Skip to main content

Pharmacological Effects on Gastric Function

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

Originally Gosh and Schild (1958) introduced a method for the continuous recording of gastric acid secretion in the stomach lumen-perfused anesthetized rat. In this model gastric acid secretion can be stimulated by histamine, carbachol, or gastrin. Stimulated gastric acid secretion is inhibited by test drugs with antisecretory potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

Acid Secretion in Perfused Rat Stomach (Gosh and Schild Rat)

  • Barrett AM (1966) Specific stimulation of gastric acid secretion by a pentapeptide derivative of gastrin. J Pharm Pharmacol 18:633–639

    Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (eds) (1952) Biological standardization, Chapter XVII. In: Gastric secretion. Oxford University Press, London, pp 332–334

    Google Scholar 

  • Gallo-Torres HE, Kuhn D, Witt C (1979) A method for the bio-assay of antisecretory activity in the conscious rat with acute gastric fistula: Studies with cimetidine, somatostatin, and the prostaglandin E2-analog RO 21–6937. J Pharmacol Methods 2:339–355

    CAS  Google Scholar 

  • Gosh MN, Schild HO (1958) Continuous recording of acid gastric secretion in the rat. Br J Pharmacol Chemother 13:54–61

    Google Scholar 

  • Hammer RA, Ochoa A, Fernandez C, Ertan A, Arimura A (1992) Somatostatin as a mediator of the effect of neurotensin on pentagastrin-stimulated acid secretion in rats. Peptides 13:1175–1179

    CAS  PubMed  Google Scholar 

  • Herling AW, Bickel M (1986) The stimulatory effect of forskolin on gastric acid secretion in rats. Eur J Pharmacol 125:233–239

    CAS  PubMed  Google Scholar 

  • Herling AW, Bickel M, Lang HJ, Weidmann K, Rösner M, Metzger H, Rippel R, Nimmesgern H, Bickel Scheunemann KH (1988) A substituted thienol[3.4-d]imidazole versus substituted benzimidazoles as H+, K+-ATPase inhibitors. Pharmacology 36:289–297

    Google Scholar 

  • Larsson H, Carlsson E, Junggren U, Olbe L, Sjöstrand SE, Skånberg I, Sundell G (1983) Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 85:900–907

    Google Scholar 

  • Lawrence AJ, Smith GM (1974) Measurement of gastric acid secretion by conductivity. Eur J Pharmacol 25:383–389

    Google Scholar 

  • Smith GM, Lawrence AJ, Colin-Jones DG, Schild HO (1970) The assay of gastrin in the perfused rat stomach. Br J Pharmacol 38:206–213

    Google Scholar 

  • Wissmann H, Schleyerbach R, Schölkens B, Geiger R (1973) Struktur-Wirkungsbeziehungen beim Gastrin. Der Beitrag von Carboxylgruppen von 9- und 10-Glutaminsäure zur biologischen Aktivität. Hoppe-Seylers Z Physiol Chem 354:1591–1598

    CAS  PubMed  Google Scholar 

Isolated Rat Stomach

  • Bunce KT, Parsons ME (1976) A quantitative study of metiamide, a histamine H2-antagonist on the isolated whole rat stomach. J Physiol 258:453–465

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finney DJ (1964) Statistical method in biological assay, 2nd edn. Charles Griffin, London, pp 99–128

    Google Scholar 

  • Shankley NP, Black JW, Ganellin CR, Mitchell RC (1988) Correlation between log Poct/H2O and pKB estimates for a series of muscarinic and histamine H2-receptor antagonists. Br J Pharmacol 94:264–274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stanovnik L, Logonder-Mlinšek M, Erjavec F (1988) The effect of compound 48/80 and of electric field stimulation in mast cells in the isolated mouse stomach. Agents Actions 23:300–303

    CAS  PubMed  Google Scholar 

  • Szelenyi I (1981) An isolated mammalian stomach preparation for studying the effect of substances on gastric acid secretion. Arzneim Forsch/Drug Res 31:998–1000

    CAS  Google Scholar 

  • Weigert N, Schäffler A, Reichenberger J, Madaus S, Classen M, Schusdziarra V (1995) Effect of endogenous opioids on vagally induced release of gastrin, somatostatin and bombesin-like immunoreactivity from the perfused rat stomach. Regul Pept 55:207–215

    Google Scholar 

Chronic Gastric Fistula in Rats

  • Alphin RS, Lin TM (1959) Preparation of chronic denervated gastric pouches in the rat. Am J Physiol 197:257–262

    Google Scholar 

  • Altar A (1980) A chronic subcutaneous gastric cannula in adult rats. Pharmacol Biochem Behav 12:629–621

    CAS  PubMed  Google Scholar 

  • Bickel M, Gossel M, Geisen K, Jaehne G, Lang HJ, Rosenburg R, Sandow J (2004) Analysis of the anorectic efficacy of HMR1426 in rodents and its effects on gastric emptying in rats. Int J Obes 28:211–221

    CAS  Google Scholar 

  • Daly MJ, Humphray JM, Stables R (1980) Inhibition of gastric acid secretion in the dog by the H2-receptor antagonists ranitidine, cimetidine and metiamide. Gut 21:408–412

    Google Scholar 

  • Johnson DH, Kimura RE, Galinsky RE (1990) New chronic gastric cannula for feeding ethanol liquid diet to young and old rats. J Pharmacol Methods 24:37–42

    CAS  PubMed  Google Scholar 

  • Komarow SA, Brawlow SP (1960) Studies on basal gastric secretion in chronic fistula rats. Effect of urethane and chlorpromazine. Physiologist 3:96

    Google Scholar 

  • Komarow SA, Brawlow SP, Boyd E (1963) A permanent gastric fistula. Proc Soc Exp Biol Med 112:451–453

    Google Scholar 

  • Lane A, Ivy AC, Ivy EK (1957) Response of the chronic gastric fistula rat to histamine. Am J Physiol 190:221–228

    CAS  PubMed  Google Scholar 

  • Larsson H, Carlsson E, Junggren U, Olbe L, Sjöstrand SE, Skånberg I, Sundell G (1983) Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 85:900–907

    Google Scholar 

  • Lin TM, Alphin RS (1958) Cephalic phase of gastric secretion in the rat. Am J Physiol 192:23–26

    CAS  PubMed  Google Scholar 

  • Rossowski WJ, Jing N-Y, Coy DH (1997) Adrenomedullin, amylin, calcitonin-gene related peptide and their fragments are potent inhibitors of gastric secretion in rats. Eur J Pharmacol 336:51–63

    CAS  PubMed  Google Scholar 

  • Tsukamoto H, Reidelberger RD, French SW, Largman C (1984) Long-term cannulation model for blood sampling and intragastric infusion in the rat. Am J Physiol 247(Regulatory Integrative Comp Physiol 16):R595–R599

    CAS  PubMed  Google Scholar 

Chronic Gastric Fistula in Dogs

  • Boldyreff WN (1925) Surgical method in the physiology of digestion. Description of the most important operations on digestive system. Ergeb Physiol 24:399–444

    Google Scholar 

  • Brittain RT, Daly MJ (1981) A review of animal pharmacology of ranitidine – a new, selective histamine H2-antagonist. Scand J Gastroenterol 16(Suppl 69):1–8

    CAS  Google Scholar 

  • Daly MJ, Hartley RW, Stables R (1980) An improved apparatus for intragastric titration in the conscious dog. J Pharmacol Methods 3:63–69

    Google Scholar 

  • Emås S (1960) Gastric secretory responses to repeated intravenous infusions of histamine and gastrin in non-anesthetized and anesthetized gastric fistula cats. Gastroenterology 39:771–782

    PubMed  Google Scholar 

  • Foschi D, Ferante F, Pagani F, Rovati V (1984) A new technique for preparing continent gastric fistulas in dogs. J Pharmacol Methods 12:167–170

    CAS  PubMed  Google Scholar 

  • Larsson H, Carlsson E, Junggren U, Olbe L, Sjöstrand SE, Skånberg I, Sundell G (1983) Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 85:900–907

    Google Scholar 

  • Pavlov IP (1902) Die physiologische Chirurgie des Verdauungskanals. Ergeb Physiol Abt 1:246–286

    Google Scholar 

  • Thomas JE (1941) An improved cannula for gastric and intestinal fistulas. Proc Soc Exp Biol Med 46:260–261

    Google Scholar 

Heidenhain Pouch in Dogs

  • Alphin RS, Lin TM (1959) Preparation of chronic denervated gastric pouches in the rat. Am J Physiol 197:257–262

    Google Scholar 

  • Baker SA (1979) A new dog fundic pouch preparation. Pharmacologist 21:176

    Google Scholar 

  • Bickel M, Herling AW, Rising TJ, Wirth K (1986) Antisecretory effects of two new histamine H2-receptor antagonists. Arzneim Forsch/Drug Res 36:1358–1363

    Google Scholar 

  • Bingham S, King BF, Rushant B, Smith MI, Gaster L, Sanger GJ (1995) Antagonism by SE 204070 of 5-HT-evoked contractions in the dog stomach: an in vivo model of 5-HT4 receptor function. J Pharm Pharmacol 47:219–222

    CAS  PubMed  Google Scholar 

  • Boldyreff WN (1925) Surgical method in the physiology of digestion. Description of the most important operations on digestive system. Ergeb Physiol 24:399–444

    Google Scholar 

  • Carter DC, Grossman MI (1978) Effect of luminal pH on acid secretion evoked by topical and parenteral stimulants. J Physiol Lond 281:227–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Descroix-Vagne M, Perret JP, Daoud-El Baba M, Gros I, Rakotomalala H, Desvigne A, Jourdan G, Nicol P (1993) Interaction between pepsin and acid secretion during fundic perfusion in cat and rabbit. Comp Biochem Physiol A Comp Physiol 104:283–286

    CAS  Google Scholar 

  • deVito RV, Harkins HN (1959) Techniques in Heidenhain pouch experiments. J Appl Physiol 14:138–140

    CAS  PubMed  Google Scholar 

  • Gregory RA, Tracy HJ (1964) The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5:103–114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heidenhain R (1878) Ueber die Pepsinbildung in den Pylorusdrüsen. Pflüger’s Arch Ges Physiol 18:169–171

    Google Scholar 

  • Herling AW, Bickel M, Lang HJ, Weidmann K, Rösner M, Metzger H, Rippel R, Nimmesgern H, Scheunemann KH (1988) A substituted thienol[3.4-d]imidazole versus substituted benzimidazoles as H+, K+-ATPase inhibitors. Pharmacology 36:289–297

    Google Scholar 

  • Jacobson ED, Linford RH, Grossman MI (1966) Gastric secretion in relation to mucosal blood flow studied by a clearance technique. J Clin Invest 45:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobson ED, Swan KG, Grossman MI (1967) Blood flow and secretion in the stomach. Gastroenterology 52:414–422

    CAS  PubMed  Google Scholar 

  • Kauffman GL Jr, Reeve JJ, Grossman MI (1980) Gastric bicarbonate secretion: effect of topical and intravenous 16,16-dimethyl prostaglandin E2. Am J Physiol 239:G44–G48

    CAS  PubMed  Google Scholar 

  • Kataoka H, Isoi T, Kiso T, Tanaka C, Shinkawa R, Kakita T, Shogaki T, Furukawa M, Ohtsubo Y (1997) Pharmacological profiles of a new antiulcer agent, SWR-215. Biol Pharm Bull 20:28–35

    CAS  PubMed  Google Scholar 

  • Kawanishi Y, Ishihara S, Kiyama R, Hagishita S, Tsushima T, Ishikawa M, Ishihara Y (1997) Synthesis and structure-activity relationships of dual histamine H2 and gastrin receptor antagonists with noncyclic gastrin receptor antagonistic moieties. Bioorg Med Chem 5:1425–1431

    CAS  PubMed  Google Scholar 

  • Larsson H, Carlsson E, Junggren U, Olbe L, Sjöstrand SE, Skånberg I, Sundell G (1983) Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 85:900–907

    Google Scholar 

  • Parsons ME, Rushant B, Rasmussen TC, Leach C, Ife RJ, Postius S, Pope AJ (1995) Properties of the reversible K+-competitive inhibitor of the gastric H+/K+-ATPase, SK and F 97574. II. Pharmacological properties. Biochem Pharmacol 50:1551–1556

    CAS  PubMed  Google Scholar 

  • Roszkowski AP, Garay GL, Baker S, Schuler M, Carter H (1986) Gastric antisecretory and antiulcer properties of enprostil, (±)-11α,15α, dihydroxy-16-phenoxy-17,18,19,20-tetranor-9-oxoprosta-4,5,13(t)-trienoic acid methyl ester. J Pharmacol Exp Ther 239:382–389

    CAS  PubMed  Google Scholar 

  • Rudick J, Szabo T (1976) The use of gastric pouches in gastric physiology: I. Techniques in the preparation of gastric pouches. Mt Sinai J Med 43:423–439

    CAS  PubMed  Google Scholar 

  • Tracy HJ, Gregory RA (1964) Physiological properties of a series of synthetic peptides structurally related to gastrin I. Nature 204:935–938

    CAS  PubMed  Google Scholar 

  • Uchida M, Ohba S, Ikarashi Y, Misaki N, Kawano O (1993) Effect of the novel histamine H2 antagonist: 5,6-dimethyl-2-[4-[3-(1-piperidinomethyl)phenoxy]-(z)-2-butenylamino]-4(1H)-pyrimidone dihydrochloride on histamine-induced gastric secretion in Heidenhain pouch dogs. Arzneim Forsch/Drug Res 43:873–876

    CAS  Google Scholar 

  • Wardle KA, Bingham S, Ellis ES, Gaster LM, Rushant B, Smith MI, Sanger GJ (1996) Selective and functional 5-hydroxytryptamine4 receptor antagonism by SB 207266. Br J Pharmacol 118:665–670

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto O, Matsunaga Y, Shiba Y, Haga N, Itoh Z (1994) Inhibition of motilin-induced phase III contractions by pentagastrin in Heidenhain pouch dogs. J Pharmacol Exp Ther 271:1471–1476

    CAS  PubMed  Google Scholar 

  • Yuki H, Nishida A, Miyake A, Ito H, Akuzawa S, Takinami Y, Takemoto Y, Miyata K (1997) YM022, a potent and selective gastrin/CCK-B receptor antagonist, inhibits peptone meal-induced gastric secretion in Heidenhain pouch dogs. Dig Dis Sci 42:707–714

    CAS  PubMed  Google Scholar 

  • Zai H, Haga N, Fujino MA, Itoh Z (1996) Effect of peptide YY on gastric motor and secretory activity in vagally innervated and denervated pouch dogs. Regul Pept 61:181–188

    CAS  PubMed  Google Scholar 

Gastrin Activity

  • Barrett AM (1966) Specific stimulation of gastric acid secretion by a pentapeptide derivative of gastrin. J Pharm Pharmacol 18:633–639

    Google Scholar 

  • Black JW, Kalindjian SB (2002) Gastrin agonists and antagonists. Pharmacol Toxicol 91:275–281

    CAS  PubMed  Google Scholar 

  • Chang RS, Lotti VJ (1984) Biochemical and pharmacological characterization of an extremely potent and selective non-peptide cholecystokinin antagonist. Proc Natl Acad Sci U S A 83:4923–4926

    Google Scholar 

  • Chang RS, Lotti VJ (1986) Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci U S A 83(13):4923–4926

    Google Scholar 

  • Gosh MN, Schild HO (1955) A method for the continuous recording of gastric secretion in the rat. J Physiol Lond 128:97–109

    Google Scholar 

  • Gosh MN, Schild HO (1958) Continuous recording of acid gastric secretion in the rat. Br J Pharmacol Chemother 13:54–61

    Google Scholar 

  • Jaffe BM, Walsh JH (1979) Gastrin and related peptides. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 455–477

    Google Scholar 

  • Lawrence AJ, Smith GM (1974) Measurement of gastric acid secretion by conductivity. Eur J Pharmacol 25:383–389

    Google Scholar 

  • Lotti VJ, Chang RSL (1989) A new potent and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCKB) ligand: L-365260. Eur J Pharmacol 162:273–280

    CAS  PubMed  Google Scholar 

  • Smith GM, Lawrence AJ, Colin-Jones DG, Schild HO (1970) The assay of gastrin using the perfused rat stomach. Br J Pharmacol 38:206–213

    Google Scholar 

  • Wan BYC (1977) Metiamide and stimulated acid secretion from the isolated non-distended and distended mouse stomach. J Physiol Lond 226:327–346

    Google Scholar 

Receptor Binding for Gastrin

  • Berglindh T, Öbrink KJ (1976) A method for preparing isolated glands from the rabbit gastric mucosa. Acta Physiol Scand 96:150–159

    Google Scholar 

  • Brown J, Gallagher ND (1978) A specific gastrin receptor site in the rat stomach. Biochim Biophys Acta 538:42–49

    CAS  PubMed  Google Scholar 

  • Dockray GJ, Varro A, Dimaline R, Wang T (2001) The gastrins: their production and biological activities. Annu Rev Physiol 63:119–139

    CAS  PubMed  Google Scholar 

  • Gully D, Fréhel D, Marcy C, Spinazzé A, Lespy L, Neliat G, Maffrand JP, LeFur G (1993) Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur J Pharmacol 232:13–19

    CAS  PubMed  Google Scholar 

  • Kopin AS, Lee YM, McBride EW, Miller LJ, Lu M, Lin HY, Kolakowski LF Jr, Beinborn M (1992) Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci U S A 89:3605–3609

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leveland PM, Waldum HL (1991) The gastrin receptor assay. Scand J Gastroenterol 26(Suppl 180):62–69

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 13:265–275

    Google Scholar 

  • Praissman M, Walden ME, Pellecchia C (1983) Identification and characterization of a specific receptor for cholecystokinin on isolated fundic glands from guinea pig gastric mucosa using a biologically active 125I-CCK-8 probe. J Recept Res 3:647–665

    CAS  PubMed  Google Scholar 

Gastrin Releasing Peptide/Bombesin/Neuromedin

  • Aalto Y, Forsgren S, Kjorell O, Funegard O, Franzen L, Henriksson P (1999) Does bombesin-like peptide mediate radiation-induced anorexia and satiety? Acta Oncol 38:1099–1102

    CAS  PubMed  Google Scholar 

  • Alvoro-Alonso I, Munoz-Acedo G, Rodriguez-Martin E, Schally AV, Arilla E (1999) Bombesin induces a reduction of somatostatin inhibition of adenyl cyclase activity, G1 function, and somatostatin receptors in rat exocrine pancreas. Peptides 20:723–730

    Google Scholar 

  • Anastasi A, Erspamer V, Bucci M (1971) Isolation and structure of bombesin and alytensin, two analogous peptides from the skin of European amphibians Bombina and Alytes. Experientia 27:166–167

    CAS  PubMed  Google Scholar 

  • Azay J, Nagain C, Llinares M, Devin C, Fehrentz JA, Bernad N, Roze C, Martinez J (1998) Comparative study of in vivo and in vitro activities of bombesin pseudopeptide analogs modified an the C-terminal dipeptide fragments. Peptides 19:57–63

    CAS  PubMed  Google Scholar 

  • Bozkurt A, Oktar BK, Kurtel H, Alican I, Coskun T, Yegen B (1999) Capsaicin-sensitive vagal fibres and 5-HT3-, gastrin releasing peptide- and cholecystokinin A-receptors are involved in distension-induced inhibition of gastric emptying in the rat. Regul Pept 83:2–3

    Google Scholar 

  • Checler F, Vincent JP, Kitabgi P (1986) Neuromedin N: high affinity interaction with brain neurotensin receptors and rapid inactivation by brain synaptic peptidases. Eur J Pharmacol 126:239–244

    CAS  PubMed  Google Scholar 

  • Cox MR, Padbury RTA, Snelling TL, Schloithe AC, Harvey JR, Toouli J, Saccone GTP (1998) Gastrin-releasing peptide stimulates gallbladder motility but not sphincter Oddi motility in Australian brush-tailed possum. Dig Dis Sci 43:1275–1284

    CAS  PubMed  Google Scholar 

  • Dietrich JB, Hildebrand P, Baselgia-Jeker L, Pansky A, Eberle AN, Beglinger C (1994) Effect of BIM26226, a potent and specific bombesin receptor antagonist, on amylase release and binding of bombesin-like peptides to ARA-2J cells. Regul Pept 53:165–173

    CAS  PubMed  Google Scholar 

  • Edwards GL, Power JD (1999) The role of brain-gut peptides in the control of sodium appetite. Ann N Y Acad Sci 897:192–197

    CAS  PubMed  Google Scholar 

  • Garrido MM, Martin S, Ambrosio E, Fuentes JA, Manzanares J (1998) Role of corticotropin-releasing hormone in gastrin-releasing peptide-mediated regulation of corticotropin and corticosterone secretion in male rats. Neuroendocrinology 68:116–122

    CAS  PubMed  Google Scholar 

  • Garrido MM, Manzanares J, Fuentes JA (1999) Hypothalamus, anterior pituitary and adrenal gland involvement in the activation of adrenocorticotropin and corticosterone secretion by gastrin-releasing peptide. Brain Res 828:20–26

    CAS  PubMed  Google Scholar 

  • Glad H, Svendsen P, Knuhtsen S, Olsen O, Schaffalitzki de Muckadell OB (1996) Importance of gastrin-releasing peptide on acid-induced secretin release and pancreatobiliary and duodenal bicarbonate secretion. Scand J Gastroenterol 31:993–1000

    CAS  PubMed  Google Scholar 

  • Gaudino G, Cirillo D, Naldini L, Rossino P, Comoglio PM (1988) Activation of the protein-tyrosin kinase associated with the bombesin receptor complex in small cell lung carcinomas. Proc Natl Acad Sci U S A 85:2166–2170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Horstmann O, Nustede R, Schmidt W, Becker F, Stockmann H (1999) On the role of gastrin-releasing peptide in meal-stimulated exocrine pancreatic secretion. Pancreas 19:126–132

    CAS  PubMed  Google Scholar 

  • Kirkham TC, Walsh CA, Gibbs J, Smith GP, Leban J, McDermed J (1994) A novel bombesin receptor antagonist selectively blocks the satiety action of peripherally administered bombesin. Pharmacol Biochem Behav 48:808–811

    Google Scholar 

  • Konturek SJ, Brzozowski T, Bielanski W, Schally AV (1995) Role of endogenous gastrin in gastroprotection. Eur J Pharmacol 278:203–212

    CAS  PubMed  Google Scholar 

  • Kortezova N, Mizhorkova Z, Milusheva E, Coy DH, Vizi ES, Varga G (1994) GRP-preferring bombesin receptor subtype mediates contractile activity in cat terminal ileum. Peptides 15:13331–1333

    Google Scholar 

  • Ladenheimer E, Wirth KE, Moran TH (1996) Receptor mediation of feeding suppression by bombesin-like peptides. Pharmacol Biochem Behav 54:705–711

    Google Scholar 

  • Ladenheimer EE, Wohn A, White WO, Schwartz GJ, Moran TH (1999) Inhibition of gastric emptying by bombesin-like peptides is depending on cholecystokinin-A receptor activation. Regul Pept 84:101–106

    Google Scholar 

  • Liu F, Naruse S, Ozaki T, Sazi T, Kondo T, Toda Y (1995) Effect of gastrin-releasing peptide (GRP) on guinea pig gallbladder contraction in vitro. J Gastroenterol 30:764–767

    CAS  PubMed  Google Scholar 

  • Merali Z, McIntosh J, Anisman H (1999) Role of bombesin-related peptides in the control of food intake. Neuropeptides 33:376–386

    CAS  PubMed  Google Scholar 

  • Mercer DW, Cross JM, Chang L, Lichtenberger LM (1998) Bombesin prevents gastric injury in the rat: role of gastrin. Dig Dis Sci 43:826–833

    CAS  PubMed  Google Scholar 

  • Milusheva EA, Kortezova NI, Mizhorkova ZN, Papasova M, Coy DH, Balint A, Vizi ES, Varga G (1998) Role of different bombesin receptor subtypes mediating contractile activity in cat upper intestinal tract. Peptides 19:549–556

    CAS  PubMed  Google Scholar 

  • Minamino N, Kangawa K, Matsuo H (1983) Neuromedin B: a novel bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Commun 114:541–548

    CAS  PubMed  Google Scholar 

  • Moody TW, Merali Z (2004) Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides 25:511–520

    CAS  PubMed  Google Scholar 

  • Nakajima T, Tanimura T, Pisano JJ (1970) Isolation and structure of a new vasoactive peptide. Fed Proc 29:282

    Google Scholar 

  • Nishino H, Tsunoda Y, Owyang C (1998) Mammalian bombesin receptors are coupled to multiple signal transduction pathways in pancreatic acini. Am J Physiol 274(Gastrointest Liver Physiol 37):G525–G534

    CAS  PubMed  Google Scholar 

  • Parkman HP, Vozzelli MA, Pagano AP, Cowan A (1994) Pharmacological analysis of receptors for bombesin–related peptides on guinea pig gall bladder smooth muscle. Regul Pept 52:173–180

    CAS  PubMed  Google Scholar 

  • Pinski J, Yano T, Schally AV (1992) Inhibitory effects of the new bombesin receptor antagonist RC-3095 on the luteinizing hormone release in rats. Neuroendocrinology 56:831–837

    CAS  PubMed  Google Scholar 

  • Plamondon H, Merali Z (1997) Anorectic action of bombesin requires receptor for corticotropin-releasing factor but not for oxytocin. Eur J Pharmacol 340:99–109

    CAS  PubMed  Google Scholar 

  • Plamondon H, Lambert C, Merali Z (1998) Sustained bombesin exposure results in receptor down-regulation and tolerance to the chronic but not acute effects of bombesin on ingestion. Brain Res 782:202–211

    CAS  PubMed  Google Scholar 

  • Roberge JN, Gronau KA, Brubaker PL (1996) Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut. Endocrinology 137:2383–2388

    CAS  PubMed  Google Scholar 

  • Roesler R, Henriques JAP, Schwartsmann G (2004) Neuropeptides and anxiety disorders: bombesin receptors as novel therapeutic targets. Trends Pharmacol Sci 25:241–242

    CAS  PubMed  Google Scholar 

  • Rushing PA, Gibbs J (1998) Prolongation of intermeal interval by gastrin-releasing peptide depends on time of delivery. Peptides 19:1439–1442

    CAS  PubMed  Google Scholar 

  • Shahbazian A, Raichev P, Sandeva R, Kalfin R, Milenov K (1999) Effects of bombesin on the canine gallbladder motility: in vivo and in vitro experiments. Acta Physiol Pharmacol Bulg 23:39–45

    Google Scholar 

  • Siegfried JM, Krishnamachary N, Gaither-Davis A, Gubish C, Hunt JD, Shriver SP (1999) Evidence for autocrine actions of neuromedin B and gastrin-releasing peptide in non-small lung cancer. Pulm Pharmacol Ther 12:291–302

    CAS  PubMed  Google Scholar 

  • Smith J, Perez S, Rushing PA, Smith GP, Gibbs J (1997) Gastrin releasing peptide-1–27 unlike bombesin, does not reduce sham feeding in rats. Peptides 18:1465–1467

    CAS  PubMed  Google Scholar 

  • Spindel AR, Giladi E, Segerson TP, Nagalla S (1993) Bombesin-like peptides: of ligands and receptors. Recent Progr Horm Res 48:365–391

    CAS  PubMed  Google Scholar 

  • Tache Y, Melchiorri P, Negri L (1988) Bombesin-like peptides in health and disease. Ann N Y Acad Sci 547:217–267

    Google Scholar 

  • Takehara Y, Sumii K, Sumii M, Kamiyasu T, Hamada M, Fukino Y, Yoshihara M, Tari A, Haruma K, Kajiyama G (1995) Effect of a bombesin antagonist on omeprazole-induced gastrin secretion in rats. Biomed Res Jpn 16(Suppl 2):335–338

    Google Scholar 

  • Varga G, Adrian TE, Coy DH, Reidelberger RD (1994) Bombesin receptor subtype mediation of gastroenteropancreatic hormone secretion in rats. Peptides 15:713–718

    CAS  PubMed  Google Scholar 

  • Varga G, Liehr RM, Scarpignato C, Coy DE (1995) Distinct receptors mediate gastrin-releasing peptide and neuromedin B-induced delay of gastric emptying of liquids in rats. Eur J Pharmacol 286:109–112

    CAS  PubMed  Google Scholar 

  • Wada M, Doi R, Hosotani R, Higashide S, Ibuka T, Habashita H, Nakai K, Fujii N, Imamura M (1995) Effect of a new bombesin receptor antagonist, (E)-alkene bombesin isostere, on amylase release from rat pancreatic acini. Pancreas 10:301–305

    CAS  PubMed  Google Scholar 

  • Weigert N, Schaffler A, Reichenberger J, Madaus S, Classen M, Schusdziarra V (1995) Effect of endogenous opioids on vagally induced release of gastrin, somatostatin and bombesin-like immunoreactivity from the perfused rat stomach. Regul Pept 55:207–215

    Google Scholar 

  • Won Kyoo Cho (1997) Role of the neuropeptide, bombesin, in bile secretion. Yale J Biol Med 70:409–416

    Google Scholar 

  • Yegen BÇ, Gürbüz V, Coúkun T, Bozkurt A, Kurtel H, Alican I, Dockray GJ (1996) Inhibitory effects of gastrin releasing peptide on gastric emptying in rats. Regul Pept 61:175–180

    CAS  PubMed  Google Scholar 

Bombesin Receptor Binding

  • Akeson M, Sainz E, Mantey SA, Jensen RT, Battey JF (1997) Identification of four amino acids in the gastrin-releasing peptide receptor that are required for high affinity agonist binding. J Biol Chem 272:17405–17409

    CAS  PubMed  Google Scholar 

  • Alexander S, Peters J, McKenzie G, Lewis S (2000) TiPS receptor and ion channel supplement. Elsevier Science, Kiddington, p 22

    Google Scholar 

  • Battey JF, Way JM, Corjay HM (1991) Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc Natl Acad Sci U S A 88:395–399

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benya RV, Wada E, Battey JF, Fathi Z, Wang LH, Mantey SA, Coy DH, Jensen RT (1992) Neuromedin B receptors retain functional expression when transferred into BALB/3T3 fibroblasts: analysis of binding, kinetics, stoichiometry, modulation by guanine nucleotide binding proteins, signal transduction and comparison with natively expressed receptors. Mol Pharmacol 42:1058–1068

    CAS  PubMed  Google Scholar 

  • Benya RV, Kusui T, Pradhan TK, Battey JF, Jensen RT (1995) Expression and characterization of cloned human bombesin receptors. Mol Pharmacol 47:10–20

    CAS  PubMed  Google Scholar 

  • Boyle RG, Humphries J, Mitchell T, Showell GA, Apaya R, Iijima H, Shimada H, Arai T, Ueno H, Usui Y, Sakaki T, Wada E, Wada K (2005) The design of a new potent and selective ligand for the orphan bombesin receptor subtype 3 (BRS3). J Pept Sci 11:136–141

    CAS  PubMed  Google Scholar 

  • Chave HS, Gough AC, Palmer K, Preston SR, Primrose JN (2000) Bombesin family receptor and ligand gene expression in human colorectal cancer and normal mucosa. Br J Cancer 82:124–130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corgay MH, Dobrzanski DJ, Way JM, Vialett J, Shapira H, Worland P, Sausville EA, Battey JF (1991) Two distinct bombesin receptor subtypes are expressed and functional in human lung carcinoma cells. J Biol Chem 266:18771–18779

    Google Scholar 

  • Donohue PJ, Sainz E, Akeson M, Kroog GS, Mantey SA, Battey JF, Jensen RT, Northup JK (1999) An aspartate residue at the extracellular boundary of TMII and an arginine residue in TMVII of the gastrin-releasing peptide receptor interact to facilitate heterotrimeric G protein coupling. Biochemistry 38:9366–9372

    CAS  PubMed  Google Scholar 

  • Fanger BO, Wade AC, Cashman EA, Cardin AD (1993) Identification of a 63-kDa serum protein that binds somatostatin and gastrin-releasing peptide but not bombesin. Biochim Biophys Acta 1179:300–305

    CAS  PubMed  Google Scholar 

  • Fathi Z, Corjay MH, Shapira H, Wada E, Benya R, Jensen R, Viallet J, Sausville EA, Battey JF (1993) BRS-3: novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 268:5979–5984

    CAS  PubMed  Google Scholar 

  • Jian X, Sainz E, Clark WA, Jensen RT, Battey JF, Northup K (1999) The bombesin receptor subtypes have distinct G protein specificities. J Biol Chem 274:11573–11581

    CAS  PubMed  Google Scholar 

  • Katsuno T, Pradhan TK, Ryan RR, Mantey SA, Hou W, Donohue PJ, Akeson MA, Spindel ER, Battey JF, Coy DH, Jensen RT (1999) Pharmacology and cell biology of the bombesin receptor subtype 4 (BB-4-R). Biochemistry 38:7307–7320

    CAS  PubMed  Google Scholar 

  • Mantey SA, Weber HC, Sainz E, Akeson M, Ryan RR, Pradhan TK, Searles RP, Spindel ER, Battey JF, Coy DH, Jensen RT (1997) Discovery of a high affinity radioligand for the human orphan receptor, bombesin receptor subtype 3, which demonstrates that it has a unique pharmacology compared with other mammalian bombesin receptors. J Biol Chem 272:26062–26071

    CAS  PubMed  Google Scholar 

  • Mantey SA, Coy DH, Entsuah LK, Jensen RT (2004) Development of bombesin analogs with conformationally restricted amino acid substitutions with enhanced selectivity for the orphan receptor human bombesin receptor subtype 3. J Pharmcol Exp Ther 310:1161–1170

    CAS  Google Scholar 

  • Moody TW, Pert CB, Rivier J, Brown MR (1978) Bombesin: specific binding to rat brain membranes. Proc Natl Acad Sci U S A 75:5372–5376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohki-Hamazaki H, Sakai Y, Kamata K, Ogura H, Okuyama S, Watase K, Yamada K, Wada K (1999) Functional properties of two bombesin-like receptors revealed by the analysis of mice lacking the neuromedin B receptor. J Neurosci 19:948–954

    CAS  PubMed  Google Scholar 

  • Pansky A, Pang F, Eberhard M, Baselgia L, Siegrist W, Baumann JB, Eberle AN, Beglinger C, Hildebrand B (1997) Identification of functional GRP-preferring bombesin receptors on human melanoma cells. Eur J Clin Invest 27:69–76

    CAS  PubMed  Google Scholar 

  • Pradhan TK, Katsuno T, Taylor JE, Kim SH, Ryan RR, Mantey SA, Donohue PJ, Weber HC, Sainz E, Battey JF, Coy DH, Jensen RT (1998) Identification of an unique ligand which has high affinity for all four bombesin receptor subtypes. Eur J Pharmacol 343:275–287

    CAS  PubMed  Google Scholar 

  • Radulovic S, Cai R-C, Serfozo P, Groot K, Redding TW, Pinski J, Schally AV (1991) Biological effects and receptor binding affinities of new pseudononapeptide bombesin/CRP receptor antagonists with N-terminal d-Trp or d-Tpi. Int J Pept Protein Res 38:593–600

    CAS  PubMed  Google Scholar 

  • Rouissi N, Rhaleb NE, Nantel F, Dion S, Drapeau G, Regoli D (1991) Characterization of bombesin receptors in peripheral contractile organs. Br J Pharmacol 103:1141–1147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan RR, Weber HC, Hou W, Sainz E, Mantey SA, Battey JF, Coy DH, Jensen RT (1998) Ability of various bombesin receptor agonists and antagonists to alter intracellular signalling of the human orphan receptor BRS-3. J Biol Chem 273:13613–13624

    CAS  PubMed  Google Scholar 

  • Severi C, Jensen RT, Erspamer V, D’Arpino L, Coy DH, Torsoli A, Delle Fabre G (1991) Different receptors mediate the action of bombesin-like peptides in gastric smooth muscle cells. Am J Physiol 260:G683–G690

    CAS  PubMed  Google Scholar 

  • Sun B, Halmos G, Schally AV, Wang X, Martinez M (2000) Presence of receptors for bombesin/gastrin-releasing peptide an mRNA for three receptor subtypes in human prostate cancers. Prostate 42:295–303

    CAS  PubMed  Google Scholar 

  • Von Schrenk T, Heinz-Erian P, Moran T, Mantey SA, Gardner JT, Jensen RT (1989) Neuromedin B receptor in esophagus: evidence for subtypes of bombesin receptors. Am J Physiol 256:G747–G758

    Google Scholar 

  • Wada E, Watase K, Yamada K, Ogura H, Yamano M, Inomata Y, Eguchi J, Yamamoto K, Sunday ME, Maeno H, Mikoshiba K, Ohki-Kamazaki H, Wada K (1997) Generation and characterization of mice lacking gastrin-releasing peptide receptor. Biochem Biophys Res Commun 239:28–33

    CAS  PubMed  Google Scholar 

  • Weber HC, Jensen RTZ, Battey JF (2000) Molecular organization of the mouse gastrin-releasing peptide receptor and its promotor. Gene 244:137–149

    CAS  PubMed  Google Scholar 

  • Yamada K, Ohki-Hamazaki H, Wada K (2000a) Differential effects of social isolation upon body weight, food consumption, and responsiveness to novel and social environment in bombesin receptor subtye-3 (BRS-3) deficient mice. Physiol Behav 68:555–561

    CAS  PubMed  Google Scholar 

  • Yamada K, Wada E, Wada K (2000b) Bombesin-like peptides: studies on food intake and social behavior with receptor knock-out mice. Ann Med 32:519–529

    CAS  PubMed  Google Scholar 

Evaluation of Bombesin Receptor Antagonists as Anti-Cancer Drugs

  • Azay J, Gagne D, Devin C, Llinares M, Fehrentz JA, Martinez J (1996) JMV641: a potent bombesin receptor antagonist that inhibits Swiss 3T3 cell proliferation. Regul Pept 65:91–97

    CAS  PubMed  Google Scholar 

  • Casanueva FF, Perez FR, Casabiell X, Camiña JP, Cai RZ, Schally AV (1996) Correlation between the effects of bombesin antagonists on cell proliferation and intracellular calcium concentration in Swiss 3T3 and HT-29 cell lines. Proc Natl Acad Sci U S A 93:1406–1411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Halmos G, Schally AV (1997) Reduction in receptors for bombesin and epidermal growth factor in xenografts of human small-cell lung cancer after treatment with bombesin antagonist RC-3095. Proc Natl Acad Sci U S A 94:956–960

    PubMed Central  CAS  PubMed  Google Scholar 

  • Halmos Pinski J, Szoke B, Schally AV (1994) Characterization of bombesin/gastrin-releasing peptide receptors in membranes of MKN45 human gastric cancer. Cancer Lett 85:111–118

    PubMed  Google Scholar 

  • Halmos G, Wittliff JL, Schally AV (1995) Characterization of bombesin/gastrin-releasing peptide receptors in human breast cancer and their relationship to steroid receptor expression. Cancer Res 55:280–287

    CAS  PubMed  Google Scholar 

  • Heimbrook DC, Saari WS, Balishin NL, Fisher TW, Friedman A, Kiefer DM, Rotberg S, Wallen JW, Oliff A (1991) Gastrin releasing peptide antagonists with improved potency and stability. J Med Chem 34:2102–2107

    CAS  PubMed  Google Scholar 

  • Jungwirth A, Schally AV, Halmos G, Groot K, Szepeshazi K, Pinski J, Armatis P (1998) Inhibition of the growth of Caki-I human renal adenocarcinoma in vivo by luteinizing hormone-releasing hormone antagonist cetrorelix, somatostatin analog RC-160, and bombesin antagonist RC-3940-II. Cancer 82:909–917

    CAS  PubMed  Google Scholar 

  • Kahan Z, Sun B, Schally AV, Arencibia JM, Cai C-R, Groot K, Halmos G (2000) Inhibition of growth of MDA-MB-468 estrogen-independent human breast cancer carcinoma by bombesin/gastrin-releasing peptide antagonists RC-3095 and RC3940-II. Cancer 88:1384–1392

    CAS  PubMed  Google Scholar 

  • Kiaris H, Schally AV, Nagy A, Sun B, Armatis P, Szepeshazi K (1999a) Targeted cytotoxic analog of bombesin/gastrin-releasing peptide inhibits the growth of H-69 human small-cell lung carcinoma in nude mice. Br J Cancer 81:966–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kiaris H, Schally AV, Sun B, Armatis P, Groot K (1999b) Inhibition of growth of human malignant glioblastoma in nude mice by antagonists of bombesin/gastrin-releasing peptide. Oncogene 18:7168–7173

    CAS  PubMed  Google Scholar 

  • Koppan M, Halmos G, Arencibia JM, Lamharzi N, Schally AV (1998) Bombesin/gastrin-releasing peptide antagonists RC-3095 and RC-3940-II inhibit tumor growth and decrease the levels and mRNA expression of epidermal growth factor receptors in H-69 small cell lung carcinoma. Cancer 83:1335–1343

    CAS  PubMed  Google Scholar 

  • Labara C, Paigen K (1979) A simple and sensitive DNA assay procedure. Anal Biochem 102:344–352

    Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments: a collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–228

    Google Scholar 

  • Miyazaki M, Lamharzi N, Schally AV, Halmos G, Szepeshazi K, Groot K, Cai R-Z (1998) Inhibition of growth of MDA-MB-231 human breast cancer xenografts in nude mice by bombesin/gastrin-releasing peptide (GRP) antagonists RC-3940-II and RC-3095. Eur J Cancer 34:710–717

    CAS  PubMed  Google Scholar 

  • Moody TW, Jensen RT (1998) Bombesin receptor antagonists. Drugs Future 23:1305–1315

    CAS  Google Scholar 

  • Moody TW, Venugopal R, Hu V, Gozes Y, McDermed J, Leban JJ (1996) BW1023U90: a new GRP receptor antagonist for small-cell lung cancer cells. Peptides 17:1337–13343

    CAS  PubMed  Google Scholar 

  • Pinski J, Halmos G, Schally AV (1993a) Somatostatin analog RC-160 and bombesin/gastrin-releasing peptide antagonist RC-3095 inhibit the growth of androgen-independent DU-145 human prostate cancer line in nude mice. Cancer Lett 71:1–3

    Google Scholar 

  • Pinski J, Schally AV, Halmos G, Szepeshazi K (1993b) Effect of somatostatin analog RC-160 and bombesin/gastrin-releasing peptide antagonist RC-3095 on growth of PC-3 human prostate cancer xenografts in nude mice. Int J Cancer 55:963–967

    CAS  PubMed  Google Scholar 

  • Pinski J, Reile H, Halmos G, Groot K, Schally AV (1994a) Inhibitory effects of somatostatin analog RC-160 and bombesin/gastrin-releasing peptide antagonist RC-3095 on growth of androgen-independent Dunning R-3327-AT-1 rat prostate cancer. Cancer Res 54:169–174

    CAS  PubMed  Google Scholar 

  • Pinski J, Schally AV, Halmos G, Szepeshazi K, Groot K, O’Byrne K, Cai R-Z (1994b) Effects of somatostatin analogue RC-160 and bombesin/gastrin-releasing peptide antagonists on the growth of human small-cell and non-small-cell lung carcinomas in mice. Br J Cancer 70:886–892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qin Y, Ertl T, Cai R-Z, Halmos G, Schally AV (1994a) Inhibitory effect of bombesin receptor antagonist RC-3095 on the growth of human pancreatic cells in vivo and in vitro. Cancer Res 54:1035–1041

    CAS  PubMed  Google Scholar 

  • Qin Y, Halmos G, Cai R-Z, Szoke B, Ertl T, Schally AV (1994b) Bombesin antagonists inhibit in vitro and in vivo growth of human gastric cancer and binding of bombesin to its receptors. J Cancer Res Clin Oncol 120:519–528

    CAS  PubMed  Google Scholar 

  • Qin Y, Ertl T, Cai R-Z, Horvath JE, Croot K, Schally AV (1995) Antagonists of bombesin/gastrin-releasing peptide inhibit growth of SW-1990 human pancreatic adenocarcinoma and production of cyclic AMP. Int J Cancer 63:257–262

    CAS  PubMed  Google Scholar 

  • Radulovic S, Schally AV, Reile H, Halmos G, Szepeshazi K, Groot K, Milovanovic S, Miller G, Yang T (1994) Inhibitory effects of antagonists of bombesin/gastrin-releasing peptide (GRP) and somatostatin analog (RC-160) on growth of HT-29 human colon cancers in nude mice. Acta Oncol 33:693–701

    CAS  PubMed  Google Scholar 

  • Szepeshazi K, Schally AV, Halmos G, Groot K, Radulovic S (1992) Growth inhibition of estrogen-dependent and estrogen-independent MXT mammary cancers in mice by bombesin and gastrin-releasing peptide antagonist RC-3095. J Natl Cancer Inst 84:1915–1922

    CAS  PubMed  Google Scholar 

  • Szepeshazi K, Schally AV, Groot K, Halmos G (1993) Effect of bombesin gastrin-releasing peptide (GRP14–27) and bombesin/GRP receptor antagonist RC-3095 on growth of nitrosamine-induced pancreatic cancers in hamsters. Int J Cancer 54:282–289

    CAS  PubMed  Google Scholar 

  • Szepeshazi K, Halmos G, Groot K, Schally AV (1994) Combination treatment of nitrosamine-induced pancreatic cancers in hamsters with analogues of LH-RH and a bombesin/GRP antagonist. Int J Pancreatol 16:141–149

    CAS  Google Scholar 

  • Szepeshazi K, Schally AV, Halmos G, Lamharzi N, Groot K, Horvath JE (1997) A single in vivo administration of bombesin antagonist RC-3095 reduces the levels and mRNA expression of epidermal growth factor receptors in MXT mouse mammary cancers. Proc Natl Acad Sci U S A 94:10913–10918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szepeshazi K, Halmos G, Schally AV, Arencibia JM, Groot K, Vadillo-Buenfil M, Rodriguez-Martin E (1999) Growth inhibition of experimental pancreatic cancers and sustained reduction in epidermal growth factor receptors during therapy with hormonal peptide analogs. J Cancer Res Clin Oncol 125:444–452

    CAS  PubMed  Google Scholar 

  • Thomas F, Mormont C, Morgan B (1994) Gastrin-releasing peptide antagonists. Drugs Future 19:349–359

    Google Scholar 

  • Yano T, Pinski J, Szepeshazi K, Halmos G, Radulovic S, Groot K, Schally AV (1994) Inhibitory effect of bombesin/gastrin-releasing peptide antagonist RC-3095 and luteinizing-releasing hormone antagonist SB-75 on the growth of MCF-7 MIII human breast cancer xenografts in athymic nude mice. Cancer 73:1229–1238

    CAS  PubMed  Google Scholar 

Isolated Gastric Mucosal Preparation

  • Main IHM, Pearce JB (1978) A rat isolated gastric mucosal preparation for studying the pharmacology of gastric secretion and the synthesis or release of endogenous substances. J Pharmacol Methods 1:27–38

    CAS  Google Scholar 

  • Wan BYC, Assem KE, Schild HO (1974) Inhibition of in vitro stimulated gastric acid secretion by a histamine H2-receptor antagonist, metiamide. Eur J Pharmacol 29:83–88

    CAS  PubMed  Google Scholar 

Primary Culture of Rat Gastric Epithelial Cells

  • Buchan AM, Meloche RM, Kwok YN, Kofod H (1993) Effect of cholecystokinin and secretin on somatostatin release from cultured antral cells. Gastroenterology 104:1414–1419

    CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  • Parish CR, Müllbacher A (1983) Automated colorimetric assay for T cell cytotoxicity. J Immunol Methods 58:225–237

    CAS  PubMed  Google Scholar 

  • Sundqvist K, Liu Y, Nair J, Bartsch H, Arvidson K, Grafström C (1989) Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res 49:5294–5298

    CAS  PubMed  Google Scholar 

  • Terano A, Ivey KJ, Stachura J, Sekhon S, Hosojima A, McKenzie WN, Krause WJ, Wyche JH (1982) Cell culture of rat gastric fundic mucosa. Gastroenterology 83:1280–1291

    CAS  PubMed  Google Scholar 

  • Zheng H, Shah PK, Audus KL (1994) Primary culture of rat gastric epithelial cells as an in vitro model to evaluate antiulcer agents. Pharm Res 11:77–82

    CAS  PubMed  Google Scholar 

Gastric Motility

  • Holzer P (1992) Reflex gastric motor inhibition caused by intraperitoneal bradykinin: antagonism by Hoe 140, a bradykinin antagonist. Peptides 13:1073–1077

    CAS  PubMed  Google Scholar 

  • Lotti VJ, Cerino DJ, Kling PJ, Chang RSL (1986) A new simple mouse model for the in vivo evaluation of cholecystokinin (CCK) antagonists: comparative potencies and durations of action of nonpeptide antagonists. Life Sci 39:1631–1638

    CAS  PubMed  Google Scholar 

Isolated Smooth Muscle Preparation of Guinea Pig Stomach

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14:48–58

    Google Scholar 

  • Boyle SJ, Tang KW, Woodruff GN, McKnight AT (1993) Characterization of CCK receptors in a novel smooth muscle preparation from the guinea pig stomach by use of the selective antagonists CI-988, L-365,260 and devazepide. Br J Pharmacol 109:913–917

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kishibayashi N, Karasawa A (1998) Effects of KW-5092, on antroduodenal coordination and gastric emptying in guinea-pigs. J Pharm Pharmacol 50:1045–1050

    CAS  PubMed  Google Scholar 

  • Reyntjens A, Verlinden M, Schuurkes J, van Nueten J, Janssen PAJ (1984) New approach to gastrointestinal motor dysfunction: non-antidopaminergic, non-cholinergic stimulation with cisapride. Curr Ther Res 36:1029–1037

    Google Scholar 

  • Riazi-Farzad B, Nicholls PJ, Sewell RD (1996) Sensitivity differences to 5-HT and carbachol in subsections of the isolated rat stomach fundus strip: an improved preparation. J Pharmacol Toxicol Methods 35:217–221

    CAS  PubMed  Google Scholar 

  • Schuurkes JAJ, van Nueten JM, van Daele PGH, Reyntjens AJ, Janssen PAJ (1985) Motor-stimulating properties of cisapride on isolated gastrointestinal preparations of the guinea pig. J Pharmacol Exp Ther 234:775–783

    CAS  PubMed  Google Scholar 

  • Van Nueten JM, Ennis C, Helsen L, Laduron PM, Janssen PAJ (1978) Inhibition of dopamine receptors in the stomach: an explanation of the gastrokinetic properties of domperidone. Life Sci 23:453–458

    PubMed  Google Scholar 

Measurement of Gastric Absorption of Drugs in Rats

  • Doluisio JT, Billups NF, Dittert LW, Sugita ET, Swintowsky JV (1969) Drug absorption I: an in situ rat gut technique yielding realistic absorption rates. J Pharm Sci 58:1196–1200

    CAS  PubMed  Google Scholar 

  • Welling PG (1977) Influence of food and diet on gastrointestinal drug absorption: a review. J Pharmacokinet Biopharm 5:291–334

    CAS  PubMed  Google Scholar 

  • Worland PJ, Drummer OH, Jarrott B (1983) An in situ gastric pouch technique for direct measurement of the gastric absorption of drugs in the rat. J Pharmacol Methods 10:215–221

    CAS  PubMed  Google Scholar 

Evaluation of Antacids

  • Clain JE, Malagelada JR, Chadwick VS, Hofmann AE (1977) Binding properties in vitro of antacids for conjugated bile salts. Gastroenterology 73:556–559

    CAS  PubMed  Google Scholar 

  • DiJoseph JF, Borella LE, Nabi Mir G (1989) Activated aluminium complex derived from solubilized antacids exhibits enhanced cytoprotective activity in the rat. Gastroenterology 96:730–735

    CAS  PubMed  Google Scholar 

  • Domschke W, Hagel J, Ruppin H, Kaduk B (1986) Antacids and gastric mucosal protection. Scand J Gastroenterol 21(Suppl 125):144–149

    CAS  Google Scholar 

  • Fordtran JS, Morawski SG, Richardson CT (1973) In vivo and in vitro evaluation of liquid antacids. N Engl J Med 288:923–928

    CAS  PubMed  Google Scholar 

  • Goldberg HI, Dodds WJ, Gee S, Montgomery C, Zboralske FF (1968) Role of acid and pepsin in acute experimental esophagitis. Gastroenterology 56:223–230

    Google Scholar 

  • Hollander D, Tarnawski A, Gergely H (1986) Protection against alcohol-induced gastric mucosal injury by aluminium-containing compounds – sucralfate, antacids and aluminium sulfate. Scand J Gastroenterol 21(Suppl 125):151–153

    CAS  Google Scholar 

  • Konturek SJ (1993) New aspects of clinical pharmacology of antacids. J Physiol Pharmacol 44(Suppl 1):5–21

    CAS  PubMed  Google Scholar 

  • Konturek SJ, Brzozowski T, Drozdowicz D, Nauert C (1989) Gastroprotection by an aluminium- and magnesium-hydroxide-containing antacid in rats. Role of endogenous prostanoids. Scand J Gastroenterol 24:1113–1120

    CAS  PubMed  Google Scholar 

  • Konturek SJ, Brzozowski T, Majka J, Szlachcic A, Nauert C, Slomiany B (1992) Nitric oxide in gastroprotection by aluminium-containing antacids. Eur J Pharmacol 229:155–162

    CAS  PubMed  Google Scholar 

  • Richardson CT, Peterson WL (1988) Clinical pharmacology of antacids. In: Bianchi-Porro G, Richardson CT (eds) Antacids in peptic ulcer disease. Raven, New York, pp 3–16

    Google Scholar 

  • Sepelyak RJ, Feldkamp JR, Regnier FE, White JL, Hem SL (1984) Adsorption of pepsin by aluminium hydroxide. II. Pepsin inactivation. J Pharm Sci 73:1517–1522

    CAS  PubMed  Google Scholar 

  • Szelenyi I, Postius S, Engler H (1983) Evidence for a functional cytoprotective effect produced by antacids in the rat stomach. Eur J Pharmacol 88:403–410

    CAS  PubMed  Google Scholar 

  • Vergin H, Kori-Lindner C (1990) Putative mechanisms of cytoprotective effect of certain antacids and sucralfate. Dig Dis Sci 35:1320–1327

    CAS  PubMed  Google Scholar 

Anticholinergic Activity

  • Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS nomenclature supplement, Trends in Pharmacological Sciences. Vol. 22, (Suppl 1) 2001

    Google Scholar 

  • Bernheim L, Matie A, Hille B (1992) Characterization of muscarinic receptor subtypes inhibiting Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci U S A 89:9544–9548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bickel M, Bal-Tempe S, Blumbach J, Dohadwalla AN, Lal B, Palm D, Rajagopalan R, Rupp RH, Schmidt D, Volz-Zang C (1990) HL 752, a new enteral active muscarinic receptor antagonist. Med Sci Res 18:877–879

    CAS  Google Scholar 

  • Birdsall NJM, Burgen ASV, Hulme EC (1978) The binding of agonists to brain muscarinic receptors. Mol Pharmacol 14:723–736

    CAS  PubMed  Google Scholar 

  • Birdsall NJM, Nathanson NM, Schwarz RD (2001) Muscarinic receptors: it’s a knockout. Trends Pharmacol Sci 22:215–219

    CAS  Google Scholar 

  • Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic receptor genes. Science 237:527–532

    CAS  PubMed  Google Scholar 

  • Bonner TI, Young AC, Brann MR, Buckley NJ (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1:403–410

    CAS  PubMed  Google Scholar 

  • Brown JH, Brown SL (1984) Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phophoinositide metabolism. J Biol Chem 259:3777–3781

    CAS  PubMed  Google Scholar 

  • Brown JH, Goldstein D, Brown Masters S (1985) The putative M1 muscarinic receptor does not regulate phophoinositide hydrolysis. Studies with pirenzepine and McN-A343 in chick heart and astrocytoma cells. Mol Pharmacol 27:525–531

    CAS  PubMed  Google Scholar 

  • Buckley NJ, Bonner TI, Buckley C, Brann MR (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 35:469–476

    CAS  PubMed  Google Scholar 

  • Carmine AA, Brogden RN (1985) Pirenzepine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in peptic ulcer disease and other allied diseases. Drugs 30:85–126

    CAS  PubMed  Google Scholar 

  • Caulfield MP, Birdsall NJM (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    CAS  PubMed  Google Scholar 

  • Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le-Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820–7829

    CAS  PubMed  Google Scholar 

  • Chen C, Okayama H (1987) High efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YC, Prussoff WH (1973) Relationship between the inhibition constant (K I) and the concentration of inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    CAS  PubMed  Google Scholar 

  • Doods HN, Mathy MJ, Davidesko D, van Charldorp KJ, de Jonge A, van Zwieten PA (1987) Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J Pharmacol Exp Ther 242:257–262

    CAS  PubMed  Google Scholar 

  • Dörje F, Rettenmayr NM, Mutschler E, Lambrecht G (1991a) Effect of extracellular calcium concentration on potency of muscarinic agonists at M1 and M2 receptors in rabbit vas deferens. Eur J Pharmacol 203:417–420

    PubMed  Google Scholar 

  • Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR (1991b) Antagonistic binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther 256:727–733

    PubMed  Google Scholar 

  • Eglen RM, Choppin A, Watson N (2001) Therapeutic opportunities from muscarinic receptor research. Trends Pharmacol Sci 22:409–414

    CAS  PubMed  Google Scholar 

  • El-Fakahani EE, Ramkumar V, Lai WS (1986) Multiple binding affinities of N-methylscopolamine to brain muscarinic acetylcholine receptors: differentiation from M1 and M2 receptor subtypes. J Pharmacol Exp Ther 238:554–563

    Google Scholar 

  • Eltze M, Gmelin G, Wess J, Strohmann C, Tacke R, Mutschler E, Lambrecht G (1988) Presynaptic muscarinic receptors mediating inhibition of neurogenic contractions in rabbit vas deferens are of the ganglionic M1-type. Eur J Pharmacol 158:233–242

    CAS  Google Scholar 

  • Ensinger HA, Doods HN, Immel-Sehr AR, Kuhn FJ, Lambrecht G, Mendla KD, Müller RE, Mutschler E, Sagrada A, Walther G, Hammer R (1993) WAL 2014 – a muscarinic agonist with preferential neuron-stimulating properties. Life Sci 52:473–480

    CAS  PubMed  Google Scholar 

  • Giachetti A, Giraldo E, Ladinski H, Montagna E (1986) Binding and functional profiles of the selective M1 muscarinic receptor antagonists trihexylphenidyl and dicyclomine. Br J Pharmacol 89:83–90

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goyal RK (1989) Muscarinic receptor subtypes. Physiology and clinical implications. N Engl J Med 321:1022–1029

    CAS  PubMed  Google Scholar 

  • Hulme EC, Birdsall NJM, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    CAS  PubMed  Google Scholar 

  • Jones SVP, Levey AI, Weiner DM, Ellis J, Novotny E, Yu SH, Dorje F, Wess J, Brann MR (1992) Muscarinic acetylcholine receptors. In: Brann MR (ed) Molecular biology of G-protein-coupled receptors, vol I, Applications of molecular genetics to pharmacology. Birkhäuser, Boston, pp 170–197

    Google Scholar 

  • Kajimura M, Reuben MA, Sachs G (1992) The muscarinic receptor gene expressed in rabbit parietal cells is the M3 subtype. Gastroenterology 103:870–875

    CAS  PubMed  Google Scholar 

  • Karlin A, McNamee MG, Weill CL (1976) Methods of isolation and characterization of the acetylcholine receptor. In: Blecher M (ed) Methods in receptor research, part I. Marcel Dekker, New York/Basel, pp 1–35

    Google Scholar 

  • Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci 51:955–971

    CAS  PubMed  Google Scholar 

  • Kebabian JW, Neumeyer JL (eds) (1994) The RBI handbook of receptor classification. Research Biochemicals International, Natick, pp 44–45

    Google Scholar 

  • Lambrecht G, Feifel R, Wagner-Röder M, Strohmann C, Zilch H, Tacke R, Waelbroeck M, Christophe J, Boddeke H, Mutschler E (1989) Affinity profiles of hexohydrosiladifenidol analogues at muscarinic receptor subtypes. Eur J Pharmacol 168:71–80

    CAS  PubMed  Google Scholar 

  • Lambrecht G, Moser U, Grimm U, Pfaff O, Hermanni U, Hildebrandt C, Waelbroeck M, Christophe J, Mutschler E (1993) New functionally selective muscarinic antagonists. Life Sci 52:481–488

    CAS  PubMed  Google Scholar 

  • Lambrecht G, Gross J, Hacksell U, Hermanni U, Hildebrandt C, Hou X, Moser U, Nilsson BM, Pfaff O, Waelbroeck M, Werle J, Mutschler E (1995) The design and pharmacology of novel selective muscarinic agonists and antagonists. Life Sci 56:815–822

    CAS  PubMed  Google Scholar 

  • Lazareno S, Buckley NJ, Roberts FF (1990) Characterization of muscarinic M4 binding sites in rabbit lung, chicken heart and NG108–15 cells. Mol Pharmacol 38:805–815

    CAS  PubMed  Google Scholar 

  • Longdong W (1986) Present status and future perspectives of muscarinic receptor antagonists. Scand J Gastroenterol 21:55–59

    Google Scholar 

  • Luthin GR, Wolfe BB (1984) Comparison of [3H]pirenzepine and [3H]quinuclidinylbenzilate binding to muscarinic cholinergic receptors in rat brain. J Pharmacol Exp Ther 228:648–655

    CAS  PubMed  Google Scholar 

  • Ma W, Li BS, Zhang L, Pant HC (2004) Signaling cascades implicated in muscarinic regulation of peripheral neural stem and progenitor cells. Drug News Perspect 17:258–266

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • McConnell HM, Rice P, Wada GH, Owicki JC, Parce JW (1991) The microphysiometer biosensor. Curr Opin Struct Biol 1:647–652

    CAS  Google Scholar 

  • McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    CAS  PubMed  Google Scholar 

  • McKinney M (1993) Muscarinic receptor subtype-specific coupling to second messengers in neuronal systems, Chap 40. In: Cuello AC (ed) Progress in brain research, vol 98. Elsevier, New York, pp 333–340

    Google Scholar 

  • Michel AD, Delmendo R, Stefanich E, Whiting RL (1989) Binding characteristics of the muscarinic receptor subtype of the NG108–15 cell line. Naunyn Schmiedebergs Arch Pharmacol 340:62–67

    CAS  PubMed  Google Scholar 

  • Norcoss NL, Griffith IJ, Lettieri JA (1980) Measurement of acetylcholine receptor and anti-receptor antibodies by ELISA. Muscle Nerve 3:345–349

    Google Scholar 

  • Owicki JC, Parce JW, Kersco KM, Sigal GB, Muir VC, Venter JC, Fraser CM, McConnell HM (1990) Continuous monitoring of receptor-mediated changes in the metabolic rates of living cells. Proc Natl Acad Sci 87:4007–4011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Owicki JC, Parce JW (1992) Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosens Bioelectron 7:255–272

    CAS  PubMed  Google Scholar 

  • Parekh AB, Brading AF (1992) The M3 muscarinic receptor links to three different transduction mechanisms with different efficacies in circular muscle of guinea pig stomach. Br J Pharmacol 106:639–643

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pitschner HF, Schlepper M, Schulte B, Volz C, Palm D, Wellstein A (1989) Selective antagonists reveal different functions of M cholinoceptor subtypes in humans. Trends Pharmacol Sci IV:92–96

    Google Scholar 

  • Richards MH (1990) Rat hippocampal muscarinic autoreceptors are similar to the M2 (cardiac) subtype: comparison with hippocampal M1, atrial M2 and ileal M3 receptors. Br J Pharmacol 99:753–761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spalding TA, Trotter C, Skjærbæk N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol Pharmacol 61:1297–1302

    CAS  PubMed  Google Scholar 

  • Svensson AL, Alafuzoff I, Nordberg A (1992) Characterization of muscarinic receptor subtypes in Alzheimer and control brain cortices by selective muscarinic antagonists. Brain Res 596:142–148

    CAS  PubMed  Google Scholar 

  • Wamsley JK, Gehlert DR, Roeske WR, Yamamura HI (1984) Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with [3H]QNB and [3H]pirenzepine. Life Sci 34:1395–1402

    CAS  PubMed  Google Scholar 

  • Watson M, Yamamura HI, Roeske WR (1983) A unique regulatory profile and regional distribution of [3H]pirenzepine binding in the rat provide evidence for distinct M1 and M2 muscarinic receptor subtypes. Life Sci 32:3001–3011

    CAS  PubMed  Google Scholar 

  • Wess J, Angeli P, Melchiorre C, Moser U, Mutschler E, Lambrecht G (1988) Methoctramine selectively blocks cardiac muscarinic M2 receptors in vivo. Naunyn Schmiedebergs Arch Pharmacol 338:246–249

    CAS  PubMed  Google Scholar 

  • Zhang L, Horowitz B, Buxton ILO (1991) Muscarinic receptors in canine colonic circular smooth muscle. I. Coexistence of M2 and M3 subtypes. Mol Pharmacol 40:943–951

    CAS  PubMed  Google Scholar 

H2-Antagonism

  • Black JW, Duncan WAM, Durant CJ, Ganellin CR, Parsons EM (1972) Definition and antagonism of histamine H2-receptors. Nature 236:385–390

    CAS  PubMed  Google Scholar 

  • Clapham J, Kilpatrick GJ (1992) Histamine H3 receptors modulate the release of [3H]-acetylcholine from slices of rat entorhinal cortex: evidence for the possible existence of H3 receptor subtypes. Br J Pharmacol 107:919–923

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haaksma EEJ, Leurs R, Timmerman H (1990) Histamine receptors: subclasses and specific ligands. Pharmacol Ther 47:73–104

    CAS  PubMed  Google Scholar 

  • Hill SJ (1990) Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–83

    Google Scholar 

  • Leurs R, van der Goot H, Timmerman H (1991) Histaminergic agonists and antagonists. Recent developments. Adv Drug Res 20:217–304

    CAS  Google Scholar 

  • Smit MJ, Leurs R, Alewijnse EA, Blauw J, van Nieuw-Amerongen GP, van der Vrede Y, Roovers E, Timmerman H (1996) Inverse agonism of histamine H2 antagonists accounts for up-regulation of spontaneously active histamine H2 receptors. Proc Natl Acad Sci U S A 93:6802–6807

    PubMed Central  CAS  PubMed  Google Scholar 

  • West RE Jr, Zweig A, Shih NY, Siegel MI, Egan RW, Clark MA (1990) Identification of two H3-histamine receptor subtypes. Mol Pharmacol 38:610–613

    Google Scholar 

Histamine H2-Receptor Binding

  • Bickel M, Herling AW, Rising TJ, Wirth K (1986) Antisecretory effects of two new histamine H2-receptor antagonists. Arzneim Forsch/Drug Res 36:1358–1363

    Google Scholar 

  • Eriks JC, van der Goot H, Sterk GJ, Timmerman H (1992) Histamine H2-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4- and 5-(2-aminoethyl)-thiazoles. J Med Chem 35:3239–3246

    CAS  PubMed  Google Scholar 

  • Gajtkowski GA, Norris DB, Rising TJ, Wood TP (1983) Specific binding of [3H]-tiotidine to histamine H2 receptors in guinea pig cerebral cortex. Nature 304:65–67

    CAS  PubMed  Google Scholar 

  • Gantz I, Schäfer M, DelValle J, Logsdon C, Campell V, Uhler M, Yamada T (1991) Molecular cloning of a gene encoding the histamine H2 receptor. Proc Natl Acad Sci 88:5937

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hill SJ (1990) Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–83

    Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49:253–278

    CAS  PubMed  Google Scholar 

  • Hirschfeld J, Buschauer A, Elz S, Schunack W, Ruat M, Traiffort E, Schwartz J-C (1992) Iodoaminopotentidine and related compounds: a new class of ligands with high affinity and selectivity for the histamine H2 receptor. J Med Chem 35:2231–2238

    Google Scholar 

  • Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM (1990) Three histamine receptors (H1, H2, and H3) visualized in the brain of human and non-human primates. Brain Res 526:322–327

    CAS  PubMed  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–228

    Google Scholar 

  • Norris DB, Gajtkowski GA, Rising TJ (1984) Histamine H2-binding studies in the guinea-pig brain. Agents Actions 14:543–545

    CAS  PubMed  Google Scholar 

  • Traiffort E, Pollard H, Moreau J, Ruat M, Schwartz JC, Martinez-Mir MI, Palacios JM (1992) Pharmacological characterization and autoradiographic localization of histamine H2 receptors in human brain identified with [125I]iodoaminopotentidine. J Neurochem 59:290–299

    CAS  PubMed  Google Scholar 

  • West RE Jr, Zweig A, Shih NY, Siegel MI, Egan RW, Clark MA (1990) Identification of two H3-histamine receptor subtypes. Mol Pharmacol 38:610–613

    Google Scholar 

H2-Antagonism in Isolated Guinea Pig Right Atria

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14:48–58

    Google Scholar 

  • Daly MJ, Humphray JM, Stables R (1981) Some in vitro and in vivo actions of the new histamine H2-receptor antagonist, ranitidine. Br J Pharmacol 72:49–54

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hattori YS, Nakaya H, Endou M, Kanno M (1990) Inotropic, electrophysiological and biochemical responses to histamine in rabbit papillary muscles: evidence for coexistence of H1- and H2-receptors. J Pharmacol Exp Ther 253:250–256

    CAS  PubMed  Google Scholar 

  • Hirschfeld J, Buschauer A, Elz S, Schunack W, Ruat M, Traiffort E, Schwartz J-C (1992) Iodoaminopotentidine and related compounds: a new class of ligands with high affinity and selectivity for the histamine H2 receptor. J Med Chem 35:2231–2238

    Google Scholar 

  • Reinhardt D, Wagner J, Schümann HJ (1974) Differentiation of H1- and H2-receptors mediating positive chronotropic and inotropic responses to histamine on atrial preparations of the guinea-pig. Agents Actions 4:217–221

    CAS  PubMed  Google Scholar 

  • Tarutani M, Sakuma H, Shiratsuchi K, Mieda M (1985) Histamine H2-receptor antagonistic action of N-3-[3-(1-piperidinyl)phenoxy]propyl acetoxyacetamide hydrochloride (TZU-0460). Arzneim Forsch/Drug Res 35:703–706

    Google Scholar 

H2-Antagonism in Isolated Rat Uterus

  • Ariëns EJ, van Rossum JM (1957) pDx, pAx and pD′x values in the analysis of pharmacodynamics. Arch Int Pharmacodyn Ther 110:275–299

    PubMed  Google Scholar 

  • Ash ASF, Schild HO (1966) Receptors mediating some actions of histamine. Br J Pharmacol Chemother 27:427–439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eltze M (1979) Proestrus and metestrus rat uterus, a rapid and simple method for detecting histamine H2-receptor antagonism. Arzneim Forsch/Drug Res 29:1107–1112

    CAS  Google Scholar 

Activity at Histamine H1- and H2-Receptors In Vivo

  • Owen DAA, Pipkin MA (1985) A simple technique to simultaneously assess activity at histamine H1- and H2-receptors in vivo. J Pharmacol Methods 13:309–315

    CAS  PubMed  Google Scholar 

Inhibition of Histamine Stimulated Adenylate Cyclase from Gastric Mucosa

  • Brown BL, Albano JDM, Ekins RP, Sgherzi AM (1971) A simple and sensitive assay method for the measurement of adenosine 3′,5′-cyclic monophosphate. Biochem J 121:561–562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hegstrand LR, Kanof PD, Greengard P (1976) Histamine-sensitive adenylate cyclase in mammalian brain. Nature 260:163–165

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 13:265–275

    Google Scholar 

  • Sewing KF, Beil W, Hannemann H, Hackbarth I (1985) The adenylate cyclase-cyclic AMP-protein kinase system in different cell populations of the guinea-pig gastric mucosa. Life Sci 12:1097–1106

    Google Scholar 

  • Sewing KF, Beil W, Hannemann H (1988) Comparative pharmacology of histamine H2-receptor antagonists. Drugs 33(Suppl 3):25–29

    Google Scholar 

H+/K+-ATPase (Proton Pump) Inhibition

  • Alderuccio F, Toh BH, Tan SS, Gleeson PA, van Driel IR (1993) An autoimmune disease with multiple molecular targets abrogated by transgenic expression of a single autoantigen in the thymus. J Exp Med 178:419–426

    CAS  PubMed  Google Scholar 

  • Brändström PA, Wallmark B, Mattsson H, Rikner L, Hoffmann KJ (1990) Omeprazole: the first proton pump inhibitor. Med Res Rev 10:1–54

    PubMed  Google Scholar 

  • Herling AW, Weidmann K (1994) Gastric K+/H+-ATPase inhibitors. In: Ellis GP, Luscombe DK (eds) Progress in medicinal chemistry, vol 31. Elsevier Science, Burlington, pp 233–264

    Google Scholar 

  • Sachs G, Shin JM, Besancon M, Pinz C (1993) The continuing development of gastric acid pump inhibitors. Aliment Pharmacol Ther 7(Suppl 1):4–12

    CAS  PubMed  Google Scholar 

  • Sachs G, Shin JM, Briving C, Wallmark B, Hersey S (1995) The pharmacology of the gastric acid pump: the K+/H+-ATPase. Annu Rev Pharmacol Toxicol 35:277–305

    CAS  PubMed  Google Scholar 

  • Shull GE, Lingrel JB (1986) Molecular cloning of the rat stomach (H+/K+)-ATPase. J Biol Chem 261:16788–16791

    CAS  PubMed  Google Scholar 

H+/K+-ATPase Inhibition in Membrane Vesicles of Stomach Mucosa

  • Beil W, Sewing KF (1984) Inhibition of partially purified K+/H+-ATPase from guinea-pig isolated and enriched parietal cells by substituted benzimidazoles. Br J Pharmacol 82:651–657

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beil W, Staar U, Sewing KF (1990) Substituted thieno[3,4-d]imidazoles, a novel group of K+/H+-ATPase inhibitors. Differentiation of their inhibition characteristics from those of omeprazole. Eur J Pharmacol 187:455–457

    Google Scholar 

  • Carter SG, Karl DW (1982) Anorganic phosphate assay with malachite green: an improvement and evaluation. J Biochem Biophys Methods 7:7–13

    CAS  PubMed  Google Scholar 

  • Herling AW, Weidmann K (1994) Gastric K+/H+-ATPase inhibitors. In: Ellis GP, Luscombe DK (eds) Progress in medicinal chemistry, vol 31. Elsevier Science, Burlington, pp 233–264

    Google Scholar 

  • LeBel D, Poirier GG, Beaudoin AR (1978) A convenient method for the ATPase assay. Anal Biochem 85:86–89

    CAS  PubMed  Google Scholar 

  • Lee HC, Forte JG (1978) A study of H+ transport in gastric microsomal vesicles using fluorescent probes. Biochim Biophys Acta 508:339–356

    CAS  PubMed  Google Scholar 

  • Ljungström M, Norberg L, Olaisson H, Wernstedt C, Vega FV, Arvidson G, Mårdh S (1984) Characterization of proton-transporting membranes from resting pig gastric mucosa. Biochim Biophys Acta 769:209–219

    PubMed  Google Scholar 

  • Nagaya H, Satoh H, Maki Y (1987) Actions of antisecretory agents on proton transport in hog gastric mucosa. Biochem Pharmacol 36:513–519

    CAS  PubMed  Google Scholar 

  • Saccomani G, Stewart HB, Shaw D, Lewin M, Sachs G (1977) Characterization of gastric mucosal membranes. IX. Fractionation and purification of K+-ATPase-containing vesicles by zonal centrifugation and free-flow electrophoresis technique. Biochim Biophys Acta 465:311–330

    CAS  PubMed  Google Scholar 

  • Sewing KF, Beil W, Hackbarth I, Hannemann H (1986) Effect of substituted benzimidazoles on H+/K+ATPase of isolated guinea-pig parietal cells. Scand J Gastroenterol 21(Suppl 118):52–53

    Google Scholar 

  • Wallmark B, Jaresten BM, Larsson H, Ryberg B, Brandström A, Fellenius E (1973) Differentiation among inhibitory actions of omeprazole, cimetidine and SCN- on gastric secretion. Am J Physiol 245:G64–G71

    Google Scholar 

Effect of H+/K+-ATPase Inhibitors on Serum Gastrin Levels

  • Arnold R, Koop H, Schwarting H, Tuch K, Willemer B (1986) Effect of acid inhibition on gastric endocrine cells. Scand J Gastroenterol 21(Suppl 125):14–19

    CAS  Google Scholar 

  • Creutzfeldt W, Stöckmann F, Conlon JM, Fölsch UR, Bonatz G, Wülfrath M (1986) Effect of short- and long-term feeding of omeprazole on rat gastric endocrine cells. Digestion 35(Suppl 1):84–97

    CAS  PubMed  Google Scholar 

  • Ekman L, Hansson E, Havu N, Carlsson E, Lundberg C (1985) Toxicological studies on omeprazole. Scand J Gastroenterol 20(Suppl 108):53–69

    Google Scholar 

  • Katz LB, Schoof RA, Shriver DA (1987) Use of a five-day test to predict the long-term effects of gastric antisecretory agents on serum gastrin in rats. J Pharmacol Methods 18:275–282

    CAS  PubMed  Google Scholar 

  • Larsson H, Carlsson E, Mattsson H, Lundell L, Sundler F, Sundell G, Wallmark B, Watanabe T, Håkanson R (1986) Plasma gastrin and gastric enterochromaffin-like cell activation and proliferation. Studies with omeprazole and ranitidine in intact and antrectomized rats. Gastroenterology 90:391–399

    CAS  PubMed  Google Scholar 

(14C)-Aminopyrine Uptake and Oxygen Consumption in Isolated Rabbit Gastric Glands

  • Beil W, Staar U, Sewing KF (1990) Substituted thieno[3.4-d]imidazoles, a novel group of H+/K+-ATPase inhibitors. Differentiation of their inhibition characteristics from those of omeprazole. Eur J Pharmacol 187:455–467

    Google Scholar 

  • Berglindh T, Öbrink KJ (1976) A method for preparing isolated glands from the rabbit gastric mucosa. Acta Physiol Scand 96:150–159

    Google Scholar 

  • Berglindh T, Helander HF, Öbrink KJ (1976) Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands. Acta Physiol Scand 97:401–414

    CAS  PubMed  Google Scholar 

  • Fryklund J, Wallmark B (1986) Sulfide and sulfoxide derivatives of substituted benzimidazoles inhibit acid formation in isolated gastric glands by different mechanisms. J Pharmacol Exp Ther 236:248–253

    CAS  PubMed  Google Scholar 

  • Herling AW, Becht M, Kelker W, Ljungström M, Bickel M (1987) Inhibition of 14C-aminopyrine accumulation in isolated rabbit gastric glands by the H2-receptor antagonist Hoe 760 (TZU-0460). Agents Actions 20:35–39

    CAS  PubMed  Google Scholar 

  • Herling AW, Bickel M, Lang HJ, Weidmann K, Rösner M, Metzger H, Rippel R, Nimmesgern H, Scheunemann KH (1988) A substituted thieno[3.4-d]imidazole versus substituted benzimidazoles as H+, K+-ATPase inhibitors. Pharmacology 36:289–297

    Google Scholar 

  • Herling AW, Becht M, Lang HJ, Scheunemann KH, Weidmann K, Scholl T, Rippel R (1990) The inhibitory effect of Hoe 731 in isolated rabbit gastric glands. Biochem Pharmacol 40:1809–1814

    CAS  PubMed  Google Scholar 

  • Sack J, Spenney JG (1982) Aminopyrine accumulation by mammalian gastric glands: an analysis of the technique. Am J Physiol 243:G313–G319

    CAS  PubMed  Google Scholar 

  • Schepp W, Schmidtler J, Riedel T, Dehne K, Schusdziarra V, Holst JJ, Eng J, Raufman JP, Classen M (1994) Exendin-4 and exendin-(9–39)NH2: Agonist and antagonist, respectively, at the rat parietal cell receptor for glucagon-like peptide-1-(7–36)NH2. Eur J Pharmacol Mol Pharmacol Sect 269:183–191

    CAS  Google Scholar 

  • Sewing KF, Harms P, Schulz G, Hannemann H (1983) Effect of substituted benzimidazoles on acid secretion in isolated and enriched guinea pig parietal cells. Gut 24:557–560

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sewing KF, Beil W, Hackbarth I, Hannemann H (1986) Effect of substituted benzimidazoles on H+K+ATPase of isolated guinea-pig parietal cells. Scand J Gastroenterol 21(Suppl 118):52–53

    Google Scholar 

  • Soll AH (1978) The actions of secretagogues on oxygen uptake by isolated mammalian parietal cells. J Clin Invest 61:370–378

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stoll AH (1980) Secretagogue stimulation of [14C]aminopyrine accumulation by isolated canine parietal cells. Am J Physiol 238(Gastrointest Liver Physiol 1):G366–G375

    Google Scholar 

Gastric Mucosal Blood Flow

  • Aukland K, Bower B, Berliner R (1964) Measurement of local blood flow with hydrogen gas. Circ Res 14:164–187

    CAS  PubMed  Google Scholar 

  • Doi K, Nagao T, Kawakubo K, Ibayashi S, Aoyagi K, Yano Y, Yamamoto C, Kanamoto K, Iida M, Sadoshima S, Fujishima M (1998) Calcitonin gene-related peptide affords gastric mucosal protection by activating potassium channel in Wistar rats. Gastroenterology 114:71–76

    CAS  PubMed  Google Scholar 

  • Goldin E, Casadevall M, Mourelle M, Cirera I, Elizalde JI, Panes J, Casamitjana R, Guth P, Pique JM, Teres J (1996) Role of prostaglandins and nitric oxide in gastrointestinal hyperemia of diabetic rats. Am J Physiol 270(Gastrointest Liver Physiol 33):G684–G690

    CAS  PubMed  Google Scholar 

  • Heinemann A, Sattler V, Jocic M, Wienen W, Holzer P (1999) Effect of angiotensin II and telmisartan, an angiotensin-1 receptor antagonist, on rat gastric mucosa blood flow. Aliment Pharmacol Ther 13:347–355

    CAS  PubMed  Google Scholar 

  • Hirose H, Takeuchi K, Okabe S (1991) Effect of indomethacin on gastric mucosal blood flow around acetic acid-induced gastric ulcers in rats. Gastroenterology 100:1259–1265

    CAS  PubMed  Google Scholar 

  • Hisanaga Y, Goto H, Tachi K, Hayakawa T, Sugiyama A (1996) Implication of nitric oxide synthase activity in the genesis of water immersion stress-induced gastric lesions in rats: the protective effect of FK506. Aliment Pharmacol Ther 10:933–940

    CAS  PubMed  Google Scholar 

  • Holzer P, Guth PH (1991) Neuropeptide control of rats gastric mucosal blood flow. Increase by calcitonin gene-related peptide and vasoactive intestinal peptide, but not substance P and neurokinin A. Circ Res 68:100–105

    CAS  PubMed  Google Scholar 

  • Lazaratos S, Kashimura H, Nahakara A, Fukutomi H, Osuga T, Urushidani T, Miyauchi T, Goto K (1993) Gastric ulcer induced by submucosal injection of ET1: role of potent vasoconstriction and intraluminal acid. Am J Physiol 265(Gastrointest Liver Physiol 28):G491–G498

    CAS  PubMed  Google Scholar 

  • Leung FW, Guth PH, Scremin OU, Golanska EM, Kauffman GL Jr (1984) Regional gastric mucosal blood flow measurements by hydrogen gas clearance in the anesthetized rat and rabbit. Gastroenterology 87:28–36

    CAS  PubMed  Google Scholar 

  • Leung FW, Kauffman GL Jr, Washington J, Scremin OU, Guth PH (1986) Blood flow limitation of stimulated gastric acid secretion in the rat. Am J Physiol 250:G794–799

    CAS  PubMed  Google Scholar 

  • Lippe IT, Holzer P (1992) Participation of endothelium-derived nitric oxide but not prostaglandin in the gastric mucosal hyperaemia due to acid back-diffusion. Br J Pharmacol 105:708–714

    PubMed Central  CAS  PubMed  Google Scholar 

  • Livingston EH, Reedy T, Dao H, Leung FW, Guth PH (1986) Direct fitting of hydrogen gas clearance curves by computer. Gastroenterology 90:1523

    Google Scholar 

  • Petho G, Jocic M, Holzer P (1994) Role of bradykinin in the hyperaemia following acid challenge of rat gastric mucosa. Br J Pharmacol 113:1036–1042

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pique JM, Leung FW, Tan HW, Livingston E, Scremin OU, Guth PH (1988) Gastric mucosal blood flow response to stimulation and inhibition of gastric acid secretion. Gastroenterology 95:642–650

    CAS  PubMed  Google Scholar 

  • Pique JM, Esplugues JV, Whittle BJR (1992) Endogenous nitric oxide as a mediator of gastric mucosal vasodilatation during acid secretion. Gastroenterology 102:168–174

    CAS  PubMed  Google Scholar 

  • Tanaka T, Guth PH (1994) Role of gastric mucosal blood flow in gastroprotective effects of novel xanthine derivative. Dig Dis Sci 39:587–592

    CAS  PubMed  Google Scholar 

  • Tsukamoto Y, Goto H, Hase S, Arisawa T, Ohara A, Suzuki T, Hoshino H, Endo H, Hamajima E, Omiya N (1992) Effect of duodenal mucosal blood flow on duodenal alkaline secretion in rats. Digestion 51:198–202

    CAS  PubMed  Google Scholar 

Pylorus Ligation in Rats (SHAY Rat)

  • Bickel M, Herling AW, Rising TJ, Wirth K (1986) Antisecretory effects of two new histamine H2-receptor antagonists. Arzneim Forsch/Drug Res 36:1358–1363

    Google Scholar 

  • Herling AW, Bickel M, Lang HJ, Weidmann K, Rösner M, Metzger H, Rippel R, Nimmesgern H, Scheunemann KH (1988) A substituted thienol[3.4-d]imidazole versus substituted benzimidazoles as H+, K+-ATPase inhibitors. Pharmacology 36:289–297

    Google Scholar 

  • Selve N, Friderichs E, Graudums I (1992) EM 405: a new compound with analgesic and anti-inflammatory properties and no gastrointestinal side-effects. Agents Actions. Special Conference Issue, C84–C85

    Google Scholar 

  • Shay H, Komarow SA, Fels SS, Meranze D, Gruenstein M, Siplet H (1945) A simple method for the uniform production of gastric ulceration in the rat. Gastroenterology 5:43–61

    Google Scholar 

  • Shay H, Sun DCH, Gruenstein M (1954) A quantitative method for measuring spontaneous gastric secretion in the rat. Gastroenterology 26:906–913

    CAS  PubMed  Google Scholar 

Indomethacin Induced Ulcers in Rats

  • Djahanguiri B (1969) The production of acute gastric ulceration by indomethacin in the rat. Scand J Gastroenterol 4:265–267

    CAS  PubMed  Google Scholar 

  • Kitajima T, Yamaguchi T, Tani K, Kubota Y, Okuhira M, Inoue K, Yamda H (1993) Role of endothelin and platelet-activating factor in indomethacin-induced gastric mucosal injury in rats. Digestion 54:156–159

    Google Scholar 

  • Konturek SJ, Piastucki I, Brzozowski T, Radecki T, Dembinska-Kiec A, Zmuda A, Gryglewski R (1981) Role of prostaglandins in the formation of aspirin-induced gastric ulcers. Gastroenterology 80:4–9

    CAS  PubMed  Google Scholar 

  • Scarpignato C, Corradi C, Gandolfi MA, Galmiche JP (1995) A new technique for continuous measurement and recording of gastric potential difference in the rat: evaluation of NSAID-induced gastric mucosal damage. J Pharmacol Toxicol Methods 34:63–72

    CAS  PubMed  Google Scholar 

  • Selve N, Friderichs E, Graudums I (1992) EM 405: a new compound with analgesic and anti-inflammatory properties and no gastrointestinal side-effects. Agents Actions. Special Conference Issue, C84–C85

    Google Scholar 

  • Tarutani M, Sakuma H, Shiratsuchi K, Mieda M (1985) Histamine H2-receptor antagonistic action of N-3-[3-(1-piperidinyl)phenoxy]propylacetoxyacetamide hydrochloride (TZU-0460). Arzneim Forsch/Drug Res 35:703–706

    Google Scholar 

  • Wallace JL, Cirino G, de Nucci G, McKnight W, MacNaughton WK (1989) Endothelin has potent ulcerogenic and vasoconstrictor actions in the stomach. Am J Physiol 256(Gastrointest Liver Physiol 19):G661–G666

    Google Scholar 

  • West GB (1982) Testing for drugs inhibiting the formation of gastric ulcers. J Pharmacol Methods 8:33–37

    CAS  PubMed  Google Scholar 

Ethanol Induced Mucosal Damage in Rats (Cytoprotective Activity)

  • Borella LE, DiJoseph JF, Nabi Mir G (1989) Cytoprotective and antiulcer activities of the antacid Magaldrate in the rat. Arzneim Forsch/Drug Res 39:786–789

    CAS  Google Scholar 

  • Franzone JS, Cirillo R, Cravanzola C (1988) Cytoprotective activity of deboxamet: a possible interference with prostaglandin and prostacyclin metabolism in rat gastric mucosa. Int J Tissue React 10:149–158

    CAS  PubMed  Google Scholar 

  • Herling AW, Weidmann K (1994) Gastric K+/H+-ATPase inhibitors. In: Ellis GP, Luscombe DK (eds) Progress in medicinal chemistry, vol 31. Elsevier Science, Burlington, pp 233–264

    Google Scholar 

  • Hollander D, Tarnawski A, Krause WJ, Gergely H (1985) Protective effect of sucralfate against alcohol-induced gastric mucosal injury in the rat. Gastroenterology 88:366–374

    CAS  PubMed  Google Scholar 

  • Lindberg P, Brändström A, Wallmark B, Mattson H, Rikner L, Hoffmann KJ (1990) Omeprazole: the first proton pump inhibitor. Med Res Rev 10:1–54

    CAS  PubMed  Google Scholar 

  • Long JF, Chiu PJS, Derelanko MJ, Steinberg M (1983) Gastric antisecretory and cytoprotective activities of SCH 28080. J Pharmacol Exp Ther 226:114–120

    CAS  PubMed  Google Scholar 

  • Masuda E, Kawano S, Nagano K, Tsuji S, Takei Y, Hayashi N, Tsujii M, Oshita M, Michida T, Kobayashi I, Pen HB, Fusamoto H, Kamada T (1993) Role of endogenous endothelin in pathogenesis of ethanol-induced gastric mucosal injury in rats. Am J Physiol 265(Gastrointest Liver Physiol 28):G474–G481

    Google Scholar 

  • Robert A (1979) Cytoprotection by prostaglandins. Gastroenterology 77:761–767

    CAS  PubMed  Google Scholar 

  • Robert A, Nezamis JE, Lancaster C, Hanchar AJ (1979) Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 77:433–443

    CAS  PubMed  Google Scholar 

  • Starrett JE, Montzka TA, Crosswell AR, Cavanagh RL (1989) Synthesis and biological activity of 3-substituted imidazo[1,2-a]pyridines as antiulcer agents. J Med Chem 32:2204–2210

    CAS  PubMed  Google Scholar 

  • Szabo S, Trier JS, Frankel PW (1981) Sulfhydryl compounds may mediate gastric cytoprotection. Science 214:200–202

    CAS  PubMed  Google Scholar 

  • Witt CG, Will PC, Gaginella TS (1985) Quantification of ethanol-induced gastric mucosal injury by transmission densitometry. J Pharmacol Methods 13:109–116

    CAS  PubMed  Google Scholar 

Subacute Gastric Ulcer in Rats

  • Ezer E (1988) Novel method for producing standard subacute gastric ulcer in rats and for the quantitative evaluation of the healing process. J Pharmacol Methods 20:279–291

    CAS  PubMed  Google Scholar 

  • Karmeli F, Okon E, Rachmilewitz D (1996) Sulfhydryl blocker induced gastric damage is ameliorated by scavenging of free radicals. Gut 38:826–831

    PubMed Central  CAS  PubMed  Google Scholar 

  • Konturek PC, Brzozowski T, Konturek SJ, Stachura J, Karczewska E, Pajdo R, Ghiara P, Hahn EG (1999) Mouse model of Helicobacter infection: studies of gastric function and ulcer healing. Aliment Pharmacol Ther 13:333–346

    CAS  PubMed  Google Scholar 

  • Marchetti M, Aricò B, Burroni D, Figura N, Rappouli R, Ghiara P (1995) Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science 267:1655–1658

    CAS  PubMed  Google Scholar 

  • Okabe S, Pfeiffer CJ (1972) Chronicity of acetic acid ulcer in the rat stomach. Dig Dis 7:619–629

    Google Scholar 

  • Piqueras L, Corpa JM, Martínez J, Martínez V (2003) Gastric hypersecretion associated to iodoacetamide-induced mild gastritis in mice. Naunyn Schmiedebergs Arch Pharmacol 367:140–150

    CAS  PubMed  Google Scholar 

  • Protell RL, Silverstein FE, Piercey J, Dennis M, Sprake W, Rubin CE (1976) A reproducible animal model of acute bleeding ulcer – the “ulcer maker”. Gastroenterology 71:961–964

    CAS  PubMed  Google Scholar 

  • Szelenyi I, Engler H, Herzog P, Postius S, Vergin H, Holtermüller KH (1982) Influence of nonsteroidal anti-inflammatory compounds on healing of chronic gastric ulcers. Agents Actions 12:180–182

    CAS  PubMed  Google Scholar 

  • Takagi K, Okabe S, Saziki R (1969) A new method for production of chronic gastric ulcer in rats and the effect of several drugs on its healing. Jpn J Pharmacol 19:418–426

    CAS  PubMed  Google Scholar 

Gastric Ischemia-Reperfusion Injury in Rats

  • Hassan M, Kashimura H, Matsumaru K, Nakahara A, Fukutomi H, Muto H, Goto K, Tanak M (1997) Phosphoramidon, an endothelin converting enzyme inhibitor, attenuates local gastric ischemia-reperfusion injury in rats. Life Sci 61:141–147

    Google Scholar 

  • Kitajima T, Yamaguchi T, Tani K, Kubota Y, Okuhira M, Inoue K, Yamada H (1993) Role of endothelin and platelet-activating factor in indomethacin-induced gastric mucosal injury in rats. Digestion 54:156–159

    Google Scholar 

  • Kitajima T, Tani K, Yamaguchi T, Kubota Y, Okuhira M, Mizuno T, Inoue K (1995) Role of endogenous endothelin in gastric mucosal injury induced by hemorrhagic shock in rats. Digestion 56:111–116

    CAS  PubMed  Google Scholar 

  • Masuda E, Kawano S, Nagano K, Tsusi S, Takei Y, Hayashi N, Tsujii M, Oshita M, Michida T, Kobayashi I, Peng HB, Fusamoto H, Kamada T (1993) Role of endogenous endothelin in pathogenesis of ethanol-induced gastric mucosal injury in rats. Am J Physiol 265:G474–G481

    Google Scholar 

  • Michida T, Kawano S, Masuda E, Kobayashi I, Nishimura Y, Tsujii M, Hayashi N, Takei Y, Tsuji S, Nagano K, Fusamoto H, Kamada T (1994) Role of endothelin 1 in hemorrhagic shock-induced gastric mucosal injury in rats. Gastroenterology 106:988–993

    CAS  PubMed  Google Scholar 

  • Wallace JL, Cirino G, de Nucci G, McKnight W, MacNaughton WK (1989) Endothelin has potent ulcerogenic and vasoconstrictor actions in the stomach. Am J Physiol 256:G661–G666

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas W. Herling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Herling, A.W. (2014). Pharmacological Effects on Gastric Function. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics