Skip to main content

Potential Methods and Geoinformation Systems

  • Living reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

Geophysical methods “gravity” and “magnetic” belong to potential methods together with geoelectrics. This chapter focuses on gravity and magnetic methods. Their fields can be described by Laplace and Poisson differential equations – if the observation is taken outside or inside the masses. Potential fields were defined to attribute vector fields to scalar fields, because the mathematical treatment of scalar fields is numerically easier. Gravity and magnetic exploration can help to locate faults, mineral or petroleum resources, and groundwater reservoirs. The interpretation of gravity and magnetic fields and their respective anomalies is not unique, and boundary conditions are always required. Geoinformation systems can help to overcome the ambiguity of potential methods and support integrated modeling of potential fields by allocation of boundary conditions, data/information fusion, and advanced visualization at different scales. These systems should help to facilitate 3D interpretation (even 4D), which bases on data from multiple sources. 3D potential field forward modeling and inversion, visualization, and metadata handling facilitate interdisciplinary interpretation crossing the field of geophysics and geoinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvers M (1998) Zur Anwendung von Optimierungsstrategien auf Potentialfeldmodelle. Dissertation Fachbereich Geowissenschaften, FU Berlin, Berliner Geowissenschaftliche Abhandlungen, Reihe B 28:1–108

    Google Scholar 

  • Alvers MR, Götze HJ, Lahmeyer B, Plonka C, Schmidt S (2013) Advances in 3D potential field modeling. Extended abstracts EAGE 2013, London

    Google Scholar 

  • Balovnev O, Bode T, Breunig M, Cremers AB, Möller G, Pogodaev G, Shumilov S, Siebeck J, Siehl A, Thomsen A (2004) The story of the GeoToolKit – an object-oriented geodata base kernel system. Geoinformaticsa 8(1):5–47

    Article  Google Scholar 

  • Barton PJ (1986) The relationship between seismic velocity and density in the continental crust – a useful constraint? Geophys J R Astron Soc 87:195–208

    Article  Google Scholar 

  • Bär W (2007) Management of geoscientific 3D data in mobile database management systems. PhD thesis, University of Osnabrück, 184p

    Google Scholar 

  • Bauer S, Class H, Ebert M, Feeser V, Götze HJ, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schäfer W, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 6702: 351–367

    Article  Google Scholar 

  • Bilgili F, Götze HJ, Pašteka R, Schmidt S, Hackney R (2007) Intrusion versus inversion – a 3D density model of the southern rim of the Northwest German Basin. Int J Earth Sci 98(3):1–13

    Google Scholar 

  • Blakely R (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bode T, Radetzki U, Shumilov S, Cremers AB (2002) COBIDS: a component-based framework for the integration of geo-applications in a distributed spatial data infrastructure. In: Annual conference of the international association for mathematical geology, Berlin

    Google Scholar 

  • Boschetti F, Horowitz FG, Hornby P (1999) Ambiguity analysis and the constrained inversion of potential fields. Australian Geodynamics Cooperative Research Centre

    Google Scholar 

  • Breunig M (1996) Integration of spatial information for geo-information systems. Lecture notes in earth sciences, vol 61. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Breunig M, Cremers AB, Götze HJ, Seidemann R, Schmidt S, Shumilov S, Siehl A (2000) Geologic mapping based on 3D models using an interoperable GIS. GIS J Spat Inf Decis Mak 13(2):12–18

    Google Scholar 

  • Breunig M, Butwilowski E, Golovko D, Kuper PV, Menninghaus M, Thomsen A (2012) Advancing DB4GeO. 3DGeoinfo 2012, Ontario, 16p

    Google Scholar 

  • Damm T, HJ Götze (2009) Modern geodata management: application of interdisciplinary interpretation and visualization in Central America. Int J Geophy 13pp. hindawi.com

  • Döring J, Götze HJ (1999) The isostatic state of the southern Urals crust. Geologische Rundschau 87(4):500–510

    Article  Google Scholar 

  • Fedi M, Rapolla A (1997) Space-frequency analysis and reduction of poptential field ambiguity. Annali di Geofisica 5:1189–1200

    Google Scholar 

  • Fleisch D (2011) A student’s guide to Maxwell’s equations. Cambridge University Press, Cambridge

    Google Scholar 

  • Ford A (2009) Modeling the environment. Island Press, Washington, DC

    Google Scholar 

  • Fradin D, Meneveaux D, Lienhardt P (2005) Hierarchy of generalized maps for modeling and rendering complex indoor scenes. Technical report, Signal Image Communication laboratory, CNRS, University of Poitiers, 19p

    Google Scholar 

  • Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics 39:770–780

    Article  Google Scholar 

  • Götze HJ (1984) Über den Einsatz interaktiver Computergraphik im Rahmen 3-dimensionaler Interpretationstechniken in Gravimetrie und Magnetik. Habilitation thersis, (in German) Technical University Clausthal-Zellerfeld

    Google Scholar 

  • Götze, HJ, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53(8):1096–1108

    Article  Google Scholar 

  • Götze HJ, Schmidt S (2003) Geophysical 3D-modelling using GIS-functions. In: Proceedings IAMG-2002, Berlin, pp 14–28

    Google Scholar 

  • Götze HJ, Alten M, Burger H, Goni P, Melnick D, Mohr S, Munier K, Ott N, Reutter K, Schmidt S (2006a) Data management of the SFB 267 for the Andes – from ink and paper to digital databases. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos V, Strecker M, Wigger P (eds) Frontiers in earth sciences, vol 1. Springer, Heidelberg/New York

    Google Scholar 

  • Götze HJ, El-Kelani R, Schmidt S, Rybakov M, Hassouneh, M, Förster HJ, Ebbing J (2006b) Integrated 3-D density modelling and segmentation of the Dead Sea Transform (DST). Int J Earth Sci (Geologische Rundschau) 96(2):289–302

    Article  Google Scholar 

  • Götze HJ, Gabriel G, Giszas V, Hese F, Kirsch R, Köther N, Schmidt S (2009) The ice age paleo-channel Ellerbeker Rinne an integrated 3D gravity study. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften ZDGG 160(3):279–293

    Article  Google Scholar 

  • Götze HJ, Meyer U, Choi, S (2010) Helicopter gravity survey in the Dead Sea Area. EOS Trans Am Geophys Union 91(12):109–110

    Article  Google Scholar 

  • Götze HJ (2011) Gravity methods, principles. In: Gupta H (ed) Encyclopaedia of solid earth geophysics. Springer, Dordrecht, pp 500–504

    Chapter  Google Scholar 

  • Haase C (2008) Inversion of gravity, gravity gradient, and magnetic datawith application to subsalt imaging. Diploma thesis, Christian-Albrechts-University Kiel

    Google Scholar 

  • Hubbert MK (1948) A line-integral method of computing the gravimetric effects of two-dimensional masses. Geophysics 13:215–225

    Article  Google Scholar 

  • Jacoby W, Smilde PL (2009) Gravity interpretation – fundamentals and application of gravity inversion and geological interpretation. Springer, Heidelberg/New York

    Google Scholar 

  • Kellog OD (1953) Foundations of potential theory. Dover, New York

    Google Scholar 

  • Li X (2010) Efficient 3D gravity and magnetic modeling. In: EGM 2010 international workshop, Capri. Expanded abstracts

    Google Scholar 

  • Lienhardt P (1994) N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int J Comput Geom Appl 4(3):275–324

    Article  MathSciNet  MATH  Google Scholar 

  • MacMillan WD (1958) The theory of the potential. Dover, New York

    MATH  Google Scholar 

  • Munier K (1997) Landsat-TM Satellitenbildmosaik der zentralen Anden (20 ̈ S–26 ̈ S). Photogrammetrie Fernerkundung Geoinformatik 6:391–392

    Google Scholar 

  • Munier K, Levenhagen J, Burger H (2006) Introduction to the attached DVD. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos V, Strecker M, Wigger P (eds) Frontiers in earth sciences, vol 1. Springer, Heidelberg/New York

    Google Scholar 

  • Nafe J, Drake C L (1957) Variation with depth in shallow and deep water marine sediments of porosity, density and the velocities of compressional and shear waves. Geophysics 22:523–552

    Article  Google Scholar 

  • Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos V, Strecker M, Wigger P (2006) The Andes – active subduction orogeny. Frontiers in earth sciences. Springer, Heidelberg/NewYork

    Google Scholar 

  • Ostermeier A, Gawelczyk A, Hansen N (1994) A derandomized approach to self-adaptation of evolution strategies. Evol Comput 2(4):369–380

    Article  Google Scholar 

  • Ott N, Götze H-J, Schmidt S, Burger H, Alten M (2002) Meta geoinformation system facilitates use of complex data for study of Central Andes. EOS 83:34

    Article  Google Scholar 

  • Pohánka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys Prospect 36:733–751

    Article  Google Scholar 

  • Prezzi C, Götze HJ, Schmidt S (2009) 3D density model of the Central Andes. Phys Earth Planet Inter 177:217–234

    Article  Google Scholar 

  • Ramsey AS (1940) An introduction to the theory of Newtonian attraction. Cambridge university Press, Cambridge

    MATH  Google Scholar 

  • Sæther B (1997) Improved estimation of subsurface magnetic properties using minimum mean-square error methods. PhD thesis, Norwegian University of Science and Technology

    Google Scholar 

  • Schmidt S, Götze H-J (1999) Integration of data constraintsand potential field modeling – an example from southern Lower Saxony, Germany. Phys Chem Earth A24(3):191–196

    Article  Google Scholar 

  • Schmidt S, Götze HJ, Fichler C, Ebbing J, Alvers MR (2007) 3D gravity, FTG and magnetic modeling: the new IGMAS+ software. Extended abstracts EGM 2007 international workshop, Capri

    Google Scholar 

  • Schmidt S, Plonka C, Götze HJ and Lahmeyer B (2011) Hybrid modelling of gravity, gravity gradients and magnetic fields. Geophys Prospect 12–6:1046–1051

    Article  Google Scholar 

  • Singh B, Guptasarma D (2001) New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra. Geophysics 66:521–526

    Article  Google Scholar 

  • Skeels DC (1947) Ambiguity in gravity interpretation. Geophysics 12:43. doi:10.1190/1.1437295

    Article  Google Scholar 

  • Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J Geophys Res 64(1):49–59

    Article  Google Scholar 

  • Thomsen A, Götze HJ, Altenbrunn K (2012) Towards information management for the synoptic interpretation of complex geoscientific models – the virtual CO2 storage project “CO2-MoPa” as an example. Zeitschrift Geol Wiss 40(6):393–415

    Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Torge W (1989) Gravimetry. de Gruyter Berlin, New York

    Google Scholar 

  • Woldetinsae G, Götze HJ (2005) Gravity field and isostatic state of Ethiopia and adjacent areas. J Afr Earth Sci 41(1–2):103–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jürgen Götze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Götze, HJ. (2013). Potential Methods and Geoinformation Systems. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_52-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_52-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics