Skip to main content

Pancreatic Function

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 644 Accesses

Abstract

The effect of exogenous hormones, e.g., secretin, or other drugs on pancreas secretion can be measured in rats with acute pancreas fistula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

Acute Pancreatic Fistula in Rats

  • Alphin RS, Lin TM (1959) Effect of feeding and sham feeding on pancreatic secretion of the rat. Am J Physiol 197:260–262

    CAS  PubMed  Google Scholar 

  • Alvarez C, Lopez MA (1989) The effect of alloxan diabetes on exocrine pancreatic secretion in the anesthetized rabbit. Int J Pancreatol 5:229–238

    CAS  PubMed  Google Scholar 

  • Colwell AR (1950) The relation of bile loss to water balance in the rat. Am J Dig Dis 17:270–276

    PubMed  Google Scholar 

  • Guan D, Maouyo D, Sarfati P, Morisset J (1990a) Effects of SMS 201–995 on basal and stimulated pancreatic secretion in rats. Endocrinology 127:298–304

    CAS  PubMed  Google Scholar 

  • Ito H, Sogabe H, Nakari T, Sato Y, Tomoi M, Kadowaki M, Matsuo M, Tokoro K, Yoshida K (1994a) Pharmacological profile of FK480, a novel cholecystokinin type-A receptor antagonist: comparison with loxiglumide. J Pharmacol Exp Ther 268:571–575

    CAS  PubMed  Google Scholar 

  • Kim CD, Li P, Lee KY, Coy DH, Chey WY (1993) Effect of [(CH2NH)4,5] secretin on pancreatic exocrine secretion in guinea pigs and rats. Am J Physiol Gastrointest Liver Physiol 265:G805–G810

    Google Scholar 

  • Lin TM, Ivy AC (1957a) Relation of secretin to the parasympathetic mechanism for pancreatic secretion. Am J Physiol 187:361–368

    Google Scholar 

  • Lin TM, Karvinen E, Ivy AC (1957) Role of pancreatic digestion in cholesterol absorption. Am J Physiol 190:214–220

    CAS  PubMed  Google Scholar 

  • Niederau M, Niederau G, Strohmeyer G, Grendell JH (1989) Comparative effects of CCK receptor antagonists on rat pancreatic secretion in vivo. Am J Physiol Gastrointest Liver Physiol 19:G150

    Google Scholar 

  • Niederau C, Niederau M, Luthen R, Strohmeyer G, Ferrell LD, Grendell JH (1990a) Pancreatic exocrine secretion in acute experimental pancreatitis. Gastroenterology 99:1120–1127

    CAS  PubMed  Google Scholar 

  • Tachibana I, Kanagawa K, Yamamoto Y, Otsuki M (1996a) Pharmacological profile of a new serine derivative cholecystokinin receptor antagonist TP-680 on pancreatic, biliary and gastric function. J Pharmacol Exp Ther 279:1404–1412

    CAS  PubMed  Google Scholar 

Exocrine Secretion of Isolated Pancreas

  • Kanno T (1972) Calcium-dependent amylase release and electrophysiological measurements in cells of the pancreas. J Physiol 226:353–371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanno T, Saito A (1976) The potentiating influences of insulin on pancreozymin-induced hyperpolarization and amylase release in the pancreatic acinar cell. J Physiol 261:505–521

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanno T, Suga T, Yamamoto M (1976) Effects of oxygen supply on electrical and secretory responses of humorally stimulated acinar cells in isolated rat pancreas. Jpn J Physiol 26:101–115

    CAS  PubMed  Google Scholar 

  • Mann GE, Norman PSR (1984) Regulatory effects of insulin and experimental diabetes on neutral amino acid transport in the perfused rat exocrine pancreas. Kinetics of unidirectional L-serine influx and efflux at the basolateral plasma membrane. Biochim Biophys Acta 778:618–622

    CAS  PubMed  Google Scholar 

  • Norman PSR, Mann GE (1986) Transport characteristics of system A in the rat exocrine pancreatic epithelium analyzed using the specific non-metabolized amino acid analogue α-methylaminobutyric acid. Biochim Biophys Acta 861:389–394

    CAS  PubMed  Google Scholar 

  • Norman PSR, Mann GE (1987) Ionic dependence of amino-acid transport in the exocrine pancreatic epithelium: calcium dependence of insulin action. J Membr Biol 96:153–163

    CAS  PubMed  Google Scholar 

  • Norman PSR, Habara Y, Mann GE (1989) Paradoxical effects of endogenous and exogenous insulin on amino acid transport activity in the isolated rat pancreas: somatostatin-14 inhibits insulin action. Diabetologia 32:177–184

    CAS  PubMed  Google Scholar 

  • Park HJ, Lee YL, Kwon HY (1993) Effects of pancreatic polypeptide on insulin action in exocrine secretion of isolated rat pancreas. J Physiol 463:421–429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Penhos JC, Wu C-H, Basabe JC, Lopez N, Wolff FW (1969) A rat pancreas-small gut preparation for the study of intestinal factor(s) and insulin release. Diabetes 18:733–738

    CAS  PubMed  Google Scholar 

  • Saito A, Williams JA, Kanno T (1980) Potentiation of cholecystokinin-induced exocrine secretion by both endogenous and exogenous insulin in isolated and perfused rat pancreata. J Clin Invest 65:777–782

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trimble ER, Bruzzone R, Gjinovci A, Renold AE (1985) Activity of insulin-acinar axis in the isolated perfused rat pancreas. Endocrinology 117:1246–1252

    CAS  PubMed  Google Scholar 

Chronic Pancreatic Fistula in Rats

  • Arai T, Komatsu Y, Sasaki K, Taguchi S (1998) Reduced reactivity of pancreatic exocrine secretion in response to gastrointestinal hormone in WBN/Kob rats. J Gastroenterol 33:247–253

    CAS  PubMed  Google Scholar 

  • Natelson S (1958) Routine use of ultra-micro-methods in the clinical laboratory. Am J Clin Pathol 21:1153–1170

    Google Scholar 

  • Ohashi K, Kim JH, Hara H, Aso R, Akimoto T, Nakama K (1990) A new spontaneously occurring model of chronic pancreatitis. Int J Pancreatol 6:231–247

    CAS  PubMed  Google Scholar 

  • Sugiyama M, Kobory O, Atomi Y, Wada N, Kuroda A, Muto T (1996a) Effect of oral administration of protease inhibitor on pancreatic exocrine function in WBN/Kob rats with chronic pancreatitis. Pancreas 13:71–79

    CAS  PubMed  Google Scholar 

Acute Pancreatic Fistula in Dogs

  • Glad H, Svendsen P, Knuhtsen S, Olsen O, Schaffalitzki de Muckadell OB (1996) Importance of gastrin-releasing peptide on acid-induced secretin release and pacreatobiliary and duodenal bicarbonate secretion. Scand J Gastroenterol 31:993–1000

    CAS  PubMed  Google Scholar 

  • Ivy AC, Janecek HM (1959) Assay of Jorpes-Mutt secretin and cholecystokinin. Acta Physiol Scand 45:220–230

    CAS  PubMed  Google Scholar 

  • Keller PJ, Cohen E, Neurath H (1958) The proteins of bovine pancreatic juice. J Biol Chem 233:344–349

    CAS  PubMed  Google Scholar 

  • Lehnert P, Stahlheber H, Forell MM, Dost FH, Fritz H, Hutzel M, Werle E (1969) Bestimmung der Halbwertszeit von Secretin. Klin Wschr 47:1200–1204

    CAS  PubMed  Google Scholar 

  • Lin TM, Ivy AC (1957b) Relation of secretin to the parasympathetic mechanism for pancreatic secretion. Am J Physiol 187:361–368

    Google Scholar 

Chronic Pancreatic Fistula in Dogs

  • Boldyreff WN (1925) Surgical method in the physiology of digestion. Description of the most important operations on digestive system. Ergebn Physiol 24:399–444

    CAS  Google Scholar 

  • Garvin PJ, Niehoff M, Burton FR (1993) A laboratory model for evaluation of posttransplant pancreatic exocrine secretion. J Invest Surg 6:53–63

    CAS  PubMed  Google Scholar 

  • Herrera F, Kemp DR, Tsukamoto M, Woodward ER, Dragstedt LR (1968a) A new cannula for the study of pancreatic function. J Appl Physiol 25:207–209

    CAS  PubMed  Google Scholar 

  • Hosotani R, Chowdhury P, Rayford PL (1989) L-364,718, a new CCK antagonist, inhibits postprandial pancreatic secretion and PP release in dogs. Dig Dis Sci 34:462–467

    CAS  PubMed  Google Scholar 

  • Konturek SJ, Radecki T, Thor P (1974) Comparison of endogenous release of secretin and cholecystokinin in proximal and distal duodenum in the dog. Scand J Gastroenterol 9:153–157

    CAS  PubMed  Google Scholar 

  • Konturek SJ, Pucher A, Radecki T (1976) Comparison of vasoactive intestinal peptide and secretin in stimulation of pancreatic secretion. J Physiol 255:497–509

    PubMed Central  CAS  PubMed  Google Scholar 

  • Konturek SJ, Cieszkowski M, Kwiecien N, Konturek J, Tasler J, Bilski J (1984) Effects of omeprazole, a substituted benzimidazole, on gastrointestinal secretions, serum gastrin, and gastric mucosal blood flow in dogs. Gastroenterology 86:71–77

    CAS  PubMed  Google Scholar 

  • Kuroda Y, Tanioka Y, Matsumoto SI, Kim Y, Fujita H, Ajiki T, Suzuki Y, Ku Y, Saitoh Y (1995) A new technique for pancreaticogastrointestinal anastomosis without suturing the pancreatic parenchyma. J Am Coll Surg 181:311–314

    CAS  PubMed  Google Scholar 

  • Ninomiya K, Saito T, Wakatsuki K, Saeki M, Kato T, Kasai H, Kimura F, Fujii M (1998) Effects of loxiglumide on pancreatic exocrine secretion stimulated by cholecystokinin-8 in conscious dogs. Arzneim Forsch/Drug Res 48:52–54

    CAS  Google Scholar 

  • Pavlov IP (1902) Die physiologische Chirurgie des Verdauungskanals. Ergebn Physiol Abt 1:246–286

    Google Scholar 

  • Preshaw RM, Grossman MI (1965a) Stimulation of pancreatic secretion by extracts of the pyloric gland area of the stomach. Gastroenterology 48:36–44

    CAS  PubMed  Google Scholar 

Somatostatin Activity

  • Ambler GL, Butler AA, Padmanabhan I, Breier BH, Gluckman PD (1996) The effects of octreotide on GH receptor and IGF-I expression in the GH-deficient rat. J Endocrinol 149:223–231

    CAS  PubMed  Google Scholar 

  • Arimura A, Sato H, Coy DH, Schally AV (1975) Radioimmunoassay for GH-release inhibiting hormone. Proc Soc Exp Biol Med 148:784–789

    CAS  PubMed  Google Scholar 

  • Bass RT, Buckwalter BL, Patel BP, Pausch HM, Price LA, Strnad J, Hadcock JR (1996a) Identification and characterization of novel somatostatin antagonists. Mol Pharmacol 50:709–715

    CAS  PubMed  Google Scholar 

  • Cai RZ, Szoke B, Lu R, Fu D, Redding TW, Schally AV (1986) Synthesis and biological activity of highly potent octapeptide analogs of somatostatin. Proc Natl Acad Sci U S A 83:1896–1900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chariot J, Roze C, Vaille C, Debray C (1978) Effects of somatostatin on the external secretion of the pancreas in the rat. Gastroenterology 75:832–837

    CAS  PubMed  Google Scholar 

  • Coy DH, Taylor JE (1996a) Receptor-specific somatostatin analogs: correlation with biological activity. Metab Clin Exp 45(Suppl):21–23

    CAS  PubMed  Google Scholar 

  • Danesi R, Del Tacca M (1996) The effects of the somatostatin analog octreotide on angiogenesis in vitro. Metab Clin Exp 45(Suppl):49–50

    CAS  PubMed  Google Scholar 

  • Fölsch UR, Lankisch PG, Creutzfeldt W (1978) Effect of somatostatin on basal and stimulated pancreatic secretion in the rat. Digestion 17:194–203

    PubMed  Google Scholar 

  • Gademann K, Kimmerlin T, Hoyer D, Seebach D (2001) Peptide folding induces high and selective affinity of a linear and small β-peptide to the human somatostatin receptor 4. J Med Chem 44:2460–2468

    CAS  PubMed  Google Scholar 

  • Gerich J, Greene K, Hara M, Rizza R, Patton G (1979) Radioimmunoassay of somatostatin and its application in the study of pancreatic somatostatin secretion in vitro. J Lab Clin Med 93:1009–1017

    CAS  PubMed  Google Scholar 

  • Green GM, Nasset ES (1980) Importance of bile in regulation of intraluminal proteolytic enzyme activities in the rat. Gastroenterology 79:695–702

    CAS  PubMed  Google Scholar 

  • Guan D, Maouyo D, Sarfati P, Morisset J (1990b) Effects of SMS 201–995 on basal and stimulated pancreatic secretion in rats. Endocrinology 127:298–304

    CAS  PubMed  Google Scholar 

  • Gilon C, Huenges M, Matha B, Gellerman G, Hornik V, Afargan M, Amitay O, Ziv O, Feller E, Gamliel A, Shohat D, Wanger M, Arad O, Kessler H (1998) A backbone-cyclic, receptor 5-selective somatostatin analogue: synthesis, bioactivity, and nuclear resonance conformational analysis. J Med Chem 41:919–929

    CAS  PubMed  Google Scholar 

  • Hocart SJ, Jain R, Murphy WA, Taylor JE, Coy DH (1999) Highly potent cyclic disulfide antagonists of somatostatin. J Med Chem 42:1863–1871

    CAS  PubMed  Google Scholar 

  • Hoffmann TF, Uhl E, Messmer K (1996) Protective effect of the somatostatin analogue octreotide in ischemia/reperfusion induced acute pancreatitis in rats. Pancreas 12:286–293

    CAS  PubMed  Google Scholar 

  • Hofland LJ, van Koetsfeld PM, Waaijers M, Zuyderwijk J, Lamberts SWJ (1994) Relative potencies of the somatostatin analogs octreotide, BIM-23014, and RC-160 on the inhibition of growth hormone release by cultured human endocrine tumor cells and normal rat anterior pituitary cells. Endocrinology 134:301–306

    CAS  PubMed  Google Scholar 

  • Hoyer D (1998) Distribution and localization of somatostatin (SRIF) receptor transcripts and proteins. Naunyn Schmiedeberg’s Arch Pharmacol 358(Suppl 2):R381

    Google Scholar 

  • Hoyer D, Nunn C, Hannon J, Schoeffter P, Feuerbach D, Schuepbach E, Langeneeger D, Bouhelal R, Hurth K, Neumann P, Troxler T, Pfaeffli P (2004) SRA880, in vitro characterization of the first non-peptide somatostatin sst1 receptor antagonist. Neurosci Lett 361:132–135

    CAS  PubMed  Google Scholar 

  • Humphrey PPA (1998) The pharmacology of somatostatin receptors. Naunyn Schmiedeberg’s Arch Pharmacol 358(Suppl 2):R381

    Google Scholar 

  • Jeandel L, Okuno A, Kobayashi T, Kikuyama S, Tostivint H, Lihrmann I, Chartrel N, Conlon JM, Fournier A, Tonon MC, Vaudry H (1998) Effects of the two somatostatin variants somatostatin-14 and Pro2, Met13somatostatin-14 on receptor binding, adenyl cyclase activity and growth hormone release from the frog pituitary. J Neuroendocrinol 10:187–192

    CAS  PubMed  Google Scholar 

  • Konturek SJ, Cieskowski M, Bilski J, Konturek J, Bielansky W, Schally AV (1985) Effects of cyclic hexapeptide analog of somatostatin on pancreatic secretion in dogs. Proc Soc Exp Biol Med 178:68–72

    CAS  PubMed  Google Scholar 

  • Meyers CA, Murphy WA, Redding TW, Coy DH, Schally AV (1980) Synthesis and biological actions of prosomatostatin. Proc Natl Acad Sci U S A 77:6171–6174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moinet C, Contour-Galcéra MO, Poitout L, Morgan B, Gordon T, Roubert P, Thurieau C (2001) Novel nonpeptide ligands for the somatostatin sst3 receptor. Bioorg Med Chem Lett 11:991–995

    CAS  PubMed  Google Scholar 

  • Nagy A, Schally AV, Halmos G, Armatis P, Cai RZ, Csernus V, Kovacs M, Koppa M, Szepeshazi K, Kahan Z (1998) Synthesis and biological evaluation of cytotoxic analogs of somatostatin containing doxorubicin or its intensely potent derivative, 2-pyrrolinodoxorubicin. Proc Natl Acad Sci U S A 402:1794–1799

    Google Scholar 

  • Nunn C, Langenegger D, Hurth K, Schmidt K, Fehlmann D, Hoyer D (2003a) Agonist properties of putative small-molecule somatostatin sst2 receptor selective antagonists. Eur J Pharmacol 465:211–218

    CAS  PubMed  Google Scholar 

  • Nunn C, Schoeffter P, Langenegger D, Hoyer D (2003b) Functional characterization of the putative somatostatin sst2 receptor antagonist CYN 154806. Naunyn-Schmiedebergs Arch Pharmacol 367:1–9

    CAS  PubMed  Google Scholar 

  • Nunn C, Rueping M, Langenegger D, Schuepbach E, Kimmerlin T, Micuch P, Seebach D, Hoyer D (2003c) β 2/β 3-di- and α/β 3-tetrapeptide derivatives as potent agonists at somatostatin sst4 receptors. Naunyn-Schmiedebergs Arch Pharmacol 367:95–103

    CAS  PubMed  Google Scholar 

  • O’Byrne KJ, Carney DN (1996) Radiolabeled somatostatin analogue scintigraphy in oncology. Anticancer Drugs 7(Suppl 1):33–44

    PubMed  Google Scholar 

  • Papageorgiou C, Borer X (1996) A non-peptide ligand for the somatostatin receptor having a benzodiazepinone structure. Bioorg Med Chem Lett 6:267–272

    CAS  Google Scholar 

  • Paran H, Klausner J, Siegal A, Graff E, Freund U, Kaplan O (1996a) Effect of the somatostatin analogue octreotide on experimental pancreatitis in rats. J Surg Res 62:201–206

    CAS  PubMed  Google Scholar 

  • Patel YC (1984) Radioimmunoassay of somatostatin-related peptides. In: Larner J, Pohl SL (eds) Methods in diabetes research, vol I. Laboratory methods, Part B. Wiley, New York, pp 307–327

    Google Scholar 

  • Patel YC, Reichlin S (1979) Somatostatin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay, 2nd edn. Academic, New York, pp 77–99

    Google Scholar 

  • Pearson DA, Lister-James J, McBride JW, Wilson DM, Martel LJ, Civitello ER, Taylor JE, Moyer BR, Dean RT (1996a) Somatostatin receptor-binding peptides labeled with technetium99m: chemistry and initial biological studies. J Med Chem 39:1361–1371

    CAS  PubMed  Google Scholar 

  • Reubi JC, Schaer JC, Wenger S, Hoeger C, Erchegyi J, Waser B, Rivier J (2000) SST3-selective potent peptidic somatostatin receptor antagonists. Proc Natl Acad Sci U S A 97:13973–13978

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rohrer SP, Birzin ET, Mosley ET, Berk SC, Hutchins SM, Shen DM, Xiong Y, Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai SJ, Blake A, Chan WWS, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman KT, Schaeffer JM (1998) Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 282:737–740

    CAS  PubMed  Google Scholar 

  • Rohrer SP, Schaeffer JM (2000) Identification and characterization of subtype selective somatostatin receptor agonists. J Physiol Paris 94:211–215

    CAS  PubMed  Google Scholar 

  • Siehler S, Seuwen K, Hoyer DF (1998) [125I]Tyr10-cortistatin14 labels all five somatostatin receptors. Naunyn-Schmiedebergs Arch Pharmacol 357:483–489

    CAS  PubMed  Google Scholar 

  • Srikant CB, Heisler S (1985) Relationship between receptor binding and biopotency of somatostatin-14 and somatostatin-28 in mouse pituitary tumor cells. Endocrinology 117:271–278

    CAS  PubMed  Google Scholar 

  • Stolz B, Smith-Jones P, Albert R, Tolcsvai L, Briner U, Ruser G, Macke H (1996) Somatostatin analogues for somatostatin-receptor-mediated radiotherapy of cancer. Digestion 57(Suppl 1):17–21

    CAS  PubMed  Google Scholar 

  • Stolz B, Weckbecker G, Smith-Jones PM, Albert R, Raulf F, Bruns C (1998) The somatostatin receptor-targeted radiotherapeutic 90Y-DOTA-DPhe1-Tyr3-octreotide (90Y-SMT487) eradicates experimental rat pancreatic Ca 20948 tumors. Eur J Nucl Med 25:668–674

    CAS  PubMed  Google Scholar 

  • Susini C, Esteve JP, Vaysse N, Pradayrol L, Ribet A (1980) Somatostatin 28: effect on exocrine pancreatic secretion in conscious dogs. Gastroenterology 79:720–724

    CAS  PubMed  Google Scholar 

  • Taylor JE, Nelson R, Woon CW (1996) Real-time evaluation of somatostatin subtype receptor activity employing the technique of cytosensor microphysiometry. Peptides 17:1257–1259

    CAS  PubMed  Google Scholar 

  • Thakur ML, Kolan HR, Rifat S, Li J, Rux A, John E, Halmos G, Schally AV (1996) Vapreotide labeled with Tc99m for imaging tumors: preparation and preliminary evaluation. Int J Oncol 9:445–451

    CAS  PubMed  Google Scholar 

  • Vale W, Brazeau P, Rivier C, Brown M, Boss M, Rivier J, Burgus R, Ling N, Guillemin R (1974) Somatostatin. Rec Progr Horm Res 31:365–397

    Google Scholar 

  • Vasilaki A, Lanneau C, Dournaud P, De Lecca L, Gardette R, Epelbaum J (1999) Cortistatin affects glutamate sensitivity in mouse hypothalamic neurons through activation of sst2 somatostatin receptor subtypes. Neuroscience 88:359–364

    CAS  PubMed  Google Scholar 

  • Yang L, Berk SC, Rohrer SP, Mosley RT, Guo L, Underwood DJ, Arison BH, Birzin ET, Hayes EC, Mitra SW, Parmar RM, Cheng K, Wu TJ, Butler BS, Foor F, Pasternak A, Pan Y, Silva M, Freidinger RM, Smith RG, Chapman K, Schaeffer JM, Patchett AA (1998a) Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc Natl Acad Sci U S A 95:10836–10941

    PubMed Central  CAS  PubMed  Google Scholar 

Receptor Binding for Somatostatin

  • Bakker WH, Krenning EP, Breeman WA, Koper JW, Kooij PP, Reubi JC, Klijn JG, Visser TJ, Docter R, Lamberts SW (1990) Receptor scintigraphy with a radioiodinated somatostatin analogue: radiolabeling, purification, biologic activity, and in vivo application in animals. J Nucl Med 31:1501–1509

    CAS  PubMed  Google Scholar 

  • Bass RT, Buchwalter BL, Patel BP, Pausch MH, Price LA, Stemad J, Hadcock JR (1996b) Identification and characterization of novel somatostatin antagonists. Mol Pharmacol 50:709–715

    CAS  PubMed  Google Scholar 

  • Bruno JF, Xu Y, Song J, Berelowitz M (1992) Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci U S A 89:1151–1155

    Google Scholar 

  • Bruns C, Raulf F, Hoyer D, Schloos J, Lubbert H, Weckbecker G (1996) Binding properties of somatostatin receptor subtypes. Metab Clin Exp 45(Suppl):17–20

    CAS  PubMed  Google Scholar 

  • Chessell IP, Black M, Feniuk W, Humphrey PPA (1996) Operational characteristics of somatostatin receptors mediating inhibitory actions on rat locus coeruleus neurons. Br J Pharmacol 117:1673–1678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coy DH, Taylor JE (1996b) Receptor-specific somatostatin analogs: correlations with biological activity. Metab Clin Exp 45(Suppl):21–23

    CAS  PubMed  Google Scholar 

  • De Lecea L, Criado JR, Prospero-Garcia O, Gautvick KM, Schweitzer P, Danielson PE, Dunlop CL, Siggins GR, Henriksen SJ, Sutcliffe GJ (1996) A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381:242–245

    PubMed  Google Scholar 

  • Feniuk W, Dimech J, Humphrey PPA (1993) Characterization of somatostatin receptors in guinea-pig isolated ileum, vas deferens and right atrium. Br J Pharmacol 110:1156–1164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukusumi S, Kitada C, Takekawa S, Kizawa H, Sakamoto J, Miyamoto M, Hinuma S, Kitano K, Fujino M (1997) Identification and characterization of o novel human corticostatin-like peptide. Biochem Biophys Res Commun 232:157–163

    CAS  PubMed  Google Scholar 

  • Greenman Y, Melmed S (1994) Expression of three somatostatin receptor subtypes in pituitary adenomas: evidence for preferential SSTR5 expression in the mammosomatotroph lineage. J Clin Endocrinol Metab 79:724–729

    CAS  PubMed  Google Scholar 

  • Gu ZF, Corleto VD, Mantey SA, Coy DH, Maton PN, Jensen RT (1995) Somatostatin receptor subtype 3 mediates the inhibitory action of somatostatin on gastric smooth muscle cells. Am J Physiol 268:G739–G748

    CAS  PubMed  Google Scholar 

  • Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PPA, O’Carroll AM, Patel YC, Schonbrunn A, Taylor JE, Reisine T (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 16:86–88

    CAS  PubMed  Google Scholar 

  • Humphrey PPA, Epelbaum J, Feniuk W, Hoyer D, Taylor JE, Reisine TR (1998) Somatostatin receptors. In: Girdlestone D (ed) The IUPHAR compendium of receptor characterization and classification. IUPHAR Media, London, pp 246–255

    Google Scholar 

  • Liapakis G, Tallent M, Reisine T (1996) Molecular and functional properties of somatostatin receptor subtypes. Metab Clin Exp 45(Suppl):12–13

    CAS  PubMed  Google Scholar 

  • Lauder H, Sellers LA, Fan TP, Fenluk W, Humphrey PPA (1997) Somatostatin sst5 inhibition of receptor mediated regeneration of rat aortic vascular smooth muscle cells. Br J Pharmacol 122:663–670

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez V, Curi AP, Torkian B, Schaeffer JM, Wilkinson HA, Walsh JH, Tache Y (1998) High basal gastric acid secretion in somatostatin receptor subtype 2 knockout mice. Gastroenterology 114:1125–1132

    CAS  PubMed  Google Scholar 

  • McKeen ES, Feniuk W, Michel AD, Kidd EJ, Humphrey PPA (1996) Identification and characterization of heterogeneous somatostatin binding sites in rat distal colon mucosa. Naunyn Schmiedeberg’s Arch Pharmacol 354:543–549

    CAS  Google Scholar 

  • Meyerhof W, Wulfsen I, Schönrock C, Fehr S, Richter D (1992) Molecular cloning of a somatostatin-28 receptor and comparison of its expression pattern with that of a somatostatin-14 receptor in rat brain. Proc Natl Acad Sci U S A 89:10267–10271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moller LN, Stidsen CE, Hartmann B, Holst JJ (2003) Somatostatin receptors. Biochim Biophys Acta 1616:1–84

    CAS  PubMed  Google Scholar 

  • Murphy WA, Taylor JE, Moreau JP, Coy DH (1989) Novel heptapeptide somatostatin analog displays anti-tumor activity independent of effects on growth hormone secretion. Pept Res 2:128–132

    CAS  PubMed  Google Scholar 

  • Nilsson L, Folkesson R (1997) Coexistence of somatostatin receptor subtypes in the human neuroblastoma cell line LA-N2. FEBS Lett 401:83–88

    CAS  PubMed  Google Scholar 

  • O’Carroll AM, Lolait SJ, König M, Mahan LC (1992) Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin-28. Mol Pharmacol 42:936–946

    Google Scholar 

  • Olias G, Viollet C, Kusserow H, Epelbaum J, Meyerhof W (2004) Regulation and function of somatostatin receptors. J Neurochem 89:1057–1091

    CAS  PubMed  Google Scholar 

  • Patel YC (1997) Molecular pharmacology of somatostatin receptor subtypes. J Clin Invest 20:348–367

    CAS  Google Scholar 

  • Patel YC, Greenwood M, Panetta R, Hukovic N, Grigorakis S, Robertson LA, Srikant CB (1996a) Molecular biology of somatostatin receptor subtypes. Metab Clin Exp 45(Suppl):31–38

    CAS  PubMed  Google Scholar 

  • Patel YC, Srikant CB (1994) Subtype selectivity of peptide analogs for all five cloned somatostatin receptors (hsstr 1–5). Endocrinology 135:2814–2817

    CAS  PubMed  Google Scholar 

  • Pearson DA, Lister-James J, McBride WJ, Wilson DM, Martel LJ, Civitello ER, Taylor JE, Moyer BR, Dean RT (1996b) Somatostatin receptor-binding peptides labeled with technetium-99 m: chemistry and initial biological studies. J Med Chem 39:1361–1371

    CAS  PubMed  Google Scholar 

  • Pinski J, Milanovic S, Yano T, Hamaoui A, Radulovic S, Cai RZ, Schally AV (1992) Biological activity and receptor binding characteristics to various human tumors of acetylated somatostatin analogs. Proc Soc Exp Biol Med 200:49–56

    CAS  PubMed  Google Scholar 

  • Piwko C, Thoss VS, Probst A, Hoyer D (1996) Localization and pharmacological characterization of somatostatin recognition sites in the human cerebellum. Neuropharmacology 35:713–723

    CAS  PubMed  Google Scholar 

  • Piwko C, Thoss VS, Probst A, Hoyer D (1997a) The elusive nature of cerebellar somatostatin receptors: studies in rat, monkey and human cerebellum. J Recept Signal Transduct Res 17:385–405

    CAS  PubMed  Google Scholar 

  • Piwko C, Thoss VS, Schupbacvh E, Kummer J, Langenecker D, Probst A, Hoyer D (1997b) Pharmacological characterization of human cerebral cortex somatostatin SRIF-1 and SRIF-2 receptors. Naunyn Schmiedeberg’s Arch Pharmacol 355:161–167

    CAS  Google Scholar 

  • Pscherer A, Dörflinger U, Kirfel J, Gawlas K, Rüschoff J, Buettner R, Schüle R (1996) The helix-loop-helix transcription factor SEF-2 regulates the activity of a novel initiator element in the promoter of the somatostatin receptor II gene. EMBO J 15:6680–6690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raynor K, Coy DC, Reisine T (1992) Analogues of somatostatin bind selectively to brain somatostatin receptor subtypes. J Neurochem 59:1241–1250

    CAS  PubMed  Google Scholar 

  • Raynor K, Lucke I, Reisine T (1993a) Somatostatin1 receptors in the nucleus accumbens selectively mediate the stimulatory effect of somatostatin on locomotor activity in rats. J Pharmacol Exp Ther 265:67–73

    CAS  PubMed  Google Scholar 

  • Raynor K, Murphy WA, Coy DH, Taylor JE, Moreau JP, Yasuda K, Bell GI, Reisine T (1993b) Cloned somatostatin receptors: identification of subtype-selective peptides and demonstration of high affinity binding of linear peptides. Mol Pharmacol 43:838–844

    CAS  PubMed  Google Scholar 

  • Raynor K, O’Carroll AM, Kong H, Yasuda K, Mahan LC, Bell GI, Reisine T (1993c) Characterization of cloned somatostatin receptors SSTR4 and SSTR5. Mol Pharmacol 44:385–392

    CAS  PubMed  Google Scholar 

  • Rens-Domiano S, Law SF, Yamada Y, Seino S, Bell GI, Reisine T (1992) Pharmacological properties of two cloned somatostatin receptors. Mol Pharmacol 42:28–34

    CAS  PubMed  Google Scholar 

  • Reisine T, Bell GI (1995) Molecular properties of somatostatin receptors. Neurosci 67:777–790

    CAS  Google Scholar 

  • Rohrer L, Raulf F, Bruns C, Buettner R, Hofstaedter F, Schüle R (1993) Cloning and characterization of a fourth human somatostatin receptor. Proc Natl Acad Sci U S A 90:4196–4200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rossowski WJ, Coy DH (1994) Specific inhibition of rat pancreatic insulin or glucagon release by receptor-selective somatostatin analogs. Biochem Biophys Res Commun 205:341–346

    CAS  PubMed  Google Scholar 

  • Schonbrunn A, Lee AB, Brown PJ (1993) Characterization of a biotinylated somatostatin analog as a receptor probe. Endocrinology 132:146–154

    CAS  PubMed  Google Scholar 

  • Schulz S, Schmidt H, Handel M, Schreff M, Hollt V (1998) Differential distribution of alternatively spliced somatostatin receptor 2 isoforms SST2A and SST2B in rat spinal cord. Neurosci Lett 257:37–40

    CAS  PubMed  Google Scholar 

  • Shimon I, Taylor JE, Dong JZ, Bitonte RA, Kim S, Morgan B, Coy DH, Culler MD, Melmed S (1997) Somatostatin receptor subtype specificity in human fetal pituitary cultures. Differential role of SSTR2 and SSTR5 for growth hormone, thyroid-stimulating hormone, and prolactin regulation. J Clin Invest 99:789–798

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simon MA, Romero B, Calle C (1988) Characterization of somatostatin binding sites in isolated rat adipocytes. Regul Pept 23:261–270

    CAS  PubMed  Google Scholar 

  • Srikant CB, Dahan A, Craig C (1990) Receptor binding of somatostatin-14 and somatostatin-28 in rat brain: differential modulation by nucleotides and ions. Regul Pept 27:181–194

    CAS  PubMed  Google Scholar 

  • Tallent M, Liapakis G, O’Carroll AM, Lolait SJ, Dichter M, Reisine T (1996) Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT20. Neuroscience 71:1073–1081

    CAS  PubMed  Google Scholar 

  • Thermos K, Reisine T (1988) Somatostatin receptor subtypes in the clonal anterior pituitary cell lines AtT-20 and GH3. Mol Pharmacol 33:370–377

    CAS  PubMed  Google Scholar 

  • Vanetti M, Kouba M, Wang X, Vogt G, Höllt V (1992) Cloning and expression of a novel mouse somatostatin receptor (SSTR 2B). FEBS Lett 311:290–294

    CAS  PubMed  Google Scholar 

  • Viollet C, Lanneau C, Faivre-Bauman A, Zhang J, Djordjijevic D, Loudes C, Gardette R, Kordon C, Epelbaum J (1997) Distinct patterns of expression and physiological effects of sst1 and sst2 receptor subtypes in mouse hypothalamic neurons and astrocytes in culture. J Neurochem 68:2273–2280

    CAS  PubMed  Google Scholar 

  • Warhurst G, Higgs NB, Fakhoury H, Warhurst AC, Garde J, Coy DH (1996) Somatostatin receptor subtype 2 mediates somatostatin inhibition of ion secretion in rat distal colon. Gastroenterology 111:325–333

    CAS  PubMed  Google Scholar 

  • Wyatt MA, Jarvie E, Humphrey PPA (1996) Somatostatin sst2 receptor-mediated inhibition of parietal cell function in rat isolated gastric mucosa. Br J Pharmacol 119:905–910

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S (1992) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci U S A 89:251–255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Berk SC, Rohrer SP, Mosley RT, Guo L, Underwood DJ, Arison BH, Birzin ET, Hayes EC, Mitra SW, Parmar RM, Cheng K, Wu T-J, Butler BS, Foor F, Pasternak A, Pan Y, Silva M, Freidinger RM, Smith RG, Chapman K, Schaeffer JM, Patchett AA (1998b) Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc Natl Acad Sci U S A 95:10836–10841

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yasuda R, Rens-Damiano S, Breder CD, Law SR, Saper CB, Reisine T, Bell GI (1992) Cloning of a novel somatostatin receptor, SSTR3, coupled to adenyl cyclase. J Biol Chem 267:20422–20428

    CAS  PubMed  Google Scholar 

Secretin Activity

  • Burn JH, Finney DJ, Goodwin LG (1952) Chapter XVIII, Secretin and pancreozymin. In: Biological standardization. Oxford University Press, London/New York/Toronto, pp 335–339

    Google Scholar 

  • Herrera F, Kemp DR, Tsukamoto M, Woodward ER, Dragstedt LR (1968b) A new cannula for the study of pancreatic function. J Appl Physiol 25:207–209

    CAS  PubMed  Google Scholar 

  • Izzo RS, Chen AI, Pellecchia C, Praisman M (1989) Secretin internalization and adenosine 3′,5′-monophosphate levels in pancreatic acinar cells. Endocrinology 124:2252–2260

    CAS  PubMed  Google Scholar 

  • Preshaw RM, Grossman MI (1965b) Stimulation of pancreatic secretion by extracts of the pyloric gland area of the stomach. Gastroenterology 48:36–44

    CAS  PubMed  Google Scholar 

Receptor Binding for Secretin

  • Bawab W, Chastre E, Gespach C (1991) Functional and structural characterization of the secretin receptors in rat gastric glands: desensitization and glycoprotein nature. Biosci Rep 11:33–42

    CAS  PubMed  Google Scholar 

  • Boden G, Wilson RM (1979) Secretin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 479–494

    Google Scholar 

  • Chang TM, Chey WY (1980) Radioimmunoassay of secretin. A critical review and current status. Dig Dis Sci 25:529–552

    CAS  PubMed  Google Scholar 

  • Chow BKC (1995) Molecular cloning and functional characterization of a human secretin receptor. Biochem Biophys Res Commun 212:204–211

    CAS  PubMed  Google Scholar 

  • Haffar BM, Hocart SJ, Coy DH, Mantey S, Chiang HCV, Jensen RT (1991) Reduced peptide bond pseudopeptide analogues of secretin. A new class of secretin receptor antagonists. J Biol Chem 266:316–322

    CAS  PubMed  Google Scholar 

  • Ishihara T, Nakamura AS, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10:1635–1641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen RT, Lemp GF, Gardner JD (1982a) Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J Biol Chem 257:5554–5559

    CAS  PubMed  Google Scholar 

  • Jensen RT, Charlton CG, Adachi H, Jones SW, O’Donohue TL, Gardner JD (1983) Use of 125I-secretin to identify and characterize high-affinity secretin receptors on pancreatic acini. Am J Physiol 245:G186–G195

    CAS  PubMed  Google Scholar 

  • Ng SSM, Pang RTK, Chow BKC, Cheng CHK (1999) Real-time evaluation of human secretin receptor activity using cytosensor microphysiometry. J Cell Biochem 72:517–527

    CAS  PubMed  Google Scholar 

  • Patel DR, Kong Y, Sreedharan SP (1995) Molecular cloning and expression of a human secretin receptor. Mol Pharmacol 47:467–473

    CAS  PubMed  Google Scholar 

  • Peikin SR, Rottman AJ, Batzri S, Gardner JD (1978) Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas. Am J Physiol 235:E743–E749

    CAS  PubMed  Google Scholar 

  • Steiner TS, Mangel AW, McVey DC, Vigna SR (1993) Secretin receptors mediating rat stomach relaxation. Am J Physiol Gastrointest Liver Physiol 264:G863–G867

    CAS  Google Scholar 

  • Svoboda M, Tastenoy M, De Neef P, Delporte C, Waelbroeck M, Robberecht P (1998) Molecular cloning and in vitro properties of the recombinant rabbit secretin receptor. Peptides 19:1055–1062

    CAS  PubMed  Google Scholar 

  • Ulrich CD II, Pinon DI, Hadac EM, Holicki EL, Chang-Miller A, Gates LK, Miller LJ (1993) Intrinsic photoaffinity labeling of native and recombinant rat pancreatic secretin receptors. Gastroenterology 105:1534–1543

    CAS  PubMed  Google Scholar 

  • Vilardaga JP, Ciccarelli E, Dubeaux C, de Neff P, Bollen A, Robberecht P (1994) Properties and regulation of the coupling to adenylate cyclase of secretin receptors stably transfected in Chinese hamster ovary cells. Mol Pharmacol 45:1022–1028

    CAS  PubMed  Google Scholar 

  • Zhou Z-C, Gardner JD, Jensen RT (1989) Interaction of peptides related to VIP and secretin with guinea pig pancreatic acini. Am J Physiol 256:G283–G290

    CAS  PubMed  Google Scholar 

Cholecystokinin Activity (Isolated Rat Pancreatic Acini)

  • Akiyama T, Tachibana I, Hirohata Y, Shirohara H, Yamamoto M, Otsuki M (1996) Pharmacological profile of TP-680, a new cholecystokininA receptor antagonist. Br J Pharmacol 117:1558–1564

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amblard M, Rodriguez M, Lignon MF, Galas MC, Bernad N, Aumelas A, Martinez J (1998) Modification of receptor selectivity and functional activity of cyclic cholecystokinin analogues. Eur J Med Chem 33:171–180

    CAS  Google Scholar 

  • Amsterdam A, Jamieson JD (1972a) Structural and functional characterization of isolated pancreatic exocrine cells. Proc Natl Acad Sci U S A 69:3028–3032

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ballaz S, Barber A, Fortuño A, Del Río J, Martín-Martínez M, Gómez-Monterrey I, Herranz R, Gonzáles-Muñiz R, García-López MT (1997a) Pharmacological evaluation of IQM-95,333, a highly selective CCKA receptor antagonist with anxiolytic-like activity in animal models. Br J Pharmacol 121:759–767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bourin M, Malinge M, Vasar E, Bradwejn J (1996) Two faces of cholecystokinin: anxiety and schizophrenia. Fundam Clin Pharmacol 10:116–126

    CAS  PubMed  Google Scholar 

  • Crawley JN, Corwin RL (1994) Biological actions of cholecystokinin. Peptides 15:731–755

    CAS  PubMed  Google Scholar 

  • Deyer JC, Thorn P, Bountra C, Jordan CC (1993) Acetylcholine and cholecystokinin induced acid extrusion in mouse isolated pancreatic acinar cells as measured by the microphysiometer. J Physiol 459:390P

    Google Scholar 

  • Dunlop J, Brammer N, Evans N, Ennis C (1997) YM022 [(R)-1-[2,3-dihydro-1-(2′-methylphenacyl)-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3yl]-3-(3-methylphenyl)urea]: an irreversible cholecystokinin type-B receptor antagonist. Biochem Pharmacol 54:81–85

    CAS  PubMed  Google Scholar 

  • Fink H, Rex A, Voits M, Voigt JP (1998) Major biological actions of CCK. A critical evaluation of research findings. Exp Brain Res 123:77–83

    CAS  PubMed  Google Scholar 

  • Höcker M, Schmidt WE, Wilms HM, Lehnhoff F, Nustede R, Schafmayer A, Fölsch UR (1990) Measurement of tissue cholecystokinin (CCK) concentrations by bioassay and specific radioimmunoassay. Characterization of the bioactivity of CCK-58 before and after tryptic cleavage. Eur J Clin Invest 20(Suppl 1):S45–S50

    PubMed  Google Scholar 

  • Jensen RT, Lemp GF, Gardner JD (1982b) Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J Biol Chem 257:5554–5559

    CAS  PubMed  Google Scholar 

  • Lewis LD, Williams JA (1990) Regulation of cholecystokinin secretion by food, hormones, and neural pathways in the rat. Am J Physiol 258 (Gastrointest Liver Physiol 21):G512–G518

    Google Scholar 

  • Liddle RA, Goldfine ID, Williams JA (1984) Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 87:542–549

    CAS  PubMed  Google Scholar 

  • Martin-Martinez M, Bartolome-Nebreda JM, Gomez-Monterrey I, Gozalez-Muniz R, Garcia-Lopez MT, Ballaz S, Barber A, Fortuno A, Del Rio J, Herranz R (1997) Synthesis and stereochemical structure activity relationships of 1,3-dioxyperhydropyrido[1,2c]pyrimidine derivatives: potent and selective cholecystokinin A receptor antagonists. J Med Chem 40:3402–3407

    CAS  PubMed  Google Scholar 

  • Miyasaka K, Funakoshi A (2003) Cholecystokinin and cholecystokinin receptors. J Gastroenterol 38:1–13

    PubMed  Google Scholar 

  • Moran TH, Kinzig KP (2004) Gastrointestinal satiety signals. II. Cholecystokinin. Am J Physiol 286:G183–G188

    CAS  Google Scholar 

  • Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, Roques BP (1999) International union of pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev 51:745–781

    CAS  PubMed  Google Scholar 

  • Noble F, Roques BP (1999) CCK-B receptor: chemistry. molecular biology, biochemistry and pharmacology. Prog Neurobiol 58:349–379

    CAS  PubMed  Google Scholar 

  • Patel S, Chapman KL, Smith AJ, Bailey I, Freedman SB (1996b) Are radioligand antagonist/agonist binding ratios in rat pancreas predictive of functional efficacy of cholecystokinin receptor agonists and antagonists? Regul Pept 65:29–35

    CAS  PubMed  Google Scholar 

  • Taniguchi H, Yazaki N, Endo T, Nagasaki M (1996a) Pharmacological profile of T-0632, a novel potent and selective CCKA receptor antagonist, in vitro. Eur J Pharmacol 304:147–154

    CAS  PubMed  Google Scholar 

  • Schmidt WE, Creutzfeldt C, Höcker M, Nustede R, Choudhury AR, Schleser A, Rovati LC, Fölsch UR (1991) Cholecystokinin receptor antagonist loxiglumide modulates plasma levels of gastro-entero-pancreatic hormones in man. Eur J Clin Invest 21:501–511

    CAS  PubMed  Google Scholar 

  • Wank SA (1995) Cholecystokinin receptors. Am J Physiol 269:G628–G646

    CAS  PubMed  Google Scholar 

  • Yamazaki Y, Shinagawa K, Takeda H, Kobayashi M, Akahane M, Ajisawa Y (1995) Cholecystokinin-A specific antagonism of KSG-504 to cholecystokinin receptor binding and pancreatic secretion in mammals. Jpn J Pharmacol 69:367–373

    CAS  PubMed  Google Scholar 

Receptor Binding of Cholecystokinin

  • Ballaz S, Barber A, Fortuno A, del Rio J, Martin-Martinez M, Gomez-Monterrey I, Herranz R (1997b) Pharmacological evaluation of IQM-95,333, a highly selective CCKA receptor antagonist with anxiolytic-like activity in animal models. Br J Pharmacol 121:759–767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bertrand P, Böhme GA, Durieux C, Guyon C, Capet M, Jeantaud B, Boudeau P, Ducos B, Pendley CE, Martin GE, Floch A, Doble A (1994) Pharmacological properties of ureido-acetamides, new potent and selective non-peptide CCKB/gastrin receptor antagonists. Eur J Pharm 262:233–245

    CAS  Google Scholar 

  • Blevins GT Jr, Doi R, Tangoku A, Chowdhury P, McKay D, Rayford PL (1992) Simultaneous measurement of cholecystokinin-stimulated amylase release and cholecystokinin receptor binding in rat pancreatic acini. J Lab Clin Med 119:566–573

    CAS  PubMed  Google Scholar 

  • Blevins GT Jr, van de Westerloo EMA, Yule DI, Williams JA (1994) Characterization of cholecystokininA receptor agonist activity by a family of cholecystokininB receptor antagonists. J Pharmacol Exp Ther 269:911–916

    CAS  PubMed  Google Scholar 

  • Blevins GT, van de Westerlo EM, Logsdon CD, Blevins PM, Williams JA (1996) Nucleotides regulate the binding affinity of the recombinant type A cholecystokinin receptor in CHO K1 cells. Regul Pept 61(2):87–93

    Google Scholar 

  • Boden PR, Higginbottom M, Hill DR, Horwell DC, Hughes J, Rees DC, Roberts E, Singh L, Suman-Chauhan N, Wooruff GN (1993) Cholecystokinin dipeptoid antagonists: design, synthesis, and anxiolytic profile of some novel CCK-A and CCK-B selective and “mixed” CCK-A/CCK-B antagonists. J Med Chem 36:552–565

    CAS  PubMed  Google Scholar 

  • Chang RS, Lotti VJ (1986) Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci U S A 83:4923–4926

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang RS, Lotti VJ, Chen TB, Kunkel KA (1986) Characterization of the binding of [3H]-(±)-L-364,718: a new potent, non-peptide cholecystokinin antagonist radioligand selective for peripheral receptors. Mol Pharmacol 30:212–217

    CAS  PubMed  Google Scholar 

  • Chang RSL, Lotti VJ, Martin GE, Chen TB (1983) Increase in brain 125I-cholecystokinin (CCK) receptor binding following chronic haloperidol treatment, intracisternal 6- hydroxydopamine or ventral tegmental lesions. Life Sci 32:871–878

    CAS  PubMed  Google Scholar 

  • Cuq P, Gross A, Terraza A, Fourmy D, Clerc P, Dornand J, Magous R (1997) mRNAs encoding CCKB but not CCKA receptors are expressed in human T lymphocytes and Jurkat lymphoblastoid cells. Life Sci 61:543–555

    CAS  PubMed  Google Scholar 

  • Derrien M, McCort-Tranchepain I, Ducos B, Roques BP, Durieux C (1994) Heterogeneity of CCKB receptors involved in animal models of anxiety. Pharmacol Biochem Behav 49:133–141

    CAS  PubMed  Google Scholar 

  • DeTullio P, Delarge J, Pirotte B (1999) Recent advances in the chemistry of cholecystokinin receptor ligands (agonists and antagonists). Curr Med Chem 6:433–455

    CAS  Google Scholar 

  • Doi R, Hosotani R, Inoue K, Fujii N, Najima H, Rayford PL, Tobe T (1990) Receptor binding of cholecystokinin analogues in isolated rat pancreatic acini. Biochem Biophys Res Commun 166:286–292

    CAS  PubMed  Google Scholar 

  • Dunlop J, Brammer N, Ennis C (1996) Pharmacological characterization of a Chinese hamster ovary cell line transfected with the human CCK-B receptor gene. Neuropeptides 30:359–363

    CAS  PubMed  Google Scholar 

  • Durieux C, Corringer JP, Bergeron F, Roques BP (1989) [3H]pBC 264, first highly potent and very selective radioligand for CCK-B receptors. Eur J Pharmacol 168:269–270

    CAS  PubMed  Google Scholar 

  • Evans BE (1993) MK-329: a non-peptide cholecystokinin A antagonist. Drug Dev Res 29:255–261

    CAS  Google Scholar 

  • Fossa AA, DePasquale J, Morrone J, Zorn SH, Bryce D, Lowe JA, McLean S (1997) Cardiovascular effects of cholecystokinin-4 are mediated by the cholecystokinin-B receptor subtype in the conscious guinea pig and dog. J Pharmacol Exp Ther 281:180–187

    CAS  PubMed  Google Scholar 

  • Gaisano HY, Klueppelberg UG, Pinon DI, Pfenning MA, Powers SP, Miller LJ (1989) Novel tool for the study of cholecystokinin-stimulated pancreatic enzyme secretion. J Clin Invest 83:321–325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghanekar D, Hadac EM, Holicky EL, Miller LJ (1997) Differences in partial agonistic action at cholecystokinin receptors of mouse and rat are dependent on parameters extrinsic to receptor structure: molecular cloning, expression and functional characterization of the mouse type A cholecystokinin receptor. J Pharm Exp Ther 282:1206–1212

    CAS  Google Scholar 

  • Gully D, Fréhel D, Marcy C, Spinazzé A, Lespy L, Neliat G, Maffrand JP, LeFur G (1993) Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur J Pharmacol 232:13–19

    CAS  PubMed  Google Scholar 

  • Harper EA, Griffin EP, Shankley NP, Black JW (1999) Analysis of the behavior of selected CCKB/gastrin receptor antagonists in radioligand binding assays in rat and mouse cerebral cortex. Br J Pharmacol 126:1496–1503

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harvey RF (1979) Cholecystokinin–Pancreozymin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 495–526

    Google Scholar 

  • Herranz R (2003) Cholecystokinin antagonists: pharmacological and therapeutic potential. Med Res Rev 23:559–605

    CAS  PubMed  Google Scholar 

  • Hill DR, Woodruff GN (1990) Differentiation of central cholecystokinin receptor binding sites using the non-peptide antagonists MK-329 and L-365,260. Brain Res 526:276–283

    CAS  PubMed  Google Scholar 

  • Innis RB, Snyder SH (1980) Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci U S A 77:6917–6921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kachur JF, Wang SX, Gullikson GW, Gaginella TS (1991) Cholecystokinin-mediated ileal electrolyte transport in the guinea pig. Gastroenterology 101:1428–1431

    CAS  PubMed  Google Scholar 

  • Kaufmann R, Lindschau C, Henklein P, Boomgaarden M, Haller H, Schöneberg T, Arnswald A, Kölske C, Ott T (1993) Studies with succinylated CCK-4 derivatives: characterization of CCKB receptor binding and measurement of [Ca2+]i mobilization. Mol Neuropharmacol 3:147–151

    CAS  Google Scholar 

  • Kaufmann R, Schöneberg T, Henklein P, Meyer R, Martin H, Ott T (1995) Effects of guanyl nucleotides on CCKB receptor binding in brain tissue and continuous cell lines: a comparative study. Neuropeptides 29:63–68

    CAS  PubMed  Google Scholar 

  • Knapp RJ, Vaughn LK, Fang S-N, Bogert CL, Yamamura MS, Hruby VJ, Yamamura HI (1990) A new, highly selective CCK-B receptor radioligand ([3H][N-methyl-Nle28,31] CCK26–33): evidence for CCK-B receptor heterogeneity. J Pharmacol Exp Ther 255:1278–1286

    CAS  PubMed  Google Scholar 

  • Lee Y-M, Beinborn M, McBride EW, Lu M, Kolakowski LF Jr, Kopin AS (1993) The human brain cholecystokinin-B/gastrin receptor. Cloning and characterization. J Biol Chem 268:8164–8169

    CAS  PubMed  Google Scholar 

  • Lin CW, Miller T (1985) Characterization of cholecystokinin receptor sites in guinea-pig cortical membranes using [125I]Bolton-Hunter cholecystokinin octapeptide. J Pharmacol Exp Ther 232:755–780

    Google Scholar 

  • Makovec F, Revel L, Rovati L, Setnikar I (1986) In vivo antispasmodic activity on the gall bladder of the mouse of new glutamic acid derivatives with CCK antagonistic activity. Gastroenterology 90:1531

    Google Scholar 

  • Makovec F, Revel L, Letari O, Mennuni L, Impicciatore M (1999) Characterization of antisecretory and antiulcer activity of CR 2945, a new potent and selective gastrin/CCKB receptor antagonist. Eur J Pharmacol 369:81–90

    CAS  PubMed  Google Scholar 

  • Maletínská L, Lignon MF, Galas MC, Bernad N, Pírková J, Hlavácek J, Slaninová J, Martinez J (1992) Pharmacological characterization of new cholecystokinin analogues. Eur J Pharmacol 222:233–240

    PubMed  Google Scholar 

  • Moran TH, Robinson PH, Goldrich MS, McHugh PR (1986) Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res 362:175–179

    CAS  PubMed  Google Scholar 

  • Ohtsuka T, Kotaki H, Nakayama N, Itezono Y, Shimma N, Kudoh T, Kuwahara T, Arisawa M, Yokose K (1993) Tetronothiodin, a novel cholecystokinin type-B receptor antagonist produced by Streptomyces sp. NR0489. II. Isolation, characterization and biological activities. J Antibiot 46:11–17

    CAS  PubMed  Google Scholar 

  • Pendley CE, Fitzpatrick LR, Ewing RW, Molino BF, Martin GE (1993) The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther 265:1348–1354

    CAS  PubMed  Google Scholar 

  • Pierson ME, Comstock JM, Simmons RD, Kaiser F, Julien R, Zongrone J, Rosamond JD (1997) Synthesis and biological evaluation of potent, selective, hexapeptide CCK-A agonist anorectic agents. J Med Chem 40:4302–4307

    CAS  PubMed  Google Scholar 

  • Poirot SS, Dufresne M, Jiménez J, Vaysse N, Fourmy D (1992) Biochemical characterization of a subtype pancreatic cholecystokinin receptor and its agonistic binding domain. J Recept Res 12:233–253

    CAS  PubMed  Google Scholar 

  • Povoski SP, Zhou W, Longnecker DS, Bell RH Jr (1994) Cholecystokinin receptor characterization and cholecystokinin A receptor messenger RNA expression in transgenic mouse pancreatic carcinomas and dysplastic pancreas. Oncol Res 6:411–417

    CAS  PubMed  Google Scholar 

  • Praissman M, Martinez PA, Saladino CF, Berkowitz JM, Steggles AW, Finkelstein JA (1983a) Characterization of cholecystokinin binding sites in rat cerebral cortex using a 125I-CCK-8 probe resistant to degradation. J Neurochem 40:1406–1413

    CAS  PubMed  Google Scholar 

  • Praissman M, Walden ME, Pellecchia C (1983b) Identification and characterization of a specific receptor for cholecystokinin on isolated fundic glands from guinea pig gastric mucosa using a biologically active 125I-CCK-8 probe. J Recept Res 3:647–665

    CAS  PubMed  Google Scholar 

  • Revel L, Mennuni L, Garofalo P, Makovec F (1998) CR 2945: a novel CCKB receptor antagonist with anxiolytic-like activity. Behav Pharmacol 9:183–194

    CAS  PubMed  Google Scholar 

  • Saito A, Goldfine ID, Williams JA (1981) Characterization of receptors for cholecystokinin and related peptides in mouse cerebral cortex. J Neurochem 37:483–490

    CAS  PubMed  Google Scholar 

  • Schäfer U, Harhammer R, Boomgaarden M, Sohr R, Ott T, Henklein P, Repke H (1994) Binding of cholecystokinin-8 (CCK-8) peptide derivates to CCKA and CCKB receptors. J Neurochem 62:1426–1431

    PubMed  Google Scholar 

  • Sethi T, Herget T, Wu SV, Walsh JH, Rozengurt E (1993) CCKA and CCKB receptors are expressed in small cell lung cancer lines and mediate Ca2+ mobilization and clonal growth. Cancer Res 53:5208–5213

    CAS  PubMed  Google Scholar 

  • Simmons RD, Kaiser FC, Pierson ME, Rosamond JR (1998) ARL 15849: a selective CCK-A agonist with anorectic activity in the rat and dog. Pharmacol Biochem Behav 59:439–444

    CAS  PubMed  Google Scholar 

  • Slaninova J, Knapp RJ, Weber SJ, Davis TP, Fang SN, Hruby VJ, Yamamura HI (1995) [125I]SNF 8702: a selective radioligand for CCKB receptors. Peptides 16:221–224

    CAS  PubMed  Google Scholar 

  • Smith JP, Rickabaugh CA, Mc Laughlin PJ, Zagon IS (1993) Cholecystokinin receptors and PANC-1 human pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol 265:G149–G155

    CAS  Google Scholar 

  • Steigerwalt RW, Goldfine ID, Williams JA (1984) Characterization of cholecystokinin receptors on bovine gallbladder membranes. Am J Physiol 247:G709–G714

    CAS  PubMed  Google Scholar 

  • Takeuchi K, Hirata T, Yamamoto H, Kunikata T, Ishikawa M, Ishihara Y (1999) Effects of S-0509, a novel CCKB/gastrin receptor antagonist, on acid secretion and experimental duodenal ulcers in rats. Aliment Pharmacol Ther 13:87–96

    CAS  PubMed  Google Scholar 

  • Talkad VD, Forune KP, Pollo DA, Shah GN, Wank SA, Gardner JD (1994) Direct demonstration of three different states of the pancreatic cholecystokinin receptor. Proc Natl Acad Sci U S A 91:1868–1872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tilley JW, Danho W, Shiuey SJ, Kulesha I, Sarabu R, Swistok J, Makofske R, Olson GL, Chiang E, Rusiecki VK, Wagner R, Michalewsky J, Triscari J, Nelson D, Chiruzzo FY, Weatherford S (1992) Structure activity of C-terminal modified analogs of Ac-CCK-7. Int J Pept Protein Res 39:322–336

    CAS  PubMed  Google Scholar 

  • Trivedi BK (1994) Ligands for cholecystokinin receptors: recent developments. Curr Opin Ther Pat 4:31–44

    CAS  Google Scholar 

  • Van der Bent A, Ijzerman AP, Soudijn W (1994) Molecular modelling of CCK-A receptors. Drug Des Discov 12:129–148

    Google Scholar 

  • Van Dijk A, Richard JG, Trzeciak A, Gillessen D, Möhler H (1984) Cholecystokinin receptors: biochemical demonstration and autoradiographical localization in rat brain and pancreas using [3H]cholecystokinin8 as radioligand. J Neurosci 4:1021–1033

    PubMed  Google Scholar 

  • Wank SA, Harkins R, Jensen JT, Shapira H, deWeerth A, Slattery T (1992a) Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci U S A 89:3125–3129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wank SA, Pisegna JR, deWeerth A (1992b) Brain and gastrointestinal cholecystokinin receptor family: structure and functional expression. Proc Natl Acad Sci U S A 89:8691–8695

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yule DI, Tseng M-J, Williams JA, Logsdon CD (1993) A cloned CCK-A receptor transduces multiple signals in response to full and partial agonists. Am J Physiol 265 (Gastrointest Liver Physiol 28):G999–G1004

    Google Scholar 

  • Zhou W, Povovski SP, Longnecker DS, Bell RH Jr (1992) Novel expression of gastrin (cholecystokinin B) receptors in azaserine-induced rat pancreatic carcinoma: receptor determination and characterization. Cancer Res 52:6905–6911

    CAS  PubMed  Google Scholar 

Acute Experimental Pancreatitis

  • Adler G, Hupp T, Kern HF (1979) Course and spontaneous regression of acute pancreatitis in the rat. Virchows Arch 382:31–37

    CAS  Google Scholar 

  • Amsterdam A, Jamieson JD (1972b) Structural and functional characterization of isolated pancreatic exocrine cells. Proc Natl Acad Sci U S A 69:3028–3032

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asano M, Hatori C, Inamura N, Sawai H, Hirosumi J, Fujiwara T, Nakahara K (1997) Effects of a nonpeptide bradykinin B2 receptor antagonist, FR167344, on different in vivo animal models of inflammation. Br J Pharmacol 122:1436–1440

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen YZ, Ikei S, Yamaguchi Y, Sameshima H, Sugita H, Moriyasu M, Ogawa M (1996) The protective effect of long-acting recombinant human pancreatic secretory inhibitor (R44S-PSTI) in a rat model of cerulein-induced pancreatitis. J Int Med Res 24:59–68

    PubMed  Google Scholar 

  • Emanuelli G, Montrucchio G, Dughera A, Gaia E, Lupia E, Battaglia E, De Martino A, De Giuli P, Gubetta L, Camussi G (1994) Role of platelet activating factor in acute pancreatitis induced by lipopolysaccharides in rabbits. Eur J Pharmacol 26:265–272

    Google Scholar 

  • Griesbacher T, Lembeck F (1992) Effects of the bradykinin antagonist, HOE 140, in experimental acute pancreatitis. Br J Pharmacol 107:356–360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griesbacher T, Tiran B, Lembeck F (1993) Pathological events in experimental acute pancreatitis prevented by the bradykinin antagonist, Hoe 140. Br J Pharmacol 108:405–411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ha S-S, Satake K, Hiura A, Sowa M, Nishiwaki H (1994) Effect of a new cholecystokinin receptor antagonist (KSG 504) on the early stage of the healing process in acute pancreatitis induced by the closed duodenal loop technique. Pancreas 9:501–507

    CAS  PubMed  Google Scholar 

  • Ha S-S, Satake K, Hiura A (1996) Role of endogenous and exogenous cholecystokinin in experimental acute pancreatitis induced in rats by the closed duodenal loop technique. J Gastroenterol 31:404–413

    CAS  PubMed  Google Scholar 

  • Herman L, Fitzgerald PJ (1962) Restitution of pancreatic acinar cells following ethionine. J Cell Biol 12:279–312

    Google Scholar 

  • Hirano T (1997) Somatostatin analogue improves survival rate in mice with CDF-diet-induced acute pancreatitis. Med Sci Res 25:279–281

    CAS  Google Scholar 

  • Huch K, Schmidt J, Schratt W, Sinn HP, Buhr H, Herfarth C, Klar E (1995) Hyperoncotic dextran and systemic aprotinin in necrotizing rodent pancreatitis. Scand J Gastroenterol 30:812–816

    CAS  PubMed  Google Scholar 

  • Ito T, Kimura T, Furukawa M, Yamaguchi H, Nakano I, Nawata H (1991) Effects of cyclosporin A on caerulein-induced pancreatitis in rats. Med Sci Res 19:585–586

    CAS  Google Scholar 

  • Ito T, Kimura T, Furukawa M, Yamaguchi H, Goto M, Nakano I, Nawata H (1994b) Protective effects of gabexate mesilate on acute pancreatitis induced by tacrolimus (FK-506) in rats in which the pancreas was stimulated by caerulein. J Gastroenterol 29:305–313

    CAS  PubMed  Google Scholar 

  • Ito T, Ogoshi K, Nakano I, Ueda F, Sakai H, Kinjo M, Nawata H (1997) Effect of irsogladine on gap junctions in cerulein-induced acute pancreatitis in rats. Pancreas 15:297–303

    CAS  PubMed  Google Scholar 

  • Kimura K, Tominaga K, Fujii M, Saito T, Kasai H (1998) Effects of loxiglumide on experimental acute pancreatitis in comparison with gabexate mesilate. Arzneim Forsch/Drug Res 48:65–69

    CAS  Google Scholar 

  • Lampel M, Kern HF (1987) Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histopathol 373:97–117

    Google Scholar 

  • Lake-Bakaar G, Lyubsky S (1995) Dose-dependent effect of continuous subcutaneous verapamil infusion on experimental acute pancreatitis in mice. Dig Dis Sci 40:2349–2355

    CAS  PubMed  Google Scholar 

  • Lembeck F, Griesbacher T (1996) Pathophysiological and possible physiological roles of kinins in the pancreas. Immunopharmacology 33:336–338

    CAS  PubMed  Google Scholar 

  • Liu XH, Kimura T, Ishikawa H, Yamaguchi H, Furukawa M, Nakano I, Kinjoh M, Nawata H (1995) Effect of endothelin1 on the development of hemorrhagic pancreatitis in rats. Scand J Gastroenterol 30:276–282

    CAS  PubMed  Google Scholar 

  • Lombardi B, Estes LW, Longnecker DS (1975) Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. Am J Pathol 79:464–480

    Google Scholar 

  • Merkord J, Jonas L, Weber H, Kröning G, Nizze H, Henninghausen G (1997) Acute interstitial pancreatitis in rats induced by dibutyltin dichloride (DBTC): pathogenesis and natural course of lesions. Pancreas 15:392–401

    CAS  PubMed  Google Scholar 

  • Neuschwander-Tetri BA, Barnidge M, Janney CG (1994) Cerulein-induced pancreatic cysteine depletion: prevention does not diminish acute pancreatitis in the mouse. Gastroenterology 107:824–830

    CAS  PubMed  Google Scholar 

  • Niederau C, Ferrell LD, Grendell JH (1985) Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88:1192–1204

    CAS  PubMed  Google Scholar 

  • Niederau C, Niederau M, Lüthen R, Strohmeyer G, Ferrell LD (1990b) Pancreatic exocrine secretion in acute experimental pancreatitis. Gastroenterology 99:1120–1127

    CAS  PubMed  Google Scholar 

  • Niederau C, Brinsa R, Niederau M, Luthen R, Strohmeyer G, Ferrell LD (1995a) Effects of C1-esterase inhibitor in three models of acute pancreatitis. Int J Pancreatol 17:189–196

    CAS  PubMed  Google Scholar 

  • Norman J, Franz M, Messina J, Riker A, Fabri PJ, Rosemurgy AS, Gower WR Jr (1995) Interleukin-1 receptor antagonist decreases severity of experimental acute pancreatitis. Surgery 117:648–655

    CAS  PubMed  Google Scholar 

  • Obermaier R, Benz S, Kortmann B, Benthues A, Ansorge N, Hopf UT (2001) Ischemia/reperfusion-induced pancreatitis in rats: a new model of complete normothermic in situ ischemia of a pancreatic tail-segment. Clin Exp Med 1:51–59

    CAS  PubMed  Google Scholar 

  • Obermaier R, von Dobschuetz E, Benthues A, Ansorge N, Schareck W, Hopt UT, Benz S (2004) Exogenous and endogenous nitric oxide donors improve post-ischemic tissue oxygenation in early pancreatic ischemia/reperfusion injury in the rat. Eur Surg Res 36:219–225

    CAS  PubMed  Google Scholar 

  • Obermanier R, von Dobschuetz E, Muhs O, Keck T, Drognitz O, Jonas L, Schareck W, Hopt UT, Benz S (2004) Influence of nitric oxide on microcirculation in pancreatic/reperfusion injury: an intravital microscopic study. Transpl Int 17:208–214

    Google Scholar 

  • Ogden JM, Modlin IM, Gorelick GS, Marks IN (1994) Effect of buprenorphine on pancreatic enzyme synthesis and secretion in normal rats and rats with acute edematous pancreatitis. Dig Dis Sci 39:2407–2415

    CAS  PubMed  Google Scholar 

  • Renner IG, Wisner JR, Lavingne BC (1986) Partial restoration of pancreatic function by exogenous secretin in rats with ceruletide-induced acute pancreatitis. Dig Dis Sci 31:305–313

    CAS  PubMed  Google Scholar 

  • Sledzinski Z, Wozniak M, Antosiewicz J, Lezoche E, Familiari M, Bertoli E, Greci L, Brunelli A, Mazera N, Wajda Z (1995) Protective effect of 4-hydroxy-TEMPO, a low molecular weight superoxide dismutase mimic, on free radical toxicity in experimental pancreatitis. Int J Pancreatol 18:153–160

    CAS  PubMed  Google Scholar 

  • Taniguchi H, Yakazi N, Yomota M, Shikano T, Endo T, Nagasaki M (1996b) Pharmacological profile of T-0632, a novel potent and selective CCKA receptor antagonist, in vivo. Eur J Pharmacol 312:227–233

    CAS  PubMed  Google Scholar 

  • Van Laethem JL, Marchant A, Delvaux A, Goldman M, Robberecht P, Velu T, Deviere J (1995) Interleukin 10 prevents necrosis in murine experimental pancreatitis. Gastroenterology 108:1017–1922

    Google Scholar 

  • Vogel S (1994) Pankreatitis durch Arzneimittel. Arzneimitteltherapie 3:90–92

    Google Scholar 

  • Watanabe S, Nishino T, Chang JH, Shiratori K, Moriyoshi Y, Takeuchi T (1993) Effect of Hoe 140, a new potent bradykinin antagonist, on experimental acute pancreatitis in rats. Gastroenterology 104(Suppl):A342

    Google Scholar 

  • Weidenbach H, Lerch MM, Gress TM, Pfaff D, Turi S, Adler G (1995) Vasoactive mediators and the progression from oedematous to necrotising experimental acute pancreatitis. Gut 37:434–440

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yazu T, Kimura T, Sumii T, Nawata H (1991) Alteration of cholecystokinin receptor binding after caerulein-induced pancreatitis in rats. Digestion 50:142–148

    CAS  PubMed  Google Scholar 

Taurocholate-Induced Pancreatitis in the Rat

  • Bielecki K, Wiedmann M, Meyer F, Kimura W, Mossner J (1994) Effect of 5-fluorourazil on secretion and synthesis of pancreatic digestive enzymes: studies in isolated pancreatic acini and perfused pancreas derived from normal rats and rats with acute necrotizing pancreatitis. Pancreas 9:518–525

    CAS  PubMed  Google Scholar 

  • Hietaranta AJ, Peurovuori HJ, Nevalainen TJ (1995) Phospholipase A2 in sodium taurocholate-induced experimental hemorrhagic pancreatitis in the rat. J Surg Res 59:271–278

    CAS  PubMed  Google Scholar 

  • Kimura W, Okubo K, Han I, Kanai S, Matsushita A, Muto T, Miyasaka K (1996) Effects of pancreatic duct ligation and aging on acute taurocholate-induced pancreatitis: experiments in the perfused pancreas in rats. Int J Pancreatol 19:117–127

    CAS  PubMed  Google Scholar 

  • Lankisch PG, Winckler K, Bokermann M, Schmidt H, Creutzfeldt W (1974) The influence of glucagon on acute experimental pancreatitis in the rat. Scand J Gastroenterol 9:725–729

    CAS  PubMed  Google Scholar 

  • Mithofer K, Fernandez-Del Castillo C, Ferraro MJ, Lewandrowski K, Rattner DW, Warshaw AL (1996) Antibiotic treatment improves survival in acute necrotizing pancreatitis. Gastroenterology 110:232–240

    CAS  PubMed  Google Scholar 

  • Nakae Y, Naruse S, Kitagawa M, Hirao S, Yamamoto R, Hayakawa T (1995) Activation of trypsinogen in experimental models of acute pancreatitis in rats. Pancreas 10:306–313

    CAS  PubMed  Google Scholar 

  • Niederau C, Niederau M, Lüthen R, Strohmeyer G, Ferrell LD (1990c) Pancreatic exocrine secretion in acute experimental pancreatitis. Gastroenterology 99:1120–1127

    CAS  PubMed  Google Scholar 

  • Niederau C, Brinsa R, Niederau M, Luthen R, Strohmeyer G, Ferrell LD (1995b) Effects of C1-esterase inhibitor in three models of acute pancreatitis. Int J Pancreatol 17:189–196

    CAS  PubMed  Google Scholar 

  • Norman J, Yang J, Fink G, Carter G, Ku G, Denham W, Livingston D (1997) Severity and mortality of experimental pancreatitis are dependent on interleukin1 converting enzyme. J Interferone Cytokine Res 17:113–118

    CAS  Google Scholar 

  • Manso MA, Orfao A, Tabernero MD, Vicente S, De Dios I (1998) Changes in both the membrane and the enzyme content of individual zymogen granules are associated with sodium taurocholate-induced pancreatitis in rats. Clin Sci 94:293–301

    CAS  PubMed  Google Scholar 

  • Paran H, Klausner J, Siegal A, Graff E, Freund U, Kaplan O (1996b) Effect of the somatostatin analogue octreotide on experimental pancreatitis in rats. J Surg Res 62:201–206

    CAS  PubMed  Google Scholar 

  • Plusczyk T, Westermann S, Rathgeb D, Feifel G (1997) Acute pancreatitis in rats: effects of sodium taurocholate, CCK-8, and Sec on pancreatic microcirculation. Am J Physiol Gastrointest Liver Physiol 272:G310–G320

    CAS  Google Scholar 

  • Sakai Y (1996) Experimental study on roles of endotoxin and PAF (platelet activating factor) in the development of severe acute pancreatitis. J Saitama Med Sch 23:145–157

    Google Scholar 

  • Tanaka N, Murata A, Uda KI, Toda H, Kato T, Hayashida H, Matsuura N, Mori T (1995) Interleukin-1 receptor antagonist modifies the changes in vital organs induced by acute necrotizing pancreatitis in a rat experimental model. Crit Care Med 23:901–908

    CAS  PubMed  Google Scholar 

  • Tachibana I, Watanabe N, Shirohara H, Akiyama T, Nakano S, Otsuki M (1996b) Effects of MCI-727 on pancreatic exocrine secretion and acute pancreatitis in two experimental rat models. Pancreas 12:165–172

    CAS  PubMed  Google Scholar 

Chronic Pancreatitis

  • Andersen DK, Ruiz CL, Burant CF, Nealon WH, Thompson JC, Hanks JB (1994) Insulin regulation of hepatic glucose transporter protein is impaired in chronic pancreatitis. Ann Surg 219:679–687

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arai T, Komatsu Y, Sasaki K, Taguchi S (1998) Reduced reactivity of pancreatic exocrine secretion in response to gastrointestinal hormone in WBN/Kob rats. J Gastroenterol 33:247–253

    CAS  PubMed  Google Scholar 

  • Austin JL, Roberts C, Rosenholtz MJ, Reber HA (1980) Effect of partial duct obstruction and drainage on pancreatic function. J Surg Res 28:426–433

    CAS  PubMed  Google Scholar 

  • Chung A, Richter WR (1971) Early changes in the exocrine pancreas of the dog and rat after ligation of the pancreatic duct: a light and electron microscopy study. Am J Patol 63:521–546

    Google Scholar 

  • Goke B, Glock J, Richter G, Adler G (1989) CAMOSTAT in chronic pancreatitis: effects on oleic acid-induced pancreatic insufficiency in rats. Biomed Res 10(Suppl 1):83–86

    Google Scholar 

  • Goldstein JA, Kirwin JD, Seymour NE, Trachtenberg JE, Rademaker EA, Anderson DK (1989) Reversal of in vitro hepatic insulin resistance in chronic pancreatitis by pancreatic polypeptide in the rat. Surgery 106:1128–1133

    CAS  PubMed  Google Scholar 

  • Goto M, Nakano I, Kimura T, Miyahara T, Kinjo M, Nawata H (1995) New chronic pancreatitis model with diabetes induced by cerulein plus stress in rats. Dig Dis Sci 40:2356–2363

    CAS  PubMed  Google Scholar 

  • Hayakawa T, Kondo T, Shibata T, Kitagawa M, Sobajima H, Sakai Y, Ishiguro H, Nakae Y, Tanikawa M, Naruse S (1993) Longitudinal changes of plasma pancreatic enzymes and hormones in experimental pancreatolithiasis in dogs. Dig Dis Sci 38:2098–2103

    CAS  PubMed  Google Scholar 

  • Ito H, Sogabe H, Kuno M, Satoh Y, Ogawa T, Konishi K, Yoshida K (1998) Effect of FK480, a CCK-A receptor antagonist, on spontaneously developed chronic pancreatitis in WBN/Kob rats. Pancreas 17:295–300

    CAS  PubMed  Google Scholar 

  • Kakugawa Y, Paraskevas S, Metrakos P, Giaid A, Qi SJ, Duguid WP, Rosenberg L (1996) Alterations in pancreatic microcirculation and expression of endeothelin-1 in a model of chronic pancreatitis. Pancreas 13:89–95

    CAS  PubMed  Google Scholar 

  • Kataoka K, Sasaki T, Yorizumi H, Sakagami J, Kashima K (1998) Pathophysiologic studies of experimental chronic pancreatitis in rats induced by injection of zein – oleic acid – linoleic acid into the pancreatic duct. Pancreas 16:289–299

    CAS  PubMed  Google Scholar 

  • Nakama K, Schichinohe K, Kobayashi K (1985) Spontaneous diabetes-like syndrome in WBN/Kob rats. Acta Diabetol Lat 22:335–342

    CAS  PubMed  Google Scholar 

  • Ohashi K, Kim JH, Hara H, Aso R, Akimoto T, Nakama K (1990) A new spontaneously occurring model of chronic pancreatitis. Int J Pancreatol 6:231–247

    CAS  PubMed  Google Scholar 

  • Puig-Diví V, Molero X, Salas A, Guarner F, Guarner L, Malagelada JR (1996) Induction of chronic pancreatic disease by trinitrobenzene sulfonic acid infusion into rat pancreatic ducts. Pancreas 13:417–424

    PubMed  Google Scholar 

  • Reber HA, Karanjia ND, Alvarez C, Widdison AL, Leung FW, Ashley SW, Lutrin FJ (1992) Pancreatic blood flow in cats with chronic pancreatitis. Gastroenterol 103:652–659

    CAS  Google Scholar 

  • Reber PU, Patel AG, Toyama MT, Ashley SW, Reber HA (1999) Feline model of chronic obstructive pancreatitis: effects of acute pancreatic duct decompression on blood flow and interstitial pH. Scand J Gastroenterol 34:439–444

    CAS  PubMed  Google Scholar 

  • Rutishauser SCB, Ali AE, Yates N, Jeffrey IJM, Brannigan S, Guyan PM, Hunt LP, Braganza JM (1991) Comparison of pancreatic and hepatic secretory function in hamsters fed low and high fat diets. Eur J Gastroenterol Hepatol 3:613–621

    Google Scholar 

  • Rutishauser SCB, Ali AE, Jeffrey IJM, Hunt LP, Braganza JM (1995) Towards an animal model of chronic pancreatitis: pancreatobiliary secretion in hamsters with long-term treatment with chemical inducers of cytochromes P450. Int J Pancreatol 18:117–126

    CAS  PubMed  Google Scholar 

  • Sanvito F, Nichols A, Herrere PL, Huarte J, Wohlwend A, Vassalli JD, Orci L (1995) TGF β1 overexpression in murine pancreas induces chronic pancreatitis and, together with TNFα, triggers insulin-dependent diabetes. Biochem Biophys Res Commun 217:1279–1286

    Google Scholar 

  • Sato M, Furukawa F, Nishikawa A, Imazawa T, Yoshimura H, Suzuki J, Nakamura K, Takahshi M (1993) Effects of cyclophosphamide on spontaneous testicular and pancreatic lesions in WBN/Kob rats. Bull Nat Inst Hyg Sci 111:34–38

    CAS  Google Scholar 

  • Seymour NE, Volpert AR, Lee EL, Andersen DK, Hernandez C, Nealon WH, Brunicardi CF, Gadacz TR (1995) Alterations in hepatocyte insulin binding in chronic pancreatitis: effects of pancreatic polypeptide. Am J Surg 169:105–110

    CAS  PubMed  Google Scholar 

  • Seymour NE, Spector S, Andersen DK, Elm MS, Whitcomb DC (1998) Overexpression of hepatic pancreatic polypeptide receptors in chronic pancreatitis. J Surg Res 76:47–52

    CAS  PubMed  Google Scholar 

  • Shetzline MA, Zipf WB, Nishikawara MT (1998) Pancreatic polypeptide: identification of target tissues using an in vivo radioreceptor assay. Peptides 19:279–289

    CAS  PubMed  Google Scholar 

  • Sugiyama M, Kobori O, Atomi Y, Wada N, Kuroda A, Muto T (1996b) Effect of oral administration of protease inhibitor on pancreatic exocrine function in WBN/Kob rats with chronic pancreatitis. Pancreas 13:71–79

    CAS  PubMed  Google Scholar 

  • Sugiyama M, Kobori O, Atomi Y, Wada N, Kuroda A, Muto T (1996c) Pancreatic exocrine function during acute exacerbation in WBN/Kob rats with spontaneous chronic pancreatitis. Int J Pancreatol 20:191–196

    CAS  PubMed  Google Scholar 

  • Tanaka T, Ichiba Y, Miura Y, Ito H, Dohi K (1994) Canine model of chronic pancreatitis due to chronic ischemia. Digestion 55:86–89

    CAS  PubMed  Google Scholar 

  • Tanaka T, Miura Y, Matsugu Y, Ichiba Y, Ito H, Dohi K (1998) Pancreatic duct obstruction is an aggravating factor in the canine model of chronic alcoholic pancreatitis. Gastroenterology 115:1248–1253

    CAS  PubMed  Google Scholar 

  • Tsuchitani M, Saeguisa T, Namara I, Nishikawa T, Gonda T (1985) A new diabetic strain of rat (WBN/Kob). Lab Anim 19:200–207

    CAS  PubMed  Google Scholar 

  • Vinter-Jensen L, Juhl CO, Teglbjaerg PS, Poulsen SS, Dajani EZ, Nexo E (1997) Systemic treatment with epidermal growth factor in pigs induces ductal proliferations in the pancreas. Gastroenterology 113:1367–1374

    CAS  PubMed  Google Scholar 

  • Widdison AL, Alvarez C, Schwarz M, Reber HA (1992) The influence of ethanol on pancreatic blood flow in cats with chronic pancreatitis. Surgery 112:202–210

    CAS  PubMed  Google Scholar 

  • Zhao P, Tu J, van den Oord JJ, Fevery J (1996a) Damage to duct epithelium is necessary to develop progressing lesions of chronic pancreatitis in the cat. Hepato-Gastroenterology 43:1620–1626

    CAS  PubMed  Google Scholar 

  • Zhao P, Tu J, Martens A, Ponette E, van Steenbergen W, van den Oord J, Fevery J (1996b) Radiologic investigations and pathologic results of experimental chronic pancreatitis in cats. Acad Radiol 5:850–856

    Google Scholar 

  • Zhou W, Chao W, Levine BA, Olson MS (1990) Evidence of platelet-activating factor as a late-phase mediator of chronic pancreatitis in the rat. Am J Pathol 137:1501–1508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou W, Levine BA, Olson MS (1994) Lipid mediator production in acute and chronic pancreatitis in the rat. J Surg Res 56:37–44

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas W. Herling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Herling, A.W. (2014). Pancreatic Function. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics