Skip to main content

Imaging in Random Media

  • Living reference work entry
  • First Online:
Handbook of Mathematical Methods in Imaging
  • 483 Accesses

Abstract

We give a self-contained presentation of coherent array imaging in random media, which are mathematical models of media with uncertain small-scale features (inhomogeneities). We describe the challenges of imaging in random media and discuss the coherent interferometric (CINT) imaging approach. It is designed to image with partially coherent waves, so it works at distances that do not exceed a transport mean-free path. The waves are incoherent when they travel longer distances, due to strong cumulative scattering by the inhomogeneities, and coherent imaging becomes impossible. In this article we base the presentation of coherent imaging on a simple geometrical optics model of wave propagation with randomly perturbed travel time. The model captures the canonical form of the second statistical moments of the wave field, which describe the loss of coherence and decorrelation of the waves due to scattering in random media. We use it to give an explicit resolution analysis of CINT which includes the assessment of statistical stability of the images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso, R., Borcea, L., Papanicolaou, G., Tsogka, C.: Detection and imaging in strongly backscattering randomly layered media. Inverse Prob. 27, 025004 (2011)

    Article  MathSciNet  Google Scholar 

  2. Aubry, A., Derode, A.: Random matrix theory applied to acoustic backscattering and imaging in complex media. Phys. Rev. Lett. 102(8), 084301 (2009)

    Article  Google Scholar 

  3. Bal, G., Ryzhik, L.: Time reversal and refocusing in random media. SIAM J. Appl. Math. 63(5), 1475–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biondi, B.: 3D Seismic Imaging. Society of Exploration Geophysicists, Tulsa (2006)

    Book  Google Scholar 

  5. Bleistein, N., Cohen, J.K., Stockwell, J.W.: Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, vol. 13. Springer, New York (2001)

    Book  MATH  Google Scholar 

  6. Blomgren, P., Papanicolaou, G., Zhao, H.: Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am. 111, 230 (2002)

    Article  Google Scholar 

  7. Borcea, L., Garnier, J.: Paraxial coupling of propagating modes in three-dimensional waveguides with random boundaries (2012). arXiv:1211.0468. Preprint

    Google Scholar 

  8. Borcea, L., Papanicolaou, G., Tsogka, C.: Adaptive interferometric imaging in clutter and optimal illumination. Inverse Prob. 22, 1405–1436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borcea, L., Papanicolaou, G., Tsogka, C.: Asymptotics for the space-time Wigner transform with applications to imaging. In: Baxendale, P.H., Lototsky, S.V., (eds.) Stochastic Differential Equations: Theory and Applications. Volume in Honor of Professor Boris L Rozovskii, Interdisciplinary Mathematical Sciences, vol. 2. World Scientific Publishing Company, Hackensack (2007)

    Google Scholar 

  10. Borcea, L., del Cueto, F.G., Papanicolaou, G., Tsogka, C.: Filtering random layering effects in imaging. SIAM Multiscale Model. Simul. 8, 751–781 (2010)

    Article  MATH  Google Scholar 

  11. Borcea, L., Garnier, J., Papanicolaou, G., Tsogka, C.: Enhanced statistical stability in coherent interferometric imaging. Inverse Prob. 27, 085003 (2011)

    Article  Google Scholar 

  12. Borcea, L., Garnier, J., Papanicolaou, G., Tsogka, C.: Coherent interferometric imaging, time gating and beamforming. Inverse Prob. 27(6), 065008 (2011)

    Article  MathSciNet  Google Scholar 

  13. Borcea, L., Papanicolaou, G., Tsogka, C.: Adaptive time-frequency detection and filtering for imaging in heavy clutter. SIAM J. Imag. Sci. 4(3), 827–849 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carazzone, J., Symes, W.: Velocity inversion by differential semblance optimization. Geophysics 56, 654 (1991)

    Article  Google Scholar 

  15. Chai, A., Moscoso, M., Papanicolaou, G.: Robust imaging of localized scatterers using the singular value decomposition and â„“1 minimization. Inverse Prob. 29(2), 025016 (2013)

    Article  MathSciNet  Google Scholar 

  16. Curlander, J.C., McDonough, R.N., Synthetic Aperture Radar-Systems and Signal Processing. Wiley, New York (1991)

    MATH  Google Scholar 

  17. Dussaud, E.A.: Velocity analysis in the presence of uncertainty. Ph.D. thesis, Rice University (2005)

    Google Scholar 

  18. Fannjiang, A.C., Solna, K.: Propagation and time reversal of wave beams in atmospheric turbulence. Multiscale Model. Simul. 3(3), 522–558 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fink, M.: Time reversed acoustics. Phys. Today 50, 34 (1997)

    Article  Google Scholar 

  20. Fink, M.: Time-reversed acoustics. Sci. Am. 281(5), 91–97 (1999)

    Article  Google Scholar 

  21. Fouque, J.P., Garnier, J., Papanicolaou, G., Sølna, K.: Wave Propagation and Time Reversal in Randomly Layered Media. Springer, New York (2007)

    MATH  Google Scholar 

  22. Garnier, J., Sølna, K.: Effective fractional acoustic wave equations in one-dimensional random multiscale media. J. Acoust. Soc. Am. 127, 62 (2010)

    Article  Google Scholar 

  23. John, J., Dennis, E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, vol. 16. SIAM, Philadelphia (1983)

    Google Scholar 

  24. Lewis, R.M., Keller, J.B.: Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equation. Technical report, DTIC Document (1964)

    Google Scholar 

  25. Marty, R., Sølna, K.: A general framework for waves in random media with long-range correlations. Ann. Appl. Probab. 21(1), 115–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moscoso, M., Novikov, A., Papanicolaou G., Ryzhik, L.: A differential equations approach to l1-minimization with applications to array imaging. Inverse Prob. 28(10), 105001 (2012)

    Article  MathSciNet  Google Scholar 

  27. Papanicolaou, G., Ryzhik, L., Sølna, K.: Self-averaging from lateral diversity in the itô-schrödinger equation. Multiscale Model. Simul. 6(2), 468–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rytov, SM., Kravtsov, Y.A., Tatarskii, V.I.: Principles of Statistical Radiophysics. Vol. 4. Wave Propagation Through Random Media. Springer, Berlin (1989)

    Book  Google Scholar 

  29. Ryzhik, L., Papanicolaou, G., Keller, J.B.: Transport equations for elastic and other waves in random media. Wave Motion 24(4), 327–370 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Santosa, F., Symes, W.W., Brown, R.L.: An Analysis of Least-Squares Velocity Inversion. Society of Exploration Geophysicists, Tulsa (1989)

    Book  Google Scholar 

  31. Snons C., Sukjoon P., Cs, S.: Two efficient steepest-descent algorithms for source signature-free waveform inversion: synthetic examples. J. Seism. Explor. 14(4), 335 (2006)

    Google Scholar 

  32. Stolk, C.: On the modeling and inversion of seismic data. Ph.D. thesis, Universiteit Utrecht (2000)

    Google Scholar 

  33. Symes, WW.: The seismic reflection inverse problem. Inverse Prob. 25(12), 123008 (2009)

    Article  MathSciNet  Google Scholar 

  34. Tarantola, A., Crase, E., Jervis, M., Konen, Z., Lindgren, J., Mosegaard, K., Noble, M.: Nonlinear inversion of seismograms: State of the art. In: 60th Annual International Meeting, Expanded Abstracts, pp. 1193–1198. Society of Exploration Geophysicists (1990)

    Google Scholar 

  35. van Rossum, M.C.W., Nieuwenhuizen, Th.M.: Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71(1), 313 (1999)

    Article  Google Scholar 

  36. Verschuur, D.J., Berkhout, A.J., Wapenaar, C.P.A.: Adaptive surface-related multiple elimination. Geophysics 57(9), 1166–1177 (1992)

    Article  Google Scholar 

  37. Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6), WCC1–WCC26 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This article reviews results obtained in collaboration with Josselin Garnier from Université Paris VII, George Papanicolaou from Stanford University, and Chrysoula Tsogka from University of Crete. These results are published in [8, 9, 11, 12]. The work of L. Borcea was partially supported by the AFSOR Grant FA9550-12-1-0117 and the ONR Grant N00014-14-1-0077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Borcea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Borcea, L. (2014). Imaging in Random Media. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27795-5_41-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27795-5_41-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27795-5

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics