Skip to main content

NMRI Methods in Psychoneuropharmacology

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 170 Accesses

Abstract

Magnetic resonance imaging (MRI) is the preferred technique for the visualization of lesions in the brain and spinal cord of patients with MS. It visualizes the resonance signals of tissue protons when they are placed in a time-varying strong magnetic field. The most frequently used parameters measured in MS are the spin–lattice relaxation time (T1) and the spin–spin relaxation time (T2). MRI is routinely used as a tomographic imaging technique, where anatomical pictures are created of 1-mm-thick tissue sections. The contrast differences between brain structures in most MRI techniques are determined by the different densities and diffusion of protons, as well as differences in relaxation times. T2 images are sensitive to water and, because all pathological alterations in MS brains are associated with altered distribution of tissue water (edema), this technique is highly useful for visualization of the spatial distribution of lesions. Contrast in T1 images is determined mainly by different lattice densities. Dense structures, such as compact white matter, have low T1 values, whereas relatively loose structures, such as gray matter or lesions, have higher T1 values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

General Considerations

  • Changani KK, Nicholson A, White A, Latcham JK, Reid DG, Clapham JC (2003) A longitudinal magnetic resonance imaging (MRI) study of differences in abdominal fat distribution between normal mice, and lean overexpressers of mitochondrial uncoupling protein-3 (UCP-3). Diabetes Obes Metab 5:99–105

    Article  CAS  PubMed  Google Scholar 

  • Mirsattari SM, Bihari F, Leung S, Menon RS, Wang Z, Ives JR, Bartha R (2005) Physiological monitoring of small animals during magnetic resonance imaging. J Neurosci Methods 144:207–213

    Article  PubMed  Google Scholar 

  • Mitchell AD, Scholz AM, Wang PC, Song H (2001) Body composition of the pig by magnetic resonance imaging. J Anim Sci 79:1800–1813

    CAS  PubMed  Google Scholar 

  • Murnane KS, Howell LL (2011) Neuroimaging and drug taking in primates. Psychopharmacology 216:153–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama C, Yamanaka H, Onoe K, Kawaski A, Nagita H, Shirakami K, Doi H, Onoe H (2010) Mapping of serotonin transporters by positron emission tomography with 11C DASB in conscious common marmosets: comparison with rhesus monkeys. Synapse 64:594–601

    Article  CAS  PubMed  Google Scholar 

NMRI Psychopharmacological Studies in Rats

  • Bär PR, Schrama LH, Gispen WH (1990) Neurotrophic effects of ACTH/MSH-like peptides in the peripheral nervous system. In: De Wied D (ed) Neuropeptides, basics and perspectives. Elsevier, Amsterdam, pp 175–211

    Google Scholar 

  • Duckers HJ, Muller HJ, Verhaagen J, Nicolay K, Gispen WH (1997) Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis: effect of a neurotropic treatment on cortical lesion development. Neuroscience 77:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H (1983) Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Strand FL, Rose KJL, Zuccarelli A, Kume J, Alves SE, Antonawich FJ, Garrett LY (1991) Neuropeptide hormones as neurotrophic factors. Physiol Rev 71:1017–1046

    CAS  PubMed  Google Scholar 

  • Wisniewski HM, Keith AB (1977) Chronic relapsing experimental allergic encephalomyelitis: an experimental model of multiple sclerosis. Ann Neurol 1:144

    Article  CAS  PubMed  Google Scholar 

NMRI Study of 3-Nitropropionic Acid-Induced Neurodegeneration in Rats

  • Chyi T, Chang C (1999) Temporal evolution of 3-nitropropionic acid-induced neurodegeneration in the rat brain by T2-weighted, diffusion-weighted, and perfusion magnetic resonance imaging. Neuroscience 92:1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Knowles RJ, Markisz JA (1988) General imaging measurement. In: Knowles RJ, Markisz JA (eds) Quality assurance and images artifacts in magnetic resonance image. Brown Press, Boston, p 35

    Google Scholar 

  • Lee WT, Shen YZ, Chang C (2000) Neuroprotective effect of lamotrigine and MK-801 on rat brain lesions induced by 3-nitropropionic acid: evaluation by magnetic resonance imaging and in vivo proton magnetic resonance spectroscopy. Neuroscience 95:89–95

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

NMRI Studies of Brain Activation in Rats

  • Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173

    Article  CAS  PubMed  Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 79:3523–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Shyu BC (2001) A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 897:71–81

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa D, Orima H, Fujita M, Nakamura S, Takahashi K, Ohkibo S, Igarashi H, Hashizume K (2003) Diffusion-weighted imaging in kainic acid-induced complex partial status epilepticus in dogs. Brain Res 983:115–127

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Watanabe M, Yoshikawa K, Kanaho Y, Berliner LJ, Fujll H (2004) Magnetic resonance and biochemical studies during pentylenetetrazole-kindling development: the relationship between nitric oxide, neuronal nitric oxide synthase and seizures. Neuroscience 129:757–766

    Article  CAS  PubMed  Google Scholar 

  • Jenkins BG, Brouillet E, Chen YI, Storey JB, Schulz JB, Kirschner P, Beal MF, Rosen BR (1996) Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging. J Cereb Blood Flow Metab 16:450–461

    Article  CAS  PubMed  Google Scholar 

  • Kerskens CM, Hoehn-Berlage M, Schmitz B, Busch E, Bock C, Gyngell ML, Hossmann KA (1996) Ultrafast perfusion weighted MRI of functional brain activation in rats during forepaw stimulation: comparison with T2*-weighted MRI. NMR Biomed 8:20–23

    Article  Google Scholar 

  • Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–403

    Article  PubMed  Google Scholar 

  • McCarthy G, Blamire AM, Rothman DL, Gruetter R, Shulman RG (1993) Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci U S A 90:4952–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, New York

    Google Scholar 

  • Shyu BC, Hsieh KC, Yen CFC, Liu CP, Chang C (1996) An integrated physiological data acquisition and control system for fMRI study in rats. Proc ISMRM 4:1836

    Google Scholar 

  • Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 29:277–279

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Radulovic J, Boretius S, Frahm J, Michaelis T (2006) Mapping of the habenulo-interpeduncular pathway in living mice using manganese-enhanced 3D MRI. Magn Reson Imaging 24:209–215

    Article  PubMed  Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrynn AS, MacSweeney CP, Franconi F, Lemaire L, Pouliquen D, Herlidou S, Leonard BE, Gandon JM, de Cartaines JD (2000) An in-vivo magnetic resonance imaging study of the olfactory bulbectomized rat model of depression. Brain Res 879:193–199

    Article  CAS  PubMed  Google Scholar 

NMRI Psychoneuropharmacological Studies in Primates

  • Andersen AH, Zhang Z, Barber T, Ryens WS, Zhang J, Grondin R, Hardy P, Gerhardt GA, Gash DM (2002) Functional MRI studies in awake rhesus monkeys: methodological and analytical strategies. J Neurosci Methods 118:141–152

    Article  PubMed  Google Scholar 

  • Blamire AM, Ogawa S, Ugurbil K, Rothman D, McCarthy G, Ellerman JM, Hyder F, Rattner Z, Shulman RG (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci U S A 89:11069–11073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen I, Holst RJ, Staton RE, Pham, HT (1996) An algorithm for contralateral and source localization using orthogonal rapiographs. Med Physics 23:1037

    Google Scholar 

  • Dubowitz DJ, Chen DY, Atkinson DJ, Scadeng M, Martinex A, Andersen MB, Andersen RA, Bradley WG (2001) Direct comparison of visual cortex in human and non-human primates using functional magnetic resonance imaging. J Neurosci Methods 107:71–80

    Article  CAS  PubMed  Google Scholar 

  • Howell LL, Hoffman JM, Votaw JR, Landrum AM, Jordan JF (2001) An apparatus and behavioral training protocol to conduct positron emission tomography (PET) neuroimaging in conscious rhesus monkeys. J Neurosci Methods 106:161–169

    Article  CAS  PubMed  Google Scholar 

  • Menon RS, Ogawa S, Tank DW, Ugurbil K (1993) 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual system. Magn Reson Med 30:380–386

    Article  CAS  PubMed  Google Scholar 

  • Posse S, Wiese S, Gembris D, Mathiak K, Kessler C, Grosse-Ruyken ML, Elghahwagi B, Richards T, Dager SR, Kiselev VG (1999) Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magn Reson Med 42:87–97

    Article  CAS  PubMed  Google Scholar 

  • Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T (1998) FMRI of monkey visual cortex. Neuron 20:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Andersen AH, Avison MJ, Gerhardt GA, Gash DM (2000) Functional MRI of apomorphine activation of the basal ganglia in awake rhesus monkeys. Brain Res 852:290–296

    Article  CAS  PubMed  Google Scholar 

Functional NMRI Studies in the Brain of Common Marmosets

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Genain CP, Hauser SL (1997) Creation of a model for multiple sclerosis in Callithrix jacchus marmosets. J Mol Med 75:187–197

    Article  CAS  PubMed  Google Scholar 

  • Massacesi L, Genain CP, Lee-Parritz D, Letvin NL, Canfield D, Hauser SL (1995) Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model of multiple sclerosis. Ann Neurol 37:519–530

    Article  CAS  PubMed  Google Scholar 

  • Hart BA, Bauer J, Muller HJ, Melchers B, Nicolay K, Brok H, Bontrop RE, Lassmann H, Massacesi L (1998) Histopathological characterization of magnetic resonance imaging-detectable white matter lesions in a primate model of multiple sclerosis. A correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am J Pathol 153:649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart BA, Vogels J, Bauer J, Brok HPM, Blezer E (2004) Noninvasive measurement of brain damage in a primate model of multiple scerosis. Trends Mol Med 10:8

    Article  Google Scholar 

Future Expectancies in Imaging

  • Freise AC, Wu AM (2015) In vivo imaging with antibodies and engineered fragments. Mol Immunol 67:142–152

    Article  CAS  PubMed  Google Scholar 

  • Kuhn M, Popovic A, Pezanos I (2014) Neuroplasticity an memory formation in major depressive disorder: an imaging genetics perspective on serotonin and BDNF. Neuroscience 32:25–49

    Google Scholar 

  • Malykhin NV, Coupland NJ (2015) Understanding brain correlates to depression – improved visualization. Neuroscience 33:241–249

    Google Scholar 

  • Srivatsan A, Chen X (2014) Recent advances in nanoparticle-based nuclear imaging of cancers. Adv Cancer Res 124:83–129

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Jeanne Kallman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kallman, MJ. (2015). NMRI Methods in Psychoneuropharmacology. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_35-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_35-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    NMRI Methods in Psychoneuropharmacology
    Published:
    07 March 2016

    DOI: https://doi.org/10.1007/978-3-642-27728-3_35-2

  2. Original

    NMRI Methods in Psychoneuropharmacology
    Published:
    04 July 2015

    DOI: https://doi.org/10.1007/978-3-642-27728-3_35-1