution. Wiley-VCH, Weinheim

    Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    PubMed  CAS  Google Scholar 

  • Napier JR, Napier PH (1967) A handbook of living primates. Academic, London

    Google Scholar 

  • Nature insight: Bone and cartilage (2003) Reprinted from vol 423, no 6937

    Google Scholar 

  • Nelson GJ (1978) Ontogeny, phylogeny, paleontology and the biogenetic law. Syst Zool 27:324–345

    Google Scholar 

  • Nielsen C (1995) Animal evolution. Oxford University Press, Oxford/New York/Tokyo

    Google Scholar 

  • Nishihara H, Hasegawa M, Okada N (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci USA 103(26):9929–9934

    PubMed Central  PubMed  CAS  Google Scholar 

  • Novacek MJ, Wyss AR (1986) Higher-level relationships of recent eutherian orders: morphological evidence. Cladistics 2:257–287

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    PubMed  Google Scholar 

  • Nyhart LK (1995) Biology takes form. University of Chicago Press, Chicago

    Google Scholar 

  • O’Higgins P (2000a) Quantitative approaches to the study of craniofacial growth and evolution: Advances in morphometric techniques: development, growth and evolution. Academic, San Diego

    Google Scholar 

  • O’Higgins P (2000b) The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. J Anat 197:103–120

    PubMed Central  PubMed  Google Scholar 

  • O’Higgins P, Chadfield P, Jones N (2001) Facial growth and the ontogeny of morphological variation within and between the primates Cebus apella and Cercocebus torquatus. J Zool 254:337–357

    Google Scholar 

  • Otto H-D (1984) Der Irrtum der Reichert-Gauppschen Theorie. Ein Beitrag zur Onto- und Phylogenese des Kiefergelenks und der Gehörknöchelchen der Säugetiere. Anat Anz 155:223–238

    PubMed  CAS  Google Scholar 

  • Päabo S (1999) Human evolution. Trends Genet 15:M13–M15

    Google Scholar 

  • Penin X, Berge C, Baylac M (2002) Ontogenetic study of the skull in modern humans and the common chimpanzees: neotenic hypothesis reconsidered with a tridimensional procrustes analysis. Am J Phys Anthropol 118(1):50–62

    PubMed  Google Scholar 

  • Plavcan JM, German RZ (1995) Quantitative evaluation of craniofacial growth in the third trimester human. Cleft Palate Craniofac J 32:394–404

    PubMed  CAS  Google Scholar 

  • PNAS (2000) Special feature: the evolution of evo-devo biology. April 25, 2000, 97: 9

    Google Scholar 

  • Ponce de León MS, Zollikofer CPE (2001) Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412:534–538

    PubMed  Google Scholar 

  • Portmann A (1960) Biologie und Anthropologie. In: Mann G (ed) Propyläen Weltgeschichte-Eine Universalgeschichte, Band 9. Verlag Ullstein, Frankfurt/Berlin

    Google Scholar 

  • Preuschoft H (1971) Body posture and mode of locomotion in early Pleistocene hominid. Folia Primatol 14:209–240

    PubMed  CAS  Google Scholar 

  • Raff R (1996) The shape of life: genes, development, and the evolution of the animal form. University Chicago Press, Chicago

    Google Scholar 

  • Raichlen DA (2005) Ontogeny of limb mass distribution in infant baboons (Papio cynocephalus). J Hum Evol 49(4):452–467

    PubMed  Google Scholar 

  • Rasmussen DT (2002) The origin of primates. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 5–9

    Google Scholar 

  • Ravosa MJ (1991) The ontogeny of cranial sexual dimorphism in two old world monkeys: Macaca fascicularis (Cercopithecinae) and Nasalis larvatus (Colobinae). Int J Primatol 12:403–426

    Google Scholar 

  • Ravosa MJ (1992) Allometry and heterochrony in extant and extinct Malagasy primates. J Hum Evol 23:197–217

    Google Scholar 

  • Rich TH, Hopson JA, Musser AM, Flannery TF, Vickers- Rich P (2005) Independent origins of middle ear bones in monotremes and therians. Science 307:910–914

    PubMed  CAS  Google Scholar 

  • Richardson MK (1999) Vertebrate evolution: the developmental origins of adult variation. Bioessays 21:604–613

    PubMed  CAS  Google Scholar 

  • Richardson MK, Hanke J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol 196:91–106

    PubMed  CAS  Google Scholar 

  • Richmond BG, Aiello LC, Wood BA (2002) Early hominin limb proportions. J Hum Evol 43:529–548

    PubMed  Google Scholar 

  • Richtsmeier J, Cheverud J, Corner B, Danahey S, Lele S (1993) Sexual dimorphism in the crab eating macaque (Macaca fascicularis). J Hum Evol 25:1–30

    Google Scholar 

  • Robert JS (2001) Interpreting the homeobox: metaphors of gene action and activation in development in evolution. Evol Dev 3:287–295

    PubMed  CAS  Google Scholar 

  • Ross CF, Henneberg M (1995) Basicranial flexion, relative brain size, and facial kyphosis in Homo sapiens and some fossil hominids. Am J Phys Anthropol 98:575–593

    PubMed  CAS  Google Scholar 

  • Ross CF, Ravosa MJ (1993) Basicranial flexion, relative brain size, and facial kyphosis in nonhuman primates. Am J Phys Anthropol 91:305–324

    PubMed  CAS  Google Scholar 

  • Ruff CB (2002) Long bone articular and diaphyseal structure in old world monkeys and apes, I: locomotor effects. Am J Phys Anthropol 119:305–342

    PubMed  Google Scholar 

  • Ruff C (2003) Ontogenetic adaptation to bipedalism: age changes in femoral to humeral length and strength proportions in humans, with a comparison to baboons. J Hum Evol 45:317–349

    PubMed  Google Scholar 

  • Russell ES (1982) Form and function: a contribution to the history of animal morphology. University of Chicago Press, Chicago

    Google Scholar 

  • Ruvolo M (1997) Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets. Mol Biol Evol 14:248–265

    PubMed  CAS  Google Scholar 

  • Sánchez-Villagra MR, Gemballa S, Nummela S, Smith KK, Maier W (2002) Ontogenetic and phylogenetic transformation of the ear ossicle in marsupial mammals. J Morphol 251:219–238

    PubMed  Google Scholar 

  • Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CC (eds) Development and evolution. Cambridge University Press, Cambridge, pp 137–159

    Google Scholar 

  • Schaffler MB, Burr DB, Jungers WL, Ruff CB (1985) Structural and mechanical indicators of limb specialization in primates. Folia Primatol 45:61–75

    PubMed  CAS  Google Scholar 

  • Schindewolf OH (1936) Paläontologie, Entwicklungslehre und Genetik. Kritik und Synthese. Bornträger, Berlin

    Google Scholar 

  • Schindewolf OH (1950) Grundfragen der Paläontologie. Schweizerbart, Stuttgart

    Google Scholar 

  • Schultz AH (1924) Growth studies on primates bearing upon man’s evolution. Am J Phys Anthropol 7(2):149–164

    Google Scholar 

  • Schultz AH (1937) Proportions, variability and asymmetries of the long bones of the limbs and the clavicles in man and apes. Human Biol 9:281–328

    Google Scholar 

  • Schultz AH (1953) The relative thickness of the long bones and the vertebrae in primates. Am J Phys Anthropol 11:277–311

    PubMed  CAS  Google Scholar 

  • Schultz AH (1973) Age changes, variability and generic differences in body proportions of recent hominoids. Fol Primatol 19(5):338–359

    CAS  Google Scholar 

  • Schwartz JH (1999) Sudden origins: fossils, genes, and the emergence of species. Wiley, New York

    Google Scholar 

  • Schwartz JH (2000) The origin and identification of species. In: Proceedings of 3. Kongress der Gesellschaft für Anthropologie: Schnittstelle Mensch-Umwelt in Vergangenheit, Gegenwart und Zukunft

    Google Scholar 

  • Schwartz JH, Tattersall I (2000) The human chin revisited: what is it and who has it? J Hum Evol 38:367–409

    PubMed  CAS  Google Scholar 

  • Scott M, Weiner AJ (1984) Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax and fushi tarazu loci of Drosophila. Proc Natl Acad Sci USA 81:4115–4119

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sears KE, Behringer RR, Rasweiler JJ IV, Niswander LA (2006) Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc Natl Acad Sci USA 103(17):6581–6586

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shea BT (1983) Paedomorphosis and neoteny in the pygmy chimpanzee. Science 222:521–522

    PubMed  CAS  Google Scholar 

  • Shea BT (1985a) Bivariate and multivariate growth allometry: statistical and biological considerations. J Zool 206:367–390

    Google Scholar 

  • Shea BT (1985b) Ontogenetic allometry and scaling: a discussion based on the growth and form of the African apes. Plenum Press, New York

    Google Scholar 

  • Shea BT (1988) Heterochrony in primates. In: McKinney ML (ed) Heterochrony in evolution: a multidisciplinary approach. Plenum Press, New York, pp 237–266

    Google Scholar 

  • Shea BT (1989) Heterochrony in human evolution: the case for neoteny reconsidered. Yearb Phys Anthropol 32:69–101

    Google Scholar 

  • Shea BT (1992) A developmental perspective on size change and allometry in evolution. Evol Anthropol 1:125–134

    Google Scholar 

  • Shea BT (2002) Are some heterochronic transformations likelier than other? In: Minugh-Purvis N, McNamara JK (eds) Human evolution through developmental change. The Johns Hopkins University Press, Baltimore, pp 79–101

    Google Scholar 

  • Shimeld SM, Holland PWH (2000) Vertebrate innovations. Proc Natl Acad Sci USA 97(9):4449–4452

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sirianni JE, Newell-Morris L (1980) Craniofacial growth of fetal Macaca nemestrina: a cephalometric roentgenographic study. Am J Phys Anthropol 53:407–421

    PubMed  CAS  Google Scholar 

  • Sirianni JE, Van Ness AL (1978) Postnatal growth of the cranial base in (Macaca nemestrina). Am J Phys Anthropol 53:407–421

    Google Scholar 

  • Slice DE (ed) (2005) Modern morphometrics in physical anthropology. Kluwer/Plenum, New York

    Google Scholar 

  • Slijper EJ (1936) Die Cetaceen, vergleichend anatomisch und systematisch. Ein Beispiel zur vergleichenden Anatomie des Blutgefäß-, Nerven- und Muskelsystems, sowie des Rumpfskelettes der Säugetiere, mit Studien über die Theorie des Aussterbens und der Foetalisation. Capita Zoologica VI/VII, Den Haag

    Google Scholar 

  • Smith RJ (1995) Ontogeny of australopithecines and early Homo: evidence from cranial capacity and dental eruption. J Hum Evol 29:155–168

    Google Scholar 

  • Spatz W (1964) Beitrag zur Kenntnis der Ontogenese des Cranium von Tupaia glis (Diard 1820). Morphol Jb 106:321–426

    Google Scholar 

  • Spoor F (1997) Basicranial architecture and relative brain size of Sts 5 (Australopithecus africanus) and other Plio-Pleistocene hominids. S Afric J Sci 93:182–187

    Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74

    PubMed  CAS  Google Scholar 

  • Stafford BJ, Thorington RW Jr (1998) Carpal development and morphology in archontan mammals. J Morphol 235(2):135–155

    PubMed  CAS  Google Scholar 

  • Starck D (1962) Der heutige Stand des Fetalisationsproblems. Verlag Paul Parey, Hamburg und Berlin

    Google Scholar 

  • Starck D (1975) The development of the chondrocranium in primates. In: Luckett WP, Szalay FS (eds) Phylogeny of the primates: a multidisciplinary approach. Plenum press, New York, pp 127–155

    Google Scholar 

  • Starck D, Kummer B (1962) Zur Ontogenese des Schimpansenschädels (mit Bemerkungen zur Fetalisierungshypothese). Anthropol Anz 25:204–215

    Google Scholar 

  • Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29

    PubMed  CAS  Google Scholar 

  • Stephan H, Frahm H, Baron G (1984) Comparison of brain structure volumes in insectivora and primates. IV. Non-cortical visual structures. J Hirnforsch 25(4):385–403

    PubMed  CAS  Google Scholar 

  • Strait DS (1999) The scaling of basicranial flexion and length. J Hum Evol 37:701–719

    PubMed  CAS  Google Scholar 

  • Strickland HE, Melville AG (1848) The Dodo and its kindred or the history, affinities and osteology of the Dodo, Solitaire and other extinct birds of the islands Mauritius, Rodriguez and Bourbon. Reeve, Benham and Reeve, London, 141 p

    Google Scholar 

  • Swindler DR (1985) Nonhuman primate dental development and its relationship to human dental development. In: Watts E (ed) Nonhuman primate models or human growth and development. Alan R. Liss, Philadelphia, pp 67–94

    Google Scholar 

  • Szalay FS, Drawhorn G (1980) Evolution and diversification of the Archonta in an arboreal milieu. In: Luckett WP (ed) Comparative biology and evolutionary relationships of tree shrews. Plenum Press, New York, pp 133–218

    Google Scholar 

  • Szalay FS, Lucas SG (1993) Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 187–226

    Google Scholar 

  • Tardieu C (1999) Ontogeny and phylogeny of femoro-tibial characters in humans and hominid fossils: functional influence and genetic determinism. Am J Phys Anthropol 110:365–377

    PubMed  CAS  Google Scholar 

  • Tardieu C, Preuschoft H (1996) Ontogeny of the knee joint in humans, great apes and fossil hominids: pelvi-femoral relationships during postnatal growth in humans. Folia Primatol 66:68–81

    PubMed  CAS  Google Scholar 

  • Tardieu C, Trinkaus E (1994) Early ontogeny of the human femoral bicondylar angle. Am J Phys Anthropol 95:183–195

    PubMed  CAS  Google Scholar 

  • Thewissen JGM, Babcock SK (1991) Distinctive cranial and cervical innervation of wing muscles: new evidence for bat monophyly. Science 251:934–936

    PubMed  CAS  Google Scholar 

  • Thewissen JGM, Babcock SK (1993) The implications of the propatagial muscles of flying and gliding mammals for archontan systematics. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 91–110

    Google Scholar 

  • Tolkien JRR (2007) The hobbit or there an back again. Houghton Mifflin Company, Boston

    Google Scholar 

  • Tuttle RH (1978) Ontogeny and phylogeny. By Stephen Jay Gould. Am J Phys Anthropol 49(2):287–288

    Google Scholar 

  • Van der Klaauw CJ (1922) Über die Entwickelung des Entotympanicums. Tidjschr Ned Dierkd Ver 18:135–174

    Google Scholar 

  • Van der Klaauw CJ (1931) On the auditory bulla in some fossil mammals. Bull Am Mus Nat Hist 62:1–352

    Google Scholar 

  • Van Kampen PN (1905) Die Tympanalgegend des Säugetierschädels. Gegenbaurs Morph Jahrb 34:321–722

    Google Scholar 

  • Vogel C (1964) Stammesgeschichtliche Aspekte des Kinnproblems. Fortschr Kieferorthop 25:164–180

    Google Scholar 

  • Von Baer KE (1828) Über die Entwicklungsgeschichte der Tiere: Beobachtung und Reflexion. Bornträger, Königsberg

    Google Scholar 

  • Von Dassow G, Munro E (1999) Modularity in animal development and evolution: elements of a conceptual framework for evodevo. J Exp Zool (Mol Dev Evol) 285:307–325

    Google Scholar 

  • von Goethe JW (1998) Werke: Naturwissenschaftliche Schriften I. Deutscher Taschenbuch Verlag, München

    Google Scholar 

  • Wägele J-W (2000) Grundlagen der phylogenetischen Systematik. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Ward CV (2002) Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Yearb Phys Anthropol 45:185–215

    Google Scholar 

  • Weston EM, Lister AM (2009) Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis. Nature 459:85–88

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wible JR, Martin JR (1993) Ontogeny of the tympanic floor and roof in archontans. In: MacPhee RDE (ed) Primates and their relatives in a phylogenetic perspective. Plenum Press, New York, pp 111–148

    Google Scholar 

  • Wiesemüller B, Rothe H, Henke W (2002) Phylogenetische Systematik. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M (2003) Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: Enlarging genus Homo. Proc Natl Acad Sci 100:7181–7188

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wincza H (1896) Über einige Entwicklungsveränderungen in der Gegend des Schädelgrundes bei den Säugethieren. Bulletin International de I’Académie des Sciénces de Cracovie 1896:326–337

    Google Scholar 

  • Wolpert L (1991) The triumph of the embryo. Oxford University Press, Oxford

    Google Scholar 

  • Wolpoff MH (1983) Lucy’s lower limbs: long enough for Lucy to be fully bipedia? Nature 304:59–61

    PubMed  CAS  Google Scholar 

  • Zumpano R, Richtsmeier JT (2003) Growth-related shape changes in the fetal craniofacial complex of humans (Homo sapiens) and pigtailed macaques (Macaca nemestrina): a 3d-CT comparative analysis. Am J Phys Anthropol 120:339–351

    PubMed  Google Scholar 

  • Zumpano R, Sirianni JE (1994) The development of size dimorphism in the craniofacial complex during the third trimester of prenatal growth in the pigtailed macaque (Macaca nemestrina). Am J Phys Anthropol 18:214–215

    Google Scholar 

Download references

Acknowledgments

I am very grateful to Winfried Henke, Hartmut Rothe, and Ian Tattersall for inviting me to contribute. For intellectual support, I would like to thank Winfried Henke. Special thanks to Ian Tattersall for improving my pseudo-English manuscript, and I am very grateful to Jeffrey H. Schwartz for important comments. For inviting me to study Cynocephalus volans and for enriching discussions, thanks to Wolfgang Maier from the Institute of Systematic Zoology in Tübingen. Thanks also to Gerhard Storch, John R. Wible, Christian Kummer SJ, and Thorolf Hardt. The postgraduate financial support of the Johannes Gutenberg University Mainz is gratefully acknowledged. Finally, Dankeschön to all my loved ones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Menke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Menke, P.R. (2013). The Ontogeny-Phylogeny Nexus in a Nutshell: Implications for Primatology and Paleoanthropology. In: Henke, W., Tattersall, I. (eds) Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27800-6_3-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27800-6_3-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27800-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics