Skip to main content
  • 499 Accesses

Abstract

The first antidepressant drugs- were detected by serendipity in clinical trials. Iproniazid was developed for the treatment of tuberculosis. The observation of mood-elevating effects was followed by the detection of the inhibition of the enzyme monoamine oxidase. During clinical investigation of phenothiazine analogues as neuroleptics, imipramine was found to be relatively ineffective in agitated psychotic patients but showed remarkable benefit in depressed patients. Later on, inhibition of uptake of biogenic amines was found to be the main mechanism of action resulting in downregulation of β-receptors (Vetulani et al. 1976). Influence on α 2-adrenoreceptors (Johnson et al. 1980) was discussed as well. Several lines of preclinical and clinical evidence indicate that an enhancement of 5-HTmediated neurotransmission might underlie the therapeutic effect of most antidepressant treatments (Blier and de Montigny 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

General Considerations

  • Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    CAS  PubMed  Google Scholar 

  • Chen G (1964) Antidepressives, analeptics and appetite suppressants. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 239–260

    Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and further needs. Trends Pharmacol Sci 23:238–245

    Google Scholar 

  • Johnson RW, Reisine T, Spotnitz S, Weich N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on a α 2- and β-adrenoreceptor sensitivity. Eur J Pharmacol 67:123–127

    Google Scholar 

  • Kuhn R (1958) The treatment of depressive states with G22355 (imipramine hydrochloride). Am J Psychiatry 115:459–464

    CAS  PubMed  Google Scholar 

  • Panksepp J, Yates G, Ikemoto S, Nelson E (1991) Simple ethological models of depression: socialisolation induced despair in chicks and mice. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 161–181

    Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn Schmiedebergs Arch Pharmacol 293:109–114

    Google Scholar 

  • Willner P, Muscat R (1991) Animals models for investigating the symptoms of depression and the mechanisms of action of anti-depressant drugs. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 183–198

    Google Scholar 

Inhibition of [3H]-Norepinephrine Uptake in Rat Brain Synaptosomes

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J Pharmacol Exp Ther 170:221–231

    CAS  PubMed  Google Scholar 

  • Hertting G, Axelrod J (1961) Fate of tritiated noradrenaline at the sympathetic nerve endings. Nature 192:172–173

    CAS  PubMed  Google Scholar 

  • Iversen LL (1975) Uptake mechanisms for neurotransmitter amines. Biochem Pharmacol 23:1927–1935

    Google Scholar 

  • Lippmann W, Pugsley TA (1977) Effects of 3,4-dihydro-1H-1,4-oxazino[4,3-a]indoles, potential antidepressants, on biogenic amine uptake mechanisms and related activities. Arch Int Pharmacodyn 227:324–342

    CAS  PubMed  Google Scholar 

  • Morin D, Zini R, Urien S, Tillement JP (1989) Pharmacological profile of Binedaline, a new antidepressant drug. J Pharmacol Exp Ther 249:288–296

    CAS  PubMed  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    CAS  PubMed  Google Scholar 

  • Schloss P, Mayser W, Betz H (1992) Neurotransmitter transporters. A novel family of integral plasma membrane proteins. FEBS Lett 307:76–80

    CAS  PubMed  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exp Ther 165:78–86

    Google Scholar 

  • Tehani-Butt SM (1992) [3H]Nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 260:427–436

    Google Scholar 

Inhibition of [3H]-Dopamine Uptake in Rat Striatal Synaptosomes

  • Altar CA, Marshall JF (1987) Neostriatal dopamine uptake and reversal of age-related movement disorders with dopamineuptake inhibitors. Ann N Y Acad Sci 515:343–353

    Google Scholar 

  • Carroll FI, Gao Y, Abraham P, Lewin AH, Lew R, Patel A, Boja JW, Kuhar MJ (1992) Probes for the cocaine receptor. Potentially irreversible ligands for the dopamine transporter. J Med Chem 35:1814–1817

    Google Scholar 

  • Cline EJ, Scheffel U, Boja JW, Carroll FI, Katz JL, Kuhar MJ (1992) Behavioral effects of novel cocaine analogs: a comparison with in vivo receptor binding potency. J Pharmacol Exp Ther 260:1174–1179

    CAS  PubMed  Google Scholar 

  • Cooper BR, Hester TJ, Maxwell RA (1980) Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence of selective blockade of dopamine uptake in vivo. J Pharmacol Exp Ther 215:127–134

    CAS  PubMed  Google Scholar 

  • Elsworth JD, Taylor JR, Berger P, Roth RH (1993) Cocainesensitive and -insensitive dopamine uptake in prefrontal cortex, nucleus accumbens and striatum. Neurochem Int 23:61–69

    CAS  PubMed  Google Scholar 

  • Giros B, El Mestikawi S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–153

    CAS  PubMed  Google Scholar 

  • Giros B, El Mestikawi S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390

    CAS  PubMed  Google Scholar 

  • Heikkila RE, Orlansky H, Cohen G (1975) Studies on the distinction between uptake inhibition and release of [3H]dopamine in rat brain slices. Biochem Pharmacol 24:847–852

    CAS  PubMed  Google Scholar 

  • Horn AS, Coyle JT, Snyder SH (1970) Catecholamine uptake by synaptosomes from rat brain: structure-activity relationships of drugs with different effects on dopamine and norepinephrine neurons. Mol Pharmacol 7:66–80

    Google Scholar 

  • Hunt P, Raynaud J-P, Leven M, Schacht U (1979) Dopamine uptake inhibitors and releasing agents differentiated by the use of synaptosomes and field-stimulated brain slices in vitro. Biochem Pharmacol 28:2011–2016

    CAS  PubMed  Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579

    CAS  PubMed  Google Scholar 

  • Laruelle M, Baldwin RM, Malison RT, Zea-Ponce Y, Zoghbi SS, Al-Tikriti MS, Sybirska EH, Zimmermann RC, Wisniewski G, Neumeyer JL, Milius RA, Wang S, Smith EO, Roth RH, Charney DS, Hoffer PB, Innis RB (1993) SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synapse 13:295–309

    CAS  PubMed  Google Scholar 

  • Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA (1989) Cocaine receptors labeled by [3H]2β-carbomethoxy-3β-(4-fluorophenyl)tropane. Mol Pharmacol 36:518–524

    CAS  PubMed  Google Scholar 

  • Michel MC, Rother A, Hiemke C, Ghraf R (1987) Inhibition of synaptosomal high-affinity uptake of dopamine and serotonin by estrogen agonists and antagonists. Biochem Pharmacol 36:3175–3180

    CAS  PubMed  Google Scholar 

  • Nakachi N, Kiuchi Y, Inagaki M, Inazu M, Yamazaki Y, Oguchi K (1995) Effects of various dopamine uptake inhibitors on striatal extracellular dopamine levels and behaviours in rats. Eur J Pharmacol 281:195–203

    CAS  PubMed  Google Scholar 

  • Reith MEA, de Costa B, Rice KC, Jacobson AE (1992) Evidence for mutually exclusive binding of cocaine, BTCP, GBR 12935, and dopamine to the dopamine transporter. Eur J Pharmacol 227:417–425

    CAS  PubMed  Google Scholar 

  • Richfield AK (1991) Quantitative autoradiography of the dopamine uptake complex in rats brain using [3H]GBR 12935-binding characteristics. Brain Res 540:1–13

    CAS  PubMed  Google Scholar 

  • Rothman RB, Grieg N, Kim A, de Costa BR, Rice KC, Carroll FI, Pert A (1992) Cocaine and GBR 12909 produce equivalent motoric responses at different occupancy of the dopamine transporter. Pharmacol Biochem Behav 43:1135–1142

    CAS  PubMed  Google Scholar 

  • Saijoh K, Fujiwara H, Tanaka C (1985) Influence of hypoxia on release and uptake of neurotransmitters in guinea pig striatal slices: dopamine and acetylcholine. Jpn J Pharmacol 39:529–539

    CAS  PubMed  Google Scholar 

  • Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578

    CAS  PubMed  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exp Ther 165:78–86

    Google Scholar 

  • Tuomisto L, Tuomisto J (1974) Dopamine uptake in striatal and hypothalamic synaptosomes: conformational selectivity of the inhibition. Eur J Pharmacol 25:351–361

    CAS  PubMed  Google Scholar 

  • Usdin RB, Mezey E, Chen C, Brownstein MJ, Hoffman BJ (1991) Cloning of the cocaine-sensitive bovine dopamine transporter. Proc Natl Acad Sci U S A 88:11168–11171

    CAS  PubMed Central  PubMed  Google Scholar 

Inhibition of [3H]-Serotonin Uptake

  • Åsberg M, Mårtensson B (1993) Serotonin selective antidepressant drugs: past, present, future. Clin Neuropharmacol 16(Suppl 3):S32–S44

    PubMed  Google Scholar 

  • Åsberg M, Thoren P, Traskman L, Bertillson L, Ringberger V (1975) “Serotonin depression” – a biochemical subgroup with in the affective disorders. Science 191:478–480

    Google Scholar 

  • Biegon A, Mathis C (1993) Evaluation of [3H]paroxetine as an in vivo ligand for serotonin uptake sites: a quantitative autoradiographic study in the rat brain. Synapse 13:1–9

    CAS  PubMed  Google Scholar 

  • Blakely RD, Berson HE, Fremeau RT, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    CAS  PubMed  Google Scholar 

  • Blier P, de Montigny C (1997) Current psychiatric uses of drugs acting on the serotonin system. In: Baumgarten HG, Göthert M (eds) Serotoninergic neurons and 5-HT receptors in the CNS, vol 129, Handbook of experimental pharmacology. Springer, Berlin/Heidelberg, pp 727–750

    Google Scholar 

  • Brøsen K, Narajo CA (2001) Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol 11:275–283

    PubMed  Google Scholar 

  • Chen F, Larsen MB, Sánchez C, Wiborg O (2005) The Senatiomer of R, S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors. Eur Neuropsychopharmacol 15:193–198

    CAS  PubMed  Google Scholar 

  • Cheng CHK, Costall B, Naylor RJ, Rudd JA (1993) The effect of 5-HT receptor ligands on the uptake of [3H]-5-HT into rat cortical synaptosomes. Eur J Pharmacol 239:211–214

    CAS  PubMed  Google Scholar 

  • D’Amato RJ, Largent BL, Snowman AM, Snyder SH (1987) Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine. J Pharmacol Exp Ther 242:364–371

    PubMed  Google Scholar 

  • de Montigy C (1980) Enhancement of 5-HT neurotransmission by antidepressant treatment. J Physiol Paris 77:455–461

    Google Scholar 

  • Fray MJ, Bish G, Brown AD, Fish PV, Stobie A, Wakenhut F, Whitlok GA (2006) N-(1,2-Diphenylethyl)piperazines: a new class of dual serotonin/noradrenaline reuptake inhibitor. Bioorg Med Chem 16:4345–4348

    CAS  Google Scholar 

  • Fuller RW (1990) Drugs affecting serotonin neurones. Prog Drug Res 35:85–108

    CAS  PubMed  Google Scholar 

  • Fuller RW (1993) Biogenic amine transporters. Neurotransmissions 9(2):1–4

    Google Scholar 

  • Fuller RW, Wong DT (1990) Serotonin uptake and serotonin uptake inhibition. Ann N Y Acad Sci 600:68–80

    CAS  PubMed  Google Scholar 

  • Gershon MD, Miller Jonakait G (1979) Uptake and release of 5-hydroxytryptamine by enteric 5-hydroxytryptaminergic neurons: effects of fluoxetine (Lilly 110140) and chlorimipramine. Br J Pharmacol 66:7–9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grimsley SR, Jahn MW (1992) Paroxetine, sertaline, and fluvoxamine: new selective serotonin reuptake inhibitors. Clin Pharm 11:930–957

    CAS  PubMed  Google Scholar 

  • Hallstrom COS, Rees WL, Pare CMB, Trenchard A, Turner P (1976) Platelet uptake of 5-hydroxytryptamine and dopamine in depression. Postgrad Med J 52(Suppl 3):40–44

    CAS  PubMed  Google Scholar 

  • Hatanaka K, Nomura T, Hidaka K, Takeuchi H, Yatsugi S, Fujll M, Yamaguchi T (1996) Biochemical profile of YM992, a novel selective serotonin reuptake inhibitor with 5-HT2A receptor antagonistic activity. Neuropharmacology 35:1621–1626

    CAS  PubMed  Google Scholar 

  • Hoffman BJ, Mezey E, Brownstein MJ (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580

    CAS  PubMed  Google Scholar 

  • Horn AS (1973) Structure-activity relations for the inhibition of 5-HT uptake into rat hypothalamic homogenates by serotonin and tryptamine analogues. J Neurochem 21:883–888

    CAS  PubMed  Google Scholar 

  • Horn AS, Trace RCAM (1974) Structure-activity relations for the inhibition of 5-hydroxytryptamine uptake by tricyclic anti-depressants into synaptosomes from serotoninergic neurons in rat brain homogenates. Br J Pharmacol 51:399–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hyttel J (1994) Pharmacological characterization of selective serotonin reuptake inhibitors. Int Clin Psychopharmacol 9(Suppl 1):19–26

    PubMed  Google Scholar 

  • Hyttel J, Larsen JJ (1985) Serotonin-selective antidepressants. Acta Pharmacol Toxicol 56(Suppl 1):146–153

    CAS  Google Scholar 

  • Keane PE, Soubrié P (1997) Animal models of integrated serotoninergic functions: their predictive value for the clinical applicability of drugs interfering with serotoninergic transmission. In: Baumgarten HG, Göthert M (eds) Serotoninergic neurons and 5-HT receptors in the CNS, vol 129, Handbook of experimental pharmacology. Springer, Berlin/Heidelberg, pp 709–725

    Google Scholar 

  • Koe BK, Weissman A, Welch WM, Browne RG (1983) Sertaline, 1S,4S-N-methyl-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-naphthylamine, a new uptake inhibitor with selectivity for serotonin. J Pharmacol Exp Ther 226:686–700

    CAS  PubMed  Google Scholar 

  • Langer SZ, Moret C, Raisman R, Dubocovich ML, Briley M (1980) High-affinity [3H]imipramine binding in rat hypothalamus: association with uptake of serotonin but not of epinephrine. Science 210:1133–1135

    CAS  PubMed  Google Scholar 

  • Luo H, Richardson JS (1993) A pharmacological comparison of citalopram, a bicyclic serotonin selective uptake inhibitor, with traditional tricyclic antidepressants. Int Clin Psychopharmacol 8:3–12

    CAS  PubMed  Google Scholar 

  • Marcusson JO, Norinder U, Högberg T, Ross SB (1992) Inhibition of [3H]paroxetine binding by various serotonin uptake inhibitors. Eur J Pharmacol 215:191–198

    CAS  PubMed  Google Scholar 

  • Mennini T, Mocaer E, Garattini S (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn Schmiedebergs Arch Pharmacol 336:478–482

    CAS  PubMed  Google Scholar 

  • Murdoch D, Keam SJ (2005) Escitalopram. A review of its use in the management of major depressive disorder. Drugs 65:2379–2404

    CAS  PubMed  Google Scholar 

  • Ögren SO, Ross SB, Holm AC, Renyi AL (1981) The pharmacology of zimelidine: a 5-HT selective reuptake inhibitor. Acta Psychiatr Scand 290:127–151

    Google Scholar 

  • Pacher P, Kohegyi E, Kecskemeti V, Furst S (2001) Current trends in the development of new antidepressants. Curr Med Chem 8:89–100

    CAS  PubMed  Google Scholar 

  • Ross SB (1980) Neuronal transport of 5-hydroxytryptamine. Pharmacology 21:123–131

    CAS  PubMed  Google Scholar 

  • Sánchez C, Bergqvist PBF, Brennum LT, Gupta S, Hogg S, Larsen A, Wiborg O (2003) Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in anima models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 167:353–362

    Google Scholar 

  • Scatton B, Claustre Y, Graham D, Dennis T, Serrano A, Arbilla S, Pimoule C, Schoemaker H, Bigg D, Langer SZ (1988) SL 81.0385: a novel selective and potent serotonin uptake inhibitor. Drug Dev Res 12:29–40

    CAS  Google Scholar 

  • Shank RP, Vaught JL, Pelley KA, Setler PE, McComsey DF, Maryanoff BE (1988) McN-5652: a highly potent inhibitor of serotonin uptake. J Pharmacol Exp Ther 247:1032–1038

    Google Scholar 

  • Shaskan EG, Snyder SH (1970) Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther 175:404–418

    CAS  PubMed  Google Scholar 

  • Tordera RM, Monge A, del Rio J, Lasheras B (2002) Antidepressant-like activity of VN2222. A serotonin reuptake inhibitor with high affinity at 5-HT1A receptors. Eur J Pharmacol 442:63–71

    CAS  PubMed  Google Scholar 

  • Weinshank RL, Zgombick JM, Macchi MJ, Branchek TA, Hartig PR (1992) Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1Dα and 5-HT1Dβ. Proc Natl Acad Sci U S A 89:3630–3634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Mayle DA, Krushiski JH, Robertson DW (1993) Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacology 8:337–344

    CAS  PubMed  Google Scholar 

Binding to Monoamine Transporters

  • Fleckenstein AE, Haughey HM, Metzger RR, Kokoshka JM, Riddle EL, Hanson JE, Gibb JW, Hanson GR (1999) Differential effects of psychostimulants and related agents on dopaminergic and serotonergic transporter function. Eur J Pharmacol 382:45–49

    CAS  PubMed  Google Scholar 

  • Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics and ion dependence. J Biol Chem 269:7124–7130

    CAS  PubMed  Google Scholar 

  • Inazu M, Kubota N, Takeda H, Zhang J, Kiuchi Y, Oguchi K, Matsumiya T (1999) Pharmacological characterization of dopamine transport in cultured rat astrocytes. Life Sci 664:2239–2245

    Google Scholar 

  • Jayanthi LD, Prasad PD, Ramamoorthy S, Mahesh VB, Leibach FH, Ganapahy V (1993) Sodium- and chloride-dependent, cocaine-sensitive, high-affinity binding of nisoxetine to the human placenta norepinephrine transporter. Biochemistry 32:12178–12185

    CAS  PubMed  Google Scholar 

  • Leonard BE (2000) Evidence for a biochemical lesion in depression. J Clin Psychiatry 61(Suppl 6):12–17

    CAS  PubMed  Google Scholar 

  • Madras BK, Pristupa ZB, Nizmik HB, Liang AY, Blundell P, Gonzalez MD, Meltzer PC (1996) Nitrogen-based drugs are not essential for blockade of monoamine transporters. Synapse 24:340–348

    CAS  PubMed  Google Scholar 

  • Meltzer PC, Liang AY, Blundell P, Gonzalez MD, Chen Z, George C, Madras BK (1997) 2-carbomethoxy-3-aryl-8- oxabicyclo[3.2.1]octanes: potent non-nitrogen inhibitors of monoamine transporters. J Med Chem 40:2661–2673

    CAS  PubMed  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239

    CAS  PubMed  Google Scholar 

  • Murphy DL, Wichems C, Li Q, Heils A (1999) Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol Sci 20:246–252

    CAS  PubMed  Google Scholar 

  • Nelson N (1998) The family of Na+/Cl- neurotransmitter transporters. J Neurochem 71:1785–1803

    CAS  PubMed  Google Scholar 

  • O’Riordan C, Phillips OM, Williams DC (1990) Two affinity states for [3H]imipramine binding to the human platelet 5- hydroxytryptamine carrier: an explanation for the a Uosteric interaction between hydroxytryptamine and imipramine. J Neurochem 54:1275–1280

    PubMed  Google Scholar 

  • Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283:1305–1322

    CAS  PubMed  Google Scholar 

  • Pfenning MA, Richelson E (1990) Methods for studying receptors with cultured cells of nervous tissue origin. In: Yamamura HI, Enna SJ, Kuhar MJ (eds) Methods in neurotransmitter receptor analysis. Raven, New York, pp 147–175

    Google Scholar 

  • Pristupa ZB, Wilson JM, Hoffman BJ, Kish SJ, Niznik HB (1994) Pharmacological heterogeneity of the cloned an native human dopamine transporter: dissociation of [3H]WIN 35,428 and [3H]GBR 12,935 binding. Mol Pharmacol 45:125–135

    CAS  PubMed  Google Scholar 

  • Sato T, Kitayama S, Mitsuhata C, Ikeda T, Morita K, Dohi T (2000) Selective inhibition of monoamine neurotransmitter transporters by synthetic local anesthetics. Naunyn Schmiedebergs Arch Pharmacol 361:214–220

    CAS  PubMed  Google Scholar 

  • Siebert GA, Pond SM, Bryan-Lluka LJ (2000) Further characterisation of the interaction of haloperidol metabolites with neurotransmitter transporters in rat neuronal cultures and in transfected COS-7 cells. Naunyn Schmiedebergs Arch Pharmacol 361:255–264

    CAS  PubMed  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    CAS  PubMed  Google Scholar 

  • Tatsumi M, Jansen K, Blakely RD, Richelson E (1999) Pharmacological profile of neuroleptics at human monoamine transporters. Eur J Pharmacol 368:277–283

    CAS  PubMed  Google Scholar 

Antagonism of p-Chloramphetamine Toxicity by Inhibitors of Serotonin Uptake

  • Fuller RW, Snoddy HD, Perry KW, Bymaster FP, Wong DT (1978) Importance of duration of drug action in the antagonism of p-chloroamphetamine depletion of brain serotonin – comparison of fluoxetine and chlorimipramine. Biochem Pharmacol 27:193–198

    CAS  PubMed  Google Scholar 

  • Harvey JA, McMaster SE, Yunger LM (1975) p-Chloramphetamine: selective neurotoxic action in brain. Science 187:841–843

    CAS  PubMed  Google Scholar 

  • Meek JL, Fuxe K, Carlsson A (1971) Blockade of p-chloromethamphetamine induced 5-hydroxytryptamine depletion by chlorimipramine, chlorpheniramine and meperidine. Biochem Pharmacol 20:707–709

    CAS  PubMed  Google Scholar 

  • Sekerke HJ, Smith HE, Bushing JA, Sanders-Busch E (1975) Correlation between brain levels and biochemical effects of the optical isomers of p-chloroamphetamine. J Pharmacol Exp Ther 193:835–844

    CAS  PubMed  Google Scholar 

  • Squires R (1972) Antagonism of p-chloramphetamine (PCA) induced depletion of 5-HT from rat brain by some thymoleptics and other psychotropic drugs. Acta Pharmacol Toxicol 31:35

    Google Scholar 

Receptor Subsensitivity After Treatment with Antidepressants: Simultaneous Determination of the Effect of Chronic Anti-depressant Treatment on β-adrenergic and 5-HT2 Receptor Densities in Rat Cerebral Cortex

  • Banerjee SP, Kung SL, Riggi SJ, Chanda SK (1977) Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 268:455–456

    Google Scholar 

  • Bergstrom DA, Kellar KJ (1979) Adrenergic and serotoninergic receptor binding in rat brain after chronic desmethylimipramine treatment. J Pharmacol Exp Ther 209:256–261

    CAS  PubMed  Google Scholar 

  • Blackshear MA, Sanders-Bush E (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J Pharmacol Exp Ther 221:303–308

    CAS  PubMed  Google Scholar 

  • Bucket WR, Thomas PC, Luscombe GP (1988) The pharmacology of sibutramine hydrochloride (BTS 54524), a new anti-depressant which induces rapid noradrenergic downregulation. Prog Neuropsychopharmacol Biol Psychiatry 12:575–584

    Google Scholar 

  • Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12:568–580

    CAS  PubMed  Google Scholar 

  • Charney DS, Menkes DB, Heninger GR (1981) Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch Gen Psychiatry 38:1160–1180

    CAS  PubMed  Google Scholar 

  • Clements-Jewery S (1978) The development of cortical β-adrenoreceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserin. Neuropharmacology 17:779–781

    Google Scholar 

  • Enna SJ, Mann E, Kedall D, Stancel GM (1981) Effect of chronic antidepressant administration on brain neurotransmitter receptor binding. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: neurochemical, behavioral, and clinical perspectives. Raven, New York, pp 91–105

    Google Scholar 

  • Lee T, Tang SW (1984) Loxapine and clozapine decrease serotonin (S2) but do not elevate dopamine (D2) receptor numbers in the rat brain. Psychiatry Res 12:277–285

    CAS  PubMed  Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468) a selective 3H-ligand for serotonin2 receptor binding sites. Mol Pharmacol 21:301–314

    CAS  PubMed  Google Scholar 

  • Maggi A, U’Prichard DC, Enna SJ (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur J Pharmacol 61:91–98

    Google Scholar 

  • Matsubara R, Matsubara S, Koyama T, Muraki A, Yamashita I (1993) Effect of chronic treatment with milnacipran (TN-912), a novel antidepressant, on β-adrenergic-receptoradenylate cyclase system and serotonin2 receptor in the rat cerebral cortex. Jpn J Neuropsychopharmacol 15:119–126

    CAS  Google Scholar 

  • Meyerson LR, Ong HH, Martin LL, Ellis DB (1980) Effect of antidepressant agents on β-adrenergic receptor and neurotransmitter regulatory systems. Pharmacol Biochem Behav 12:943–948

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Regulation of serotonin2 (5-HT2) receptors labeled with [3H]spiroperidol by chronic treatment with the antidepressant amitriptyline. J Pharmacol Exp Ther 215:582–587

    CAS  PubMed  Google Scholar 

  • Reynolds CP, Garrett NJ, Rupniak N, Jenner P, Marsden CD (1983) Chronic clozapine treatment of rats down-regulates 5-HT2 receptors. Eur J Pharmacol 89:325–326

    CAS  PubMed  Google Scholar 

  • Savage DD, Frazer A, Mendels J (1979) Differential effects of monoamine oxidase inhibitors and serotonin reuptake inhibitors on 3H-serotonin receptor binding in rat brain. Eur J Pharmacol 58:87–88

    CAS  PubMed  Google Scholar 

  • Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    CAS  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL, Fadayel GM, Humphreys TM, Nieduzak TR, Sorensen SM (1992) The 5-HT2 receptor antagonist, MDL 28,133A, disrupts the serotonergic-dopaminergic interaction mediating the neurochemical effects of 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 220:151–159

    CAS  PubMed  Google Scholar 

  • Scott JA, Crews FT (1983) Rapid decrease in rat brain beta-adrenergic receptor binding during combined antidepressant-alpha-2 antagonist treatment. J Pharmacol Exp Ther 224:640–646

    Google Scholar 

  • Segawa T, Mizuta T, Nomura Y (1979) Modifications of central 5-hydroxytryptamine binding sites in synaptic membranes from rat brain after long-term administration of tricyclic antidepressants. Eur J Pharmacol 58:75–83

    CAS  PubMed  Google Scholar 

  • Sellinger-Barnette MM, Mendels J, Frazer A (1980) The effect of psychoactive drugs on beta-adrenergic receptor binding in rat brain. Neuropharmacology 19:447–454

    CAS  PubMed  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn Schmiedebergs Arch Pharmacol 293:109–114

    Google Scholar 

  • Wilmot CA, Szczepanik AM (1989) Effects of acute and chronic treatment with clozapine and haloperidol on serotonin (5HT2) and dopamine (D2) receptors in the rat brain. Brain Res 487:288–298

    CAS  PubMed  Google Scholar 

Measurement of β-Adrenoreceptor Stimulated Adenylate Cyclase

  • Banerjee SP, Kung SL, Riggi SJ, Chanda SK (1977) Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 268:455–456

    Google Scholar 

  • Clements-Jewery S (1978) The development of cortical β-adrenoreceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserin. Neuropharmacology 17:779–781

    Google Scholar 

  • Heal D, Cheetham SH, Martin K, Browning J, Luscombe G, Buckett R (1992) Comparative pharmacology of dothiepin, its metabolites, and other antidepressant drugs. Drug Dev Res 27:121–135

    CAS  Google Scholar 

  • Lefkowitz RJ, Stadel JM, Caron MG (1983) Adenylate cyclasecoupled beta-adrenergic receptors. Structure and mechanisms of activation and desensitization. Ann Rev Biochem 52:159–186

    CAS  PubMed  Google Scholar 

  • Maggi A, U’Prichard DC, Enna SJ (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur J Pharmacol 61:91–98

    Google Scholar 

  • Meyerson LR, Ong HH, Martin LL, Ellis DB (1980) Effect of antidepressant agents on β-adrenergic receptor and neurotransmitter regulatory systems. Pharmacol Biochem Behav 12:943–948

    Google Scholar 

  • Salomon Y (1979) Adenylate cyclase assay. In: Brooker G, Greengard P, Robinson GA (eds) Advances in cyclic nucleotide research, vol 10. Raven, New York, pp 35–55

    Google Scholar 

  • Sulser F (1978) Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: molecular approaches to an understanding of affective disorders. Pharmacopsychiatry 11:43–52

    CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn Schmiedebergs Arch Pharmacol 293:109–114

    Google Scholar 

  • Wolfe BB, Harden TK, Sporn JR, Molinoff PB (1978) Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 207:446–457

    CAS  PubMed  Google Scholar 

[3H]Yohimbine Binding to α 2-Adrenoceptors in Rat Cerebral Cortex

  • Johnson RW, Reisine T, Spotnitz S, Weich N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on a α 2- and β-adrenoreceptor sensitivity. Eur J Pharmacol 67:123–127

    Google Scholar 

  • Scott JA, Crews FT (1983) Rapid decrease in rat brain beta-adrenergic receptor binding during combined antidepressant-alpha-2 antagonist treatment. J Pharmacol Exp Ther 224:640–646

    Google Scholar 

  • Starke K, Borowski E, Endo T (1975) Preferential blockade of presynaptic α-adrenoceptors by yohimbine. Eur J Pharmacol 34:385–388

    CAS  PubMed  Google Scholar 

Test for Anticholinergic Properties by [3H]-QNB Binding to Muscarinic Cholinergic Receptors in Rat Brain

  • Hollister LE (1964) Complications from psychotherapeutic drugs. Clin Pharmacol Ther 5:322–333

    CAS  PubMed  Google Scholar 

  • Marks MJ, Romm E, Collins AC (1987) Genetic influences on tolerance development with chronic oxotremorine infusion. Pharmacol Biochem Behav 27:723–732

    CAS  PubMed  Google Scholar 

  • Meyerhöffer A (1972) Absolute configuration of 3-quinuclidinyl benzilate and the behavioral effect in the dog of the optical isomers. J Med Chem 15:994–995

    PubMed  Google Scholar 

  • Smith CP, Huger FP (1983) Effects of zinc on [3H]-QNB displacement by cholinergic agonists and antagonists. Biochem Pharmacol 32:377–380

    CAS  PubMed  Google Scholar 

  • Snyder SH, Yamamura HI (1977) Antidepressants and the muscarinic acetylcholine receptor. Arch Gen Psychiatry 34:236–239

    CAS  PubMed  Google Scholar 

  • Snyder SH, Greenberg D, Yamamura HI (1974) Antischizophrenic drugs and brain cholinergic receptors. Arch Gen Psychiatry 31:58–61

    CAS  PubMed  Google Scholar 

  • Wamsley JK, Gehlert DL, Roeske WR, Yamamura HI (1984) Muscarinic antagonist binding site as evidenced by autoradiography after direct labeling with [3H]-QNB and [3H]-pirenzepine. Life Sci 34:1395–1402

    CAS  PubMed  Google Scholar 

  • Yamamura HI, Snyder SH (1974) Muscarinic cholinergic binding in rat brain (quinuclidinyl benzilate/receptors). Proc Natl Acad Sci U S A 71:1725–1729

    CAS  PubMed Central  PubMed  Google Scholar 

Monoamine Oxidase Inhibition: Inhibition of Type A and Type B Monoamine Oxidase Activities in Rat Brain Synaptosomes

  • Callingham BA (1989) Biochemical aspects of the pharmacology of moclobemide. The implications of animal studies. Br J Psychiatry 155(Suppl 6):53–60

    Google Scholar 

  • Cesura AM, Pletscher A (1992) The new generation of monoamine oxydase inhibitors. Prog Drug Res 38:171–297

    CAS  PubMed  Google Scholar 

  • Colzi A, d’Agostini F, Cesura AM, Da Prada M (1992) Brain microdialysis in rats: a technique to reveal competition between endogenous dopamine and moclobemide, a RIMA antidepressant. Psychopharmacology (Berl) 106:S17–S20

    CAS  Google Scholar 

  • Frankhauser C, Charieras T, Caille D, Rovei V (1994) Interaction of MAO inhibitors and dietary tyramine: a new experimental model in the conscious rat. J Pharmacol Toxicol Methods 32:219–224

    Google Scholar 

  • Haefeli W, Burkard WP, Cesura AM, Kettler R, Lorez HP, Martin JR, Richards JG, Scherschlicht R, Da Prada M (1992) Biochemistry and pharmacology of moclobemide, a prototype RIMA. Psychopharmacology 106:S6–S14

    Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297

    CAS  PubMed  Google Scholar 

  • Kettler R, Da Prada M, Burkard WP (1990) Comparison of monoamine oxydase-A inhibition by moclobemide in vitro and ex vivo in rats. Acta Psychiat Scand 82:101–102

    Google Scholar 

  • Knoll J (1980) Monoamine oxidase inhibitors: chemistry and pharmacology. In: Sandler M (ed) Enzyme inhibitors as drugs. University Park Press, Baltimore, pp 151–173

    Google Scholar 

  • Ozaki M, Weissbach H, Ozaki A, Witkop B, Udenfriend S (1960) Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro. J Med Pharmacol Chem 2:591–607

    Google Scholar 

  • Rowler CJ, Ross SB (1984) Selective inhibitors of monoamine oxydase A and B: biochemical, pharmacological, and clinical parameters. Med Res Rev 4:323–358

    Google Scholar 

  • Waldmeier PC (1993) Newer aspects of the reversible inhibitor of MAO-A and serotonin reuptake, Brofaromine. Prog Neuro Psychopharmacol Biol Psychiat 17:183–198

    CAS  Google Scholar 

  • Waldmeier PC, Stöcklin K (1990) Binding of [3H]brofaromine to monoamine oxydase A in vivo: displacement by clorgyline and moclobemide. Eur J Pharmacol 180:297–304

    CAS  PubMed  Google Scholar 

  • White HL, Scates PW (1992) Mechanism of monoamine oxydase inhibition by BW 137U87. Drug Dev Res 25:185–193

    Google Scholar 

  • Wurtman RJ, Axelrod J (1963) A sensitive and specific assay for the estimation of monoamine oxidase. Biochem Pharmacol 12:1439–1441

    CAS  PubMed  Google Scholar 

Catalepsy Antagonism

  • Czermak J (1873) Beobachtungen und Versuche über “hypnotische” Zustände bei Thieren. Pflüger’s Arch ges Physiol 7:107–121

    Google Scholar 

  • Danilewski B (1881) Über die Hemmungen der Reflex- und Willkürbewegungen. Beiträge zur Lehre vom thierischen Hypnotismus. Pflüger’s Arch ges Physiol 24:489–525

    Google Scholar 

  • De la Cruz F, Junquera J (1993) The immobility response elicited by clamping, bandaging and grasping in the Mongolian gerbil (Meriones unguiculatus). Behav Brain Res 54:165–169

    PubMed  Google Scholar 

  • Gabriel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57:261–267

    Google Scholar 

  • Heubel E (1877) Über die Abhängigkeit des wachen Gehirnzustandes von äusseren Erregungen. Ein Beitrag zur Physiologie des Schlafes und zur Würdigung des Kircher’schen Experimentum mirabile. Pflüger’s Arch ges Physiol 14:158–210

    Google Scholar 

  • Kircher A (1646) Experimentum mirabile. De imaginatione gallinae. In: “Ars magna lucis et umbrae” Romae, Lib. LL, pars I, 154

    Google Scholar 

  • Schwenter D (1636) Deliciae physico-mathematicae oder Mathematische und Philosophische Erquickstunden. Nürnberg

    Google Scholar 

  • Simiand J, Guitard J, Griebel G, Soubrié P (2003) Tonic immobility in gerbils. A new model for detecting antidepressant-like effects. Behav Pharmacol 14(Suppl 1):5–40

    Google Scholar 

  • Verworn M (1898) Beitraege zur Physiologie des Centralnerven-systems. Erster Theil. Die sogenannte Hypnose der Thiere. G Fischer Jena, pp 92

    Google Scholar 

  • Vogel G, Ther L (1963) Zur Wirkung der optischen Isomeren von Aethyltryptaminacetat auf die Lagekatalepsie des Huhnes und auf die Motilität der Maus. Arzneim Forsch/Drug Res 13:779–783

    CAS  Google Scholar 

Despair Swim Test

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: a new potential antidepressant. Drug Dev Res 25:267–282

    Google Scholar 

  • Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 94(147):160

    Google Scholar 

  • Buckett WR, Fletcher J, Hopcroft RH, Thomas PC (1982) Automated apparatus for behavioural testing of typical and atypical antidepressants in mice. Br J Pharmacol 75:170

    Google Scholar 

  • Buckley MJ, Surowy C, Meyer M, Curzon P (2004) Mechanism of action of A-85380 in an animal model of depression. Prog Neuropsychopharmacol Biol Psychiatry 28:723–730

    CAS  PubMed  Google Scholar 

  • Cervo L, Samanin R (1987) Potential antidepressant properties of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective serotonin1A agonist. Eur J Pharmacol 144:223–229

    CAS  PubMed  Google Scholar 

  • Giardina WJ, Ebert DM (1989) Positive effects of captopril in the behavioral despair swim test. Biol Psychiatry 25:697–702

    CAS  PubMed  Google Scholar 

  • Galea LAM, Wide JK, Barr AM (2001) Estradiol alleviates depressive-like symptoms in a novel animal model of postpartum depression. Behav Brain Res 122:1–9

    CAS  PubMed  Google Scholar 

  • Gregus A, Wintink AJ, Davis AC, Kalynchuk LE (2005) Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav Brain Res 156:105–114

    CAS  PubMed  Google Scholar 

  • Hata T, Itoh E, Nishikawa H (1995) Behavioral characteristics of SART-stressed mice in the forced swim test and drug action. Pharmacol Biochem Behav 51:849–853

    CAS  PubMed  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α 2-adrenoreceptor antagonist, in open-field, plus-maze, two compartment exploratory, and forced swimming tests in the rat. Eur J Pharmacol 205:177–182

    CAS  PubMed  Google Scholar 

  • Krahe TE, Filgueiras CC, Schmidt SL (2002) Effects of rotational side preferences in immobile behavior of normal mice in the forced swimming test. Prog Neuropsychopharm Biol Psychiatry 26:169–176

    Google Scholar 

  • López-Rubalcava C, Lucki I (2000) Strain differences in the behavioral effects of antidepressant drugs in the rat forced swim test. Neuropsychopharmacology 22:191–199

    PubMed  Google Scholar 

  • Lucki I (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 8:523–532

    CAS  PubMed  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of psychopharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    CAS  Google Scholar 

  • Naitoh H, Yamaoka K, Nomura S (1992) Behavioral assessment of antidepressants. 1. The forced swimming test: a review of its theory and practical application. Jpn J Psychopharmacol 12:105–111

    CAS  Google Scholar 

  • Nishimura H, Tsuda A, Ida Y, Tanaka M (1988) The modified forced-swim test in rats: influence of rope- or straw-suspension on climbing behavior. Physiol Behav 43:665–668

    CAS  PubMed  Google Scholar 

  • Nishimura H, Ida Y, Tsuda A, Tanaka M (1989) Opposite effects of diazepam and β-CCE on immobility and straw-climbing behavior of rats in a modified forced-swim test. Pharmacol Biochem Behav 33:227–231

    CAS  PubMed  Google Scholar 

  • Nishimura H, Tanaka M, Tsuda A, Gondoh Y (1993) Atypical anxiolytic profile of buspirone and a related drug, SM-3997, in a modified forced swim test employing straw suspension. Pharmacol Biochem Behav 46:647–651

    CAS  PubMed  Google Scholar 

  • Nomura S, Shimizu J, Kinjo M, Kametani H, Nakazawa T (1982) A new behavioral test for antidepressant drugs. Eur J Pharmacol 83:171–175

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressive treatments. Eur J Pharmacol 47:379–391

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977a) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977b) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Martin P, Lenègre A, Fromage S, Drieu K (1990) Effects of an extract of Ginkgo biloba (EGB 761) on “learned helplessness” and other models of stress in rodents. Pharmacol Biochem Behav 36:963–971

    Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

  • Sachdev PS, McBride R, Loo C, Mitchell PM, Malhi GS, Crooker V (2002) Effect of different frequencies of transcranial magnetic stimulation (TMS) on the forced swim model of depression in rats. Biol Psychiatry 51:474–479

    PubMed  Google Scholar 

  • Stoffel EC, Craft RM (2004) Ovarian hormone withdrawalinduced “depression” in female rats. Physiol Behav 83:505–513

    CAS  PubMed  Google Scholar 

  • Sun MK, Alkon DL (2003) Open space swimming test to index antidepressant activity. J Neurosci Methods 126:35–40

    CAS  PubMed  Google Scholar 

  • Sun MK, Alkon DL (2004) Induced depressive behavior impairs learning and memory in rats. Neuroscience 129:129–139

    CAS  PubMed  Google Scholar 

  • van der Heyden JAM, Olivier B, Zethof TJJ (1991) The behavioral despair model as a prediction of antidepressant activity: effects of serotonergic drugs. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 211–215

    Google Scholar 

  • Wallach MB, Hedley LR (1979) The effects of antihistamines in a modified behavioral despair test. Commun Psychopharmacol 3:35–39

    CAS  PubMed  Google Scholar 

  • Weiss JM, Cierpial MA, West CHK (1998) Selective breeding of rats for high and low motor activity in a swim test: toward as new animal model of depression. Pharmacol Biochem Behav 61:49–66

    CAS  PubMed  Google Scholar 

Tail Suspension Test in Mice

  • Chermat R, Thierry B, Mico JA, Stéru L, Simon P (1986) Adaptation of the tail suspension test to the rat. J Pharmacol 17:348–350

    CAS  PubMed  Google Scholar 

  • Liu X, Gershenfeld HK (2001) Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biol Psychiatry 49:575–581

    CAS  PubMed  Google Scholar 

  • Mayorga AJ, Lucki I (2001) Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology (Berl) 155:110–112

    CAS  Google Scholar 

  • Porsoit RD, Charmat R, Lenègre A, Avril I, Janvier S, Stéru L (1987) Use of the automated tail suspension test for the primary screening of psychotropic agents. Arch Int Pharmacodyn Ther 288:11–30

    Google Scholar 

  • Porsoit RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

  • Ripoli N, David DJP, Dailly E, Hascoët M, Bourin M (2003) Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143:193–200

    Google Scholar 

  • Shearman LP, Rosko KM, Fleischer R, Wang J, Xu S, Tong XS, Rocha BA (2003) Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol 14:573–582

    CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) Tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    CAS  Google Scholar 

  • Stéru L, Chermat R, Thierry B, Mico JA, Lenègre A, Stéru M, Simon P (1987) The automated tail suspension test: a computerized device which differentiates psychotropic drugs. Prog Neuro Psychopharmacol Biol Psychiatry 11:659–671

    Google Scholar 

  • Trullas R, Jackson B, Skolnick P (1989) Genetic differences in a tail suspension test for evaluating antidepressant activity. Psychopharmacology (Berl) 99:287–288

    CAS  Google Scholar 

  • van der Heyden J, Molewijk E, Olivier B (1987) Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology (Berl) 92:127–130

    Google Scholar 

  • Vaugeois JM, Odèvre C, Loisel L, Costentin J (1996) A genetic mouse model of helplessness sensitive to imipramine. Eur J Pharmacol 316:R1–R2

    CAS  PubMed  Google Scholar 

Learned Helplessness in Rats

  • Christensen AV, Geoffroy M (1991) The effect of different serotonergic drugs in the learned helplessness model of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhâuser Verlag, Basel, pp 205–209

    Google Scholar 

  • Curzon G, Kennett GA, Sarna GS, Whitton PS (1992) The effects of tianeptine and other antidepressants on a rat model of depression. Br J Psychiatry 160(Suppl 15):51–55

    Google Scholar 

  • Gambarana C, Scheggi S, Tagliamonta A, Tolu P, DeMontis MG (2001) Animals models for the study of antidepressant activity. Brain Res Brain Res Protoc 7:11–20

    CAS  PubMed  Google Scholar 

  • Ghiglieri O, Gambarana C, Scheggi S, Tagliamonte A, Willner P, De Montis MG (1997) Palatable food induces an appetitive behaviour in satiated rats which can be inhibited by chronic stress. Behav Pharmacol 8:619–628

    CAS  PubMed  Google Scholar 

  • Giral P, Martin P, Soubrie P, Simon P (1988) Reversal of helpless behavior in rats by putative 5-HT1A agonists. Biol Psychiatry 23:237–242

    CAS  PubMed  Google Scholar 

  • King JA, Campell D, Edwards E (1993) Differential development of the stress response in congenital learned helplessness. Int J Dev Neurosci 11:435–442

    CAS  PubMed  Google Scholar 

  • Maier SF, Seligman MEP (1976) Learned helplessness: theory and evidence. J Exp Psychol 105:3–46

    Google Scholar 

  • Martin P, Soubrié P, Simon P (1986) Noradrenergic and opioid mediation of tricyclic-induced reversal of escape deficits caused by inescapable shock pretreatment in rats. Psychopharmacology 90:90–94

    CAS  PubMed  Google Scholar 

  • Overmier JB, Seligman MEP (1967) Effects of inescapable shock upon subsequent escape and avoidance learning. J Comp Physiol Psychol 63:28–33

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Martin P, Lenègre A, Fromage S, Drieu K (1990) Effects of an extract of Ginkgo biloba (EGB 761) on “learned helplessness” and other models of stress in rodents. Pharmacol Biochem Behav 36:963–971

    Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

  • Reid I, Forbes N, Stewart C, Matthews K (1997) Chronic stress and depressive disorder: a useful new model. Psychopharmacology (Berl) 134:365–367

    CAS  Google Scholar 

  • Sherman AD, Allers GL, Petty F, Henn FA (1979) A neuropharmacologically-relevant animal model of depression. Neuropharmacology 18:891–893

    CAS  PubMed  Google Scholar 

  • Shumake J, Poremba A, Edwards E, Gonzalez-Lima F (2000) Congenital helpless rats as a genetic model for cortex metabolism in depression. Neuroreport 11:3793–3798

    CAS  PubMed  Google Scholar 

  • Simiand J, Keane PE, Guitard J, Langlois X, Gonalons N, Martin P, Bianchetti A, LeFur G, Soubrie P (1992) Antidepressive profile in rodents of SR 5811A, a new selective agonist for atypical β-adrenoreceptors. Eur J Pharmacol 219:193–201

    CAS  PubMed  Google Scholar 

  • Tejedor del Real P, Gilbert-Rahola J, Leonsegui I, Micó JA (1991) Relationship between emotivity level and susceptibility to the learned helplessness model of depression in the rat. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 217–224

    Google Scholar 

  • Vaccheri A, Dall’Olio R, Gaggi R, Gandolfi O, Montanaro N (1984) Antidepressant versus neuroleptic activities of sulpiride isomers on four animal models of depression. Psychopharmacology (Berl) 83:28–33

    CAS  Google Scholar 

  • Vollmayr B, Henn FA (2001) Learned helplessness in the rat: improvements in validity and reliability. Brain Res Brain Res Protoc 8:1–7

    CAS  PubMed  Google Scholar 

  • Vollmayr B, Faust H, Lewicka S, Henn FA (2001) Brainderived-neurotrophic-factor (BDNF) stress responses in rats bred for learned helplessness. Mol Psychiatry 6:471–474

    CAS  PubMed  Google Scholar 

  • Vollmayr B, Bachteler D, Vangelien V, Gass P, Spanagel R, Henn F (2004) Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 150:217–221

    CAS  PubMed  Google Scholar 

  • Weiss JMO, Kilts CD (1998) Animal models of depression and schizophrenia. In: Nemeroff CB, Schatzberg AF (eds) Textbook of psychopharmacology, 2nd edn. American Psychiatric Press, Bethesda, pp 88–123

    Google Scholar 

Muricide Behavior in Rats

  • Barnett A, Taber RI, Roth FE (1969) Activity of antihistamines in laboratory antidepressant tests. Int J Neuropharmacol 8:73–79

    CAS  PubMed  Google Scholar 

  • Horovitz ZP, Ragozzino PW, Leaf RC (1965) Selective block of rat mouse-killing by anti-depressants. Life Sci 4:1909–1912

    CAS  PubMed  Google Scholar 

  • Horovitz ZP, Piala JJ, High JP, Burke JC, Leaf RC (1966) Effects of drugs on the mouse-killing (muricide) test and its relationship to amygdaloid functions. Int J Neuropharmacol 5:405–411

    CAS  PubMed  Google Scholar 

  • Karli P (1956) The Norway rats’s killing response to the white mouse: an experimental analysis. Behaviour 10:81–103

    Google Scholar 

  • Karli P, Vergnes M, Didiergeorges F (1969) Rat-mouse interspecific aggressive behaviour and its manipulation by brain ablation and by brain stimulation. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 47–55

    Google Scholar 

  • Kreiskott H (1969) Some comments on the killing response behaviour of the rat. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 56–58

    Google Scholar 

  • Kulkarni AS (1968) Muricidal block produced by 5-hydroxytryptophan and various drugs. Life Sci 7:125–128

    CAS  PubMed  Google Scholar 

  • McCarthy D (1966) Mouse-killing induced in rats treated with pilocarpine. Fed Proc 25:385, Abstract

    Google Scholar 

  • McMillen BA, Chamberlain JK, DaVanzo JP (1988) Effects of housing and muricidal behavior on serotonergic receptors and interactions with novel anxiolytic drugs. J Neural Transm 71:123–132

    CAS  PubMed  Google Scholar 

  • Molina V, Ciesielski L, Gobaille S, Isel F, Mandel P (1985) Inhibition of mouse killing behavior by serotonin-mimetic drugs: effects of partial alterations of serotonin neurotransmission. Pharmacol Biochem Behav 27:123–131

    Google Scholar 

  • Sofia RD (1969a) Effects of centrally active drugs on experimentally-induced aggression in rodents. Life Sci 8:705–716

    CAS  PubMed  Google Scholar 

  • Sofia RD (1969b) Structural relationship and potency of agents which selectively block mouse-killing (muricide) behavior in rats. Life Sci 8:1201–1210

    CAS  PubMed  Google Scholar 

  • Vergnes M, Kempf E (1982) Effect of hypothalamic injections of 5,7-dihydroxytryptamine on elicitation of mouse-killing in rats. Behav Brain Res 5:387–397

    CAS  PubMed  Google Scholar 

  • Vogel JR (1975) Antidepressant and mouse-killing (muricide) behavior. In: Fielding S, Lal H (eds) Industrial pharmacology, vol II, Antidepressants. Futura, Mount Kisco, pp 99–112

    Google Scholar 

  • Vogel JR, Leaf RC (1972) Initiation of mouse-killing in nonkiller rats by repeated pilocarpine treatment. Physiol Behav 8:421–424

    CAS  PubMed  Google Scholar 

  • Wnek DJ, Leaf RC (1973) Effects of cholinergic drugs on preykilling in rodents. Physiol Behav 10:1107–1113

    CAS  PubMed  Google Scholar 

Behavioral Changes After Neonatal Clomipramine Treatment

  • Bonilla-Jaime H, Retana-Marquez S, Velasquez-Moctezuma J (1998) Pharmacological features of masculine sexual behavior in an animal model of depression. Pharmacol Biochem Behav 60:39–45

    CAS  PubMed  Google Scholar 

  • Drago F, Continella G, Alloro MC, Scapagnini U (1985) Behavioral effects of perinatal administration of antidepressant drugs in the rat. Neurobehav Toxicol Teratol 7:493–497

    CAS  PubMed  Google Scholar 

  • Dwyer SM, Rosenwasser AM (1998) Neonatal clomipramine treatment, alcohol intake and circadian rhythms in rats. Psychopharmacology (Berl) 138:176–183

    CAS  Google Scholar 

  • Feenstra MGP, van Galen H, Te Riele PJM, Botterblom MHA, Mirmiran M (1996) Decreased hypothalamic serotonin levels in adult rats treated neonatally with clomipramine. Pharmacol Biochem Behav 55:647–652

    CAS  PubMed  Google Scholar 

  • Frank MG, Heller HC (1997) Neonatal treatments with the serotonin uptake inhibitors clomipramine and zimelidine, but not the noradrenaline uptake inhibitor desipramine, disrupt sleep pattern in rats. Brain Res 768:287–293

    CAS  PubMed  Google Scholar 

  • Hansen HH, Mikkelsen JD (1998) Long-term effects on serotonin transporter mRNA expression of chronic neonatal exposure to a serotonin reuptake inhibitor. Eur J Pharmacol 253:307–315

    Google Scholar 

  • Hansen HH, Sanchez C, Meier E (1997) Neonatal administration of the selective serotonin reuptake inhibitor Lu 10–134-C increases forced swimming-induced immobility in adult rats. A putative animal model of depression? J Pharmacol Exp Ther 283:133–1341

    Google Scholar 

  • Hartley P, Neill D, Hagler M, Kors D, Vogel G (1990) Procedure- and age-dependent hyperactivity in a new animal model of endogenous depression. Neurosci Biobehav Rev 14:69–72

    CAS  PubMed  Google Scholar 

  • Kinney GG, Vogel GW, Feng P (1997) Decreased dorsal raphe nucleus neuronal activity in adult chloral hydrate anesthetized rats following neonatal clomipramine treatment: implications for endogenous depression. Brain Res 756:68–75

    CAS  PubMed  Google Scholar 

  • Maudhuit C, Hamon M, Adrien J (1995) Electrophysiological activity of raphe dorsalis serotoninergic neurones in a possible model of endogenous depression. NeuroReport 6:681–684

    CAS  PubMed  Google Scholar 

  • Maudhuit C, Hamon M, Adrien J (1996) Effects of chronic treatment with zimelidine and REM sleep deprivation on the regulation of raphe neuronal activity in a rat model of depression. Psychopharmacology (Berl) 124:267–274

    CAS  Google Scholar 

  • Mirmiran M, van de Poll NE, Corner MA, van Oyen HG, Bour HL (1981) Suppression of active sleep by chronic treatment with chlorimipramine during early postnatal development: effects upon adult sleep and behavior in rats. Brain Res 204:129–146

    CAS  PubMed  Google Scholar 

  • Neill D, Vogel G, Hagler M, Kors D, Hennessy A (1990) Diminished sexual activity in a new animal model of endogenous depression. Neurosci Biobehav Rev 14:73–76

    CAS  PubMed  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1995) Effects of neonatal clomipramine on cholinergic receptor sensitivity and passive avoidance behavior in adult rats. J Neural Transm Gen Sect 100:93–99

    CAS  PubMed  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1997) Fear-potentiated post-startle activity in neonatal clomipramine treated rats. Indian J Pharmacol 29:201–203

    CAS  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1998) Hyperactivity of hypothalamic pituitary axis in neonatal clomipramine model of depression. J Neural Transm 105:1335–1339

    CAS  PubMed  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1999) Effects of chronic administration of imipramine on the hyperactivity of hypothalamic-pituitary-adrenal axis in neonatal clomipramine treated rats. Indian J Pharmacol 31:225–228

    CAS  Google Scholar 

  • Rodriguez-Echandia EL, Broitman ST (1983) Effect of prenatal and postnatal exposure to therapeutic doses of chlorimipramine to emotionality in the rat. Psychopharmacology (Berl) 79:236–241

    CAS  Google Scholar 

  • Velazquez-Moctezuma J, Diaz-Ruiz O (1992) Neonatal treatment with clomipramine increased immobility in the forced swim test: an attribute of animal models of depression. Pharmacol Biochem Behav 42:737–739

    CAS  PubMed  Google Scholar 

  • Velazquez-Moctezuma J, Aguillar-Garcia A, Diaz-Ruiz O (1993) Behavioral effects of neonatal treatment of clomipramine, scopolamine, and idazoxan in male rats. Pharmacol Biochem Behav 46:215–217

    CAS  PubMed  Google Scholar 

  • Vázquez-Palacios G, Bonilla-Jaime H, Velázquez-Moctezuma J (2005) Antidepressant effects of nicotine and fluoxetine in an animal model of depression induced by neonatal treatment with clomipramine. Prog Neuropsychopharmacol Biol Psychiatry 29:39–46

    PubMed  Google Scholar 

  • Vogel G, Hagler M (1996) Effects of neonatally administered iprindole on adult behaviors of rats. Pharmacol Biochem Behav 55:157–161

    CAS  PubMed  Google Scholar 

  • Vogel G, Hartley P, Neill D, Hagler M, Kors D (1988) Animal depression model by neonatal clomipramine: reduction of shock induced aggression. Pharmacol Biochem Behav 31:103–106

    CAS  PubMed  Google Scholar 

  • Vogel G, Neill D, Hagler M, Kors D (1990a) A new animal model of endogenous depression: a summary of present findings. Neurosci Biobehav Rev 14:85–91

    CAS  PubMed  Google Scholar 

  • Vogel G, Neill D, Kors D, Hagler M (1990b) REM sleep abnormalities in a new model of endogenous depression. Neurosci Biobehav Rev 14:77–83

    CAS  PubMed  Google Scholar 

  • Vogel GW, Buffenstein A, Minter K, Hennessey A (1990c) Drug effects on REM sleep and on endogenous depression. Neurosci Biobehav Rev 14:49–63

    CAS  PubMed  Google Scholar 

  • Vogel G, Neill D, Hagler M, Kors D, Hartley P (1990d) Decreased intracranial self-stimulation in a new animal model of endogenous depression. Neurosci Biobehav Rev 14:65–68

    CAS  PubMed  Google Scholar 

  • Vogel G, Hagler M, Hennessey A, Richard C (1996) Dosedependent decrements in adult male sexual behavior after neonatal clomipramine treatment. Pharmacol Biochem Behav 54:605–609

    CAS  PubMed  Google Scholar 

  • Yavari P, Vogel GW, Neill DB (1993) Decreased raphe unit activity in a rat model of endogenous depression. Brain Res 611:31–36

    CAS  PubMed  Google Scholar 

Chronic Stress Model of Depression

  • Ducottet C, Griebel G, Belzung C (2003) Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the mild stress model of depression in mice. Prog Neuropsychopharm Biol Psychiatry 27:625–631

    CAS  Google Scholar 

  • Forbes NF, Stewart CA, Metthews K, Reid IC (1996) Chronic mild stress and sucrose consumption: validity as a model of depression. Physiol Behav 60:1481–1484

    CAS  PubMed  Google Scholar 

  • Gabriel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57:261–267

    Google Scholar 

  • Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrié P (2002a) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A 99:6370–6375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrié P (2002b) 4-(2-Chloro-4-methoxy-5-methylphenyl)-VV[(15″)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-V-(2-propynyl)1,3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophinreleasing factor1 receptor antagonist. LL. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301:332–345

    Google Scholar 

  • Grippo AJ, Beltz TG, Johnson AK (2003) Behavioral and cardiovascular changes in the chronic mild stress model of depression. Physiol Behav 78:703–710

    CAS  PubMed  Google Scholar 

  • Harkin A, Houlihan DD, Kelly JP (2002) Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. J Psychopharmacol 16:115–123

    CAS  PubMed  Google Scholar 

  • Konkle ATM, Baker SL, Kentner AC, Barbagallo LSM, Merali Z, Bielajew C (2003) Evaluation of the effects of chronic mild stressors on hedonic and physiological responses: sex and strain compared. Brain Res 992:227–238

    CAS  PubMed  Google Scholar 

  • Kopp C, Vogel E, Rettori MC, Delagrange P, Misslin R (1999) The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice. Behav Pharmacol 10:73–83

    CAS  PubMed  Google Scholar 

  • Matthews K, Robbins TW (2003) Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neurosci Biobehav Rev 27:45–55

    PubMed  Google Scholar 

  • Moreau JL, Bös M, Jenck F, Martin JR, Mortas P, Wichmann J (1996) 5-HT2C receptor antagonists exhibit antidepressantlike properties in the anhedonia model of depression in rats. Eur Neuropsychopharmacol 6:169–175

    CAS  PubMed  Google Scholar 

  • Muscat R, Kyprianou T, Osman M, Phillips G, Willner P (1991) Sweetness-dependent facilitation of sucrose drinking by raclopride is unrelated to caloric content. Pharmacol Biochem Behav 40:209–213

    CAS  PubMed  Google Scholar 

  • Papp M, Wieronska J (2000) Antidepressant-like activity of amisulpiride in two animal models of depression. J Psychopharmacol 14:46–52

    CAS  PubMed  Google Scholar 

  • Pijlman FTA, Wolterink G, van Ree JM (2003) Physical and emotional stress have differential effects on preference for saccharine and open field behavior in rats. Behav Brain Res 139:131–138

    PubMed  Google Scholar 

  • Sammut S, Goodall G, Muscat R (2001) Acute interferon-a administration sucrose consumption in the rat. Psychoendocrinology 26:261–272

    CAS  Google Scholar 

  • Sammut S, Bethus I, Goodall G, Muscat R (2002) Antidepressant reversal of interferon-a-induced anhedonia. Physiol Behav 75:765–772

    CAS  PubMed  Google Scholar 

  • Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017

    PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    CAS  Google Scholar 

  • Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13:169–188

    CAS  PubMed  Google Scholar 

  • Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction in sucrose preference by chronic unpredictable mild stress, and its restoration by a cyclic antidepressant. Psychopharmacology (Berl) 93:358–364

    CAS  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    CAS  PubMed  Google Scholar 

Novelty-Induced Hypophagia Test

  • Blier P (2003) The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol 13:57–66

    CAS  PubMed  Google Scholar 

  • Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology (Berl) 163:121–141

    CAS  Google Scholar 

  • Brodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ (1988) Effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berl) 95:298–302

    Google Scholar 

  • Brodnoff SR, Suranyi-Cadotte B, Quirion R, Meaney MJ (1989) A comparison of the effects of diazepam versus several typical and atypical antidepressant drugs in an animal model of anxiety. Psychopharmacology (Berl) 97:277–279

    Google Scholar 

  • Cyran JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326–357

    Google Scholar 

  • Cyran JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and further needs. Trends Pharmacol Sci 23:238–245

    Google Scholar 

  • Dulawa SC, Hen R (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Behav Rev 29:771–783

    CAS  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330

    CAS  PubMed  Google Scholar 

Reduction of Submissive Behavior

  • Knapp RJ, Goldenberg R, Shuck C, Cecil A, Watkins J, Miller C, Crites G, Malatynska E (2002) Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur J Pharmacol 440:27–35

    CAS  PubMed  Google Scholar 

  • Leo GC, Caldwell GW, Crooke J, Malatynska E, Cotto C, Hastings B, Scowcroft J, Hall J, Browne K, Hageman W (2005) The application of nuclear magnetic resonancebased metabonomics to the dominant-submissive rat behavioral model. Anal Biochem 339:174–178

    CAS  PubMed  Google Scholar 

  • Malatynska E, Kostowski W (1984) The effect of antidepressant drugs on dominance behavior in rats competing for food. Pol J Pharmacol Pharm 36:531–540

    CAS  PubMed  Google Scholar 

  • Malatynska E, De Leon I, Allen D, Yamamura HI (1995) Effects of amitriptyline on GABA-stimulated 36Cl-uptake in relation to a behavioral model of depression. Brain Res Bull 37:53–59

    CAS  PubMed  Google Scholar 

  • Malatynska E, Goldenberg R, Shuck L, Haque A, Zamecki P, Crites G, Schindler N, Knapp RJ (2002) Reduction of submissive behavior in rats: a test for antidepressant drug activity. Pharmacology 54:8–17

    Google Scholar 

  • Malatynska E, Rapp R, Harrawood D, Tunicliff G (2005) Submissive behavior in mice as a test for antidepressant drug activity. Pharmacol Biochem Behav 82:306–313

    CAS  PubMed  Google Scholar 

  • Pinhasov A, Crooke J, Rosenthal D, Brenneman D, Malatynska E (2005) Reduction of submission behavior for antidepressant activity testing: study using a video-tracking system. Behav Pharmacol 16:657–664

    CAS  PubMed  Google Scholar 

Animal Models of Bipolar Disorder

  • Antelmanm SM, Caggiula AR, Kiss S, Edwards DJ, Kocan D, Stiller R (1995) Neurochemical and physiological effects of cocaine oscillate with sequential drug treatment: possibly a major factor in drug variability. Neuropsychopharmacology 12:297–306

    Google Scholar 

  • Antelman SM, Caggiula AR, Kucinski BJ, Fowler H, Gershon S, Edwards DJ, Austin MC, Stiller R, Kiss S, Kocan D (1998) The effects of lithium on a potential cycling model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 22:495–510

    CAS  PubMed  Google Scholar 

  • Arban R, Maraia G, Brackenborough K, Winyard L, Wilson A, Gerrard P, Large C (2005) Evaluation of lamotrigine, valproate and carbamazepine in a rodent model of mania. Behav Brain Res 158:123–132

    CAS  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, Epstein LH, Sved AF, Knopf S, Rose C, McAllister CG, Antelman SM, Perkins KA (1998a) The role of corticosteroids in nicotine’s physiological and behavioral effects. Psychoneuroendocrinology 23:143–159

    CAS  PubMed  Google Scholar 

  • Caggiula AR, Antelman S, Kucinski BJ, Fowler H, Edwards DJ, Austin MC, Gershon S, Stiller R (1998b) Oscillatory-sensitization model of repeated drug exposure: cocaine’s effect on shock-induced hypoanalgesia. Prog Neuropsychopharmacol Biol Psychiatry 22:511–521

    CAS  PubMed  Google Scholar 

  • Cao BJ, Peng NA (1993) Magnesium valproate attenuates hyperactivity induced by dexamphetamine-chlordiazepoxide mixture in rodents. Eur J Pharmacol 237:177–181

    CAS  PubMed  Google Scholar 

  • D’Aquila PS, Panin F, Serra G (2004) Long-term imipramine withdrawal induces a depressive-like behavior in the forced swimming test. Eur J Pharmacol 492:61–63

    PubMed  Google Scholar 

  • Decker S, Grider G, Cobb M, Li XP, Huff MO, El Mallakk RS, Levy RS (2000) Open field is more sensitive than automated activity monitor in documenting ouabain-induced hyperlocomotion in the development of an animal model for bipolar illness. Prog Neuropsychopharmacol Biol Psychiatry 24:455–462

    CAS  PubMed  Google Scholar 

  • El Mallakh RS, Harrison LT, Changaris DG, Levy RS (1995) An animal model of mania: preliminary results. Prog Neuropsychopharmacol Biol Psychiatry 19:955–962

    PubMed  Google Scholar 

  • El Mallakh RS, El Masri MA, Huff MO, Li XP, Decker S, Levy RS (2003) Intracerebroventricular administration of ouabain as a model of mania in rats. Bipolar Disord 5:362–365

    PubMed  Google Scholar 

  • Gambarana C, Mangiavacchi S, Masi F, Scheggi S, Tagliamonte A, Tolu P, De Montis MG (2000) Long-term lithium administration abolishes the resistance to stress in rats sensitized to morphine. Brain Res 877:218–225

    CAS  PubMed  Google Scholar 

  • Gessa GL, Pani L, Fadda P, Fratta W (1995) Sleep deprivation in the rat: an animal model of mania. Eur Neuropsychopharmacol 5:879–893

    Google Scholar 

  • Gould TJ, Keith RA, Bhat RV (2001) Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res 118:95–105

    CAS  PubMed  Google Scholar 

  • Kucinski BJ, Antelman SM, Caggiula AR, Fowler H, Gershon S, Edwards DJ (1999) Cocaine-induced oscillation is conditionable. Pharmacol Biochem Behav 63:449–455

    CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 28:209–224

    PubMed  Google Scholar 

  • Petty F, Sherman AD (1981) A pharmacologically pertinent animal model of mania. J Affect Disord 3:381–387

    CAS  PubMed  Google Scholar 

  • Shaldubina A, Einat H, Szechtman H, Shimon H, Belmaker RH (2002) Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm 109:433–440

    CAS  PubMed  Google Scholar 

  • Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S, Robinson TE, Watson SJ, Seasholtz AF, Akil H (2004) Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci U S A 101:11851–11856

    Google Scholar 

Animal Models of Obsessive-Compulsive Disorder

  • Agrati D, Fernández-Guasti A, Zuluaga MJ, Uriarte N, Pereira M, Ferreira A (2005) Compulsive-like behavior according to the sex and the reproductive stage of female rats. Behav Brain Res 161:313–319

    PubMed  Google Scholar 

  • Berridge KC, Aldridge JW, Houchard KR, Zhuang X (2005) Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive convulsive disorder and Tourette’s. BMC Biol 3:1–16

    Google Scholar 

  • Fernández-Guasti A, Ulloa RE, Nicolini H (2003) Age differences in the sensitivity to clomipramine in an animal model of obsessive compulsive disorder. Psychopharmacology (Berl) 166:193–201

    Google Scholar 

  • Joel D (2006) The signal attenuation rat model of obsessive-compulsive disorder. Psychopharmacology (Berl) 186:487–503

    CAS  Google Scholar 

  • Joel D, Avisar A (2001) Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive compulsive disorder? Behav Brain Res 123:77–87

    CAS  PubMed  Google Scholar 

  • Joel D, Doljansky J, Roz N, Rehavi N (2005) Role of the orbital cortex and of the serotoninergic system in a rat model of obsessive compulsive disorder. Neuroscience 130:25–36

    CAS  PubMed  Google Scholar 

  • Nurnberg HG, Keith SJ, Paxton DM (1997) Consideration of the relevance of ethological animal models for human repetitive behavioral spectrum disorders. Biol Psychiatry 41:226–229

    CAS  PubMed  Google Scholar 

  • Overall KL (2000) Natural animal models of human psychiatric conditions: assessment of mechanism and validity. Prog Neuropsychopharmacol Biol Psychiatry 24:727–776

    CAS  PubMed  Google Scholar 

  • Stein DJ (2000) Neurobiology of the obsessive-compulsive spectrum disorders. Biol Psychiatry 47:296–304

    CAS  PubMed  Google Scholar 

  • Stein DJ (2002) Obsessive-compulsive disorder. Lancet 360:397–405

    PubMed  Google Scholar 

  • Stein DJ, Mendelson I, Potocnik F, Von Kradenberg J, Wessels C (1998) Use of the selective serotonin reuptake inhibitor citalopram in a possible animal analogue of obsessive-compulsive disorder. Depress Anxiety 8:39–42

    CAS  PubMed  Google Scholar 

  • Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ, Culver KE, Eilam D (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of obsessive-compulsive disorder (OCD): form and control. BMC Neurosci 2:4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsaltas E, Kontis DK, Chrysikakou S, Giannou H, Biba A, Pallidi S, Christodoulou A, Maillis A, Rabavilas A (2005) Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol Psychiatry 57:1176–1185

    CAS  PubMed  Google Scholar 

  • Ulloa RE, Nicolini H, Fernández-Guasti A (2004a) Sex differences on spontaneous alteration in prepubertal rats: implications for an animal model of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 28:687–692

    CAS  PubMed  Google Scholar 

  • Ulloa RE, Nicolini H, Fernández-Guasti A (2004b) Age differences in an animal model of obsessive-compulsive disorder: participation of dopamine. Dopamine in an animal model of OCD. Pharmacol Biochem Behav 78:661–666

    CAS  PubMed  Google Scholar 

  • Van Kuyck K, Demeulmeester H, Feys H, de Weerdt W, Dewil M, Tousseyn T, de Sutter P, Gybels J, Bogaerts K, Dom R, Nuttin B (2003) Effects of electrical stimulation or lesion in nucleus accumbens on the behaviour of rats after administration of 8-OH-DPAT or vehicle. Behav Brain Res 140:165–173

    PubMed  Google Scholar 

  • Woods-Kettelberger A, Kongsamut S, Smith CP, Winslow JT, Corbett R (1997) Animal models with potential applications for screening of compounds for the treatment of obsessive-compulsive disorder. Expert Opin Investig Drugs 6:1369–1381

    CAS  PubMed  Google Scholar 

  • Yadin E, Freidman E, Bridger WH (1991) Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav 40:311–315

    CAS  PubMed  Google Scholar 

Antidepressant-Like Activity in Differential-Reinforcement of Low Rate 72-Second Schedule

  • Andrews JS, Jansen JHM, Linders S, Princen A, Drinkenburg WHIM, Coenders CJH, Vossen JHM (1994) Effects of imipramine and mirtazipine on operant performance in rats. Drug Dev Res 32:58–66

    CAS  Google Scholar 

  • Marek GJ, Seiden LS (1988) Effects of selective 5-hydroxytryptamine-2 and nonselective 5-hydroxytryptamine antagonists on the differential-reinforcement-of -low-rate 72second schedule. J Pharmacol Exp Ther 244:650–658

    CAS  PubMed  Google Scholar 

  • Marek GJ, Li AA, Seiden LS (1989) Selective 5-hydroxytryptamine2 antagonists have antidepressant-like effects on differential-reinforcement-of -low-rate 72 second schedule. J Pharmacol Exp Ther 250:52–59

    CAS  PubMed  Google Scholar 

  • McGuire PS, Seiden LS (1980) The effects of tricyclic antidepressants on performance under a differentialreinforcement-of -low-rates schedule in rats. J Pharmacol Exp Ther 214:635–641

    CAS  PubMed  Google Scholar 

  • O’Donnell JM, Seiden LS (1983) Differential-reinforcement-oflow-rate 72-second schedule: selective effects of antidepressant drugs. J Pharmacol Exp Ther 224:80–88

    PubMed  Google Scholar 

  • Pollard GT, Howard JL (1986) Similar effects of antidepressant and non-antidepressant drugs on behavior under an interresponse-time >72-s schedule. Psychopharmacology (Berl) 89:253–258

    CAS  Google Scholar 

  • van Hest A, van Drimmelen M, Olivier B (1992) Flesinoxan shows antidepressant activity in a DRL 72-s screen. Psychopharmacology (Berl) 107:474–479

    Google Scholar 

Potentiation of Norepinephrine Toxicity

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: a new potential antidepressant. Drug Dev Res 25:267–282

    Google Scholar 

  • Sigg EB (1959) Pharmacological studies with Tofranil. Can Psychiatr Assoc J 4:S75–S85

    Google Scholar 

Compulsive Gnawing in Mice

  • De Feo G, Lisciani R, Pavan L, Samarelli M, Valeri P (1983) Possible dopaminergic involvement in biting compulsion induced by large doses of clonidine. Pharmacol Res Commun 15:613–619

    PubMed  Google Scholar 

  • Klawans HL, Rubovits R (1972) An experimental model of tardive dyskinesia. J Neural Transm 33:235–246

    PubMed  Google Scholar 

  • Molander L, Randrup A (1974) Investigation of the mechanism by which L-DOPA induces gnawing in mice. Acta Pharmacol Toxicol 34:312–324

    CAS  Google Scholar 

  • Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJS, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196:257–266

    CAS  PubMed  Google Scholar 

  • Pedersen V, Christensen AV (1972) Antagonism of methylphenidate-induced stereotyped gnawing in mice. Acta Pharmacol Toxicol 31:488–496

    CAS  Google Scholar 

  • Randall PK (1985) Quantification of dopaminergic supersensitization using apomorphine-induced behavior in the mouse. Life Sci 37:1419–1423

    CAS  PubMed  Google Scholar 

  • Ther L, Schramm H (1962) Apomorphin-Synergismus (Zwangsnagen bei Mäusen) als Test zur Differenzierung psychotroper Substanzen. Arch Int Pharmacodyn Ther 138:302–310

    CAS  PubMed  Google Scholar 

Apomorphine-Induced Hypothermia in Mice

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: a new potential antidepressant. Drug Dev Res 25:267–282

    Google Scholar 

  • Cox B, Lee TF (1981) 5-Hydroxytryptamine-induced hypothermia in rats as an in vivo model for the quantitative study of 5-hydroxytryptamine receptors. J Pharmacol Methods 5:43–51

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

  • Puech AJ, Chermat R, Poncelet M, Doaré L, Simon P (1981) Antagonism of hypothermia and behavioural responses to apomorphine: a simple, rapid and discriminating test for screening anti-depressants and neuroleptics. Psychopharmacology (Berl) 75:84–91

    CAS  Google Scholar 

Tetrabenazine Antagonism in Mice

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: a new potential antidepressant. Drug Dev Res 25:267–282

    Google Scholar 

  • Benesová O, Nähunek K (1971) Correlation between the experimental data from animal studies and therapeutic effects of antidepressant drugs. Psychopharmacology (Berl) 20:337–347

    Google Scholar 

  • Doble A, Girdlestone D, Piot O, Allam D, Betschart J, Boireau A, Dupuy A, Guérémy C, Ménager J, Zundel JL, Blanchard JC (1992) Pharmacological characterisation of RP 62203, a novel 5-hydroxytryptamine 5-HT2 receptor antagonist. Br J Pharmacol 15:27–36

    Google Scholar 

  • Gylys JA, Muccia PMR, Taylor MK (1963) Pharmacological and toxicological properties of 2-methyl-3-piperidinopyrazine, a new antidepressant. Ann N Y Acad Sci 107:899–913

    CAS  PubMed  Google Scholar 

  • Jamieson DD, Duffield PH, Cheng D, Duffield AM (1989) Comparison of the central nervous system activity of the aqueous und lipid extract of kava (Piper methysticum). Arch Int Pharmacodyn Ther 301:66–80

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Ukai K, Kubo S (1993) Antidepressive effects of the stereoisomer cis-dosulepin hydrochloride. Arzneim Forsch/Drug Res 43:11–15

    CAS  Google Scholar 

  • Rubin B, Malone MH, Waugh MH, Burke JC (1957) Bioassay of Rauwolfia roots and alkaloids. J Pharmacol Exp Ther 120:125–136

    CAS  PubMed  Google Scholar 

Reserpine-Induced Hypothermia

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: a new potential antidepressant. Drug Dev Res 25:267–282

    Google Scholar 

  • Askew BM (1963) A simple screening procedure for imipramine-like antidepressant drugs. Life Sci 10:725–730

    CAS  PubMed  Google Scholar 

  • Bill DJ, Hughes IE, Stephens RJ (1989) The effects of acute and chronic desimipramine on the thermogenic and hypoactivity responses to α 2-agonists in reserpinized and normal mice. Br J Pharmacol 96:144–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourin M (1990) Is it possible to predict the activity of a new antidepressant in animals with simple psychopharmacological tests? Fundam Clin Pharmacol 4:49–64

    CAS  PubMed  Google Scholar 

  • Bourin M, Poncelet M, Chermat R, Simon P (1983) The value of the reserpine test in psychopharmacology. Arzneim Forsch/Drug Res 33:1173–1176

    CAS  Google Scholar 

  • Colpaert FC, Lenaerts FM, Niemegeers CJE, Janssen PAJ (1975) A critical study of Ro-4–1284 antagonism in mice. Arch Int Pharmacodyn Ther 215:189–239

    Google Scholar 

  • Koe BK, Lebel LA, Nielsen JA, Russo LL, Saccomano NA, Vinick FJ, Williams IA (1990) Effects of novel catechol ether imidazolidinones on calcium-dependent phosphodiesterase activity, (3H)Rolipram binding, and reserpine-induced hypothermia in mice. Drug Dev Res 21:135–142

    CAS  Google Scholar 

  • Muth EA, Moyer JA, Haskins JT, Andree TH, Husbands GEM (1991) Biochemical, neurophysiological, and behavioral effects of Wy-45,233 and other identified metabolites of the antidepressant Venlafaxine. Drug Dev Res 23:191–199

    CAS  Google Scholar 

  • Niemegeers CJE (1975) Antagonism of reserpine-like activity. In: Fielding S, Lal H (eds) Industrial pharmacology, vol II, Antidepressants. Futura, Mount Kisco, pp 73–98

    Google Scholar 

  • Pawlowski L, Nowak G (1987) Biochemical and pharmacological tests for the prediction of ability of monoamine uptake blockers to inhibit the uptake of noradrenaline in vivo: the effects of desimipramine, maprotiline, femoxitine and citalopram. J Pharm Pharmacol 39:1003–1009

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

5-Hydroxytryptophan Potentiation in Mice

  • Ahtee L, Saarnivaara L (1971) The effect of drugs upon the uptake of 5-hydroxytryptamine and metaraminol by human platelets. J Pharm Pharmacol 23:495–501

    Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: a new potential antidepressant. Drug Dev Res 25:267–282

    Google Scholar 

  • Awouters F, Niemegeers CJE, Megens AAHP, Meert TF, Janssen PAJ (1988) Pharmacological profile of ritanserin: a very specific central serotonin antagonist. Drug Dev Res 15:61–73

    CAS  Google Scholar 

  • Chen G (1964) Antidepressives, analeptics and appetite suppressants. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 239–260

    Google Scholar 

  • Corne SJ, Pickering RW, Warner BT (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharmacol 20:106–120

    CAS  Google Scholar 

  • Martin P, Frances H, Simon P (1985) Dissociation of head twitches and tremors during the study of interactions with 5-hydroxytryptophan in mice. J Pharmacol Meth Ther 13:193–200

    CAS  Google Scholar 

  • Meert TF, Niemegeers JE, Awouters F, Janssen PAJ (2003) Partial and complete blockade of 5-hydroxytryptophan (5-HTP)-induced head twitches in the rat: a study of ritanserin (R55667), risperidone (R64766), and related compounds. Drug Dev Res 13:237–244

    Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262:545–551

    CAS  PubMed  Google Scholar 

  • Moser PC, Redfern PH (1988) The effect of benzodiazepines on the 5-HT agonist-induced head-twitch response in mice. Eur J Pharmacol 151:223–231

    CAS  PubMed  Google Scholar 

  • Ortmann R, Martin S, Radeke E, Delini Stula A (1981) Interaction of beta-adrenoreceptor agonists with the serotonergic system in rat brain. A behavioural study using the L-5HTP syndrome. Naunyn Schmiedebergs Arch Pharmacol 316:225–230

    CAS  PubMed  Google Scholar 

  • Shank RP, Gardocki JF, Schneider CR, Vaught JL, Setler PE, Maryanoff BE, McComsey DF (1987) Preclinical evaluation of McN-5707 as a potential antidepressant. J Pharmacol Exp Ther 242:74–84

    Google Scholar 

  • Shank RP, Vaught JL, Pelley KA, Setler PE, McComsey DF, Maryanoff BE (1988) McN-5652: a highly potent inhibitor of serotonin uptake. J Pharmacol Exp Ther 247:1032–1038

    Google Scholar 

5-Hydroxytryptophan Potentiation in Rats

  • Ahtee L, Saarnivaara L (1971) The effect of drugs upon the uptake of 5-hydroxytryptamine and metaraminol by human platelets. J Pharm Pharmacol 23:495–501

    Google Scholar 

  • Colpaert FC, Janssen PA (1983) The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat: antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Neuropharmacology 22:993–1000

    CAS  PubMed  Google Scholar 

  • Hallberg H, Carlson L, Elg R (1985) Objective quantification of tremor in conscious unrestrained rats, exemplified with 5-hydroxytryptamine-mediated tremor. J Pharmacol Methods 13:261–266

    CAS  PubMed  Google Scholar 

  • Matthews WD, Smith CD (1980) Pharmacological profile of a model for central serotonin receptor activation. Life Sci 26:1397–1403

    CAS  PubMed  Google Scholar 

  • Shank RP, Gardocki JF, Schneider CR, Vaught JL, Setler PE, Maryanoff BE, McComsey DF (1987) Preclinical evaluation of McN-5707 as a potential antidepressant. J Pharmacol Exp Ther 242:74–84

    Google Scholar 

Yohimbine Toxicity Enhancement

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: a new potential antidepressant. Drug Dev Res 25:267–282

    Google Scholar 

  • Bourin M, Malinge M, Colombel MC, Larousse C (1988) Influence of alpha stimulants and beta blockers on yohimbine toxicity. Prog Neuropsychopharmacol Biol Psychiatry 12:569–574

    CAS  PubMed  Google Scholar 

  • Goldberg MR, Robertson D (1983) Yohimbine: a pharmacological probe for study the α 2-adrenoreceptor. Pharmacol Rev 35:143–180

    CAS  PubMed  Google Scholar 

  • Malick JP (1981) Yohimbine potentiation as a predictor of antidepressant action. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: neurochemical, behavioral and clinical perspectives. Raven, New York, pp 141–156

    Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

  • Quinton RM (1963) The increase in the toxicity of yohimbine induced by imipramine and other drugs in mice. Br J Pharmacol 21:51–66

    CAS  Google Scholar 

Tryptamine Seizure Potentiation in Rats

  • Graham-Smith DG (1971) Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by Ltryptophan or 5-methoxy-N, N-dimethyltryptamine in rats treated with a monoamine oxidase inhibitor. Br J Pharmacol 43:856–864

    Google Scholar 

  • Knoll J (1980) Monoamine oxidase inhibitors: chemistry and pharmacology. In: Sandler M (ed) Enzyme inhibitors as drugs. University Park Press, Baltimore, pp 151–173

    Google Scholar 

  • Ozaki M, Weissbach H, Ozaki A, Witkop B, Udenfriend S (1960) Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro. J Med Pharmacol Chem 2:591–607

    Google Scholar 

Serotonin Syndrome in Rats

  • Andersson G, Larsson K (1994) Effects of FG 5893, a new compound with 5-HT1A receptor agonistic and 5-HT2 receptor antagonistic properties, on male rat sexual behavior. Eur J Pharmacol 255:131–137

    Google Scholar 

  • Arnt J, Hyttel J (1989) Facilitation of 8-OH-DPAT-induced forepaw treading of rats by the 5-HT2 agonist DOI. Eur J Pharmacol 161:45–51

    CAS  PubMed  Google Scholar 

  • Bagdy G, To CT (1997) Comparison of relative potencies of i.v. and i.c.v. administered 8-OH-DPAT gives evidence of different sites of action for hypothermia, lower lip retraction and tail flicks. Eur J Pharmacol 323:53–58

    CAS  PubMed  Google Scholar 

  • Berendsen HG, Broekkamp CLE (1990) Behavioural evidence for functional interactions between 5-HT-receptor subtypes in rats and mice. Br J Pharmacol 101:667–673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berendsen HG, Broekkamp CLE (1997) Indirect in vivo 5-HT1A-agonistic effects of the new antidepressant mirtazapine. Psychopharmacology (Berl) 133:275–282

    CAS  Google Scholar 

  • Berendsen HHG, Jenk F, Broekkamp CLE (1989) Selective activation of 5-HT1A receptors induces lower lip retraction in the rat. Pharmacol Biochem Behav 33:821–827

    CAS  PubMed  Google Scholar 

  • Berendsen HHG, Bourgondien FGM, Broekkamp CLE (1994) Role of dorsal and median raphe nuclei in lower lip retraction in rats. Eur J Pharmacol 263:315–318

    CAS  PubMed  Google Scholar 

  • Berendsen HHG, Kester RCH, Peeters BWMM, Broekkamp CLE (1996) Modulation of 5-HT receptor subtypemediated behaviours by corticosterone. Eur J Pharmacol 308:103–111

    CAS  PubMed  Google Scholar 

  • Blanchard RJ, Shepherd JK, Armstrong J, Tsuda SF, Blanchard DC (1993) An ethopharmacological analysis of the behavioral effects of 8-OH-DPAT. Psychopharmacology (Berl) 112:55–65

    CAS  Google Scholar 

  • Blanchard RJ, Griebel G, Guardiola-Lemaître B, Brush MM, Lee J, Blanchard DC (1997) An ethopharmacological analysis of selective activation of 5-HT1A receptors: the mouse 5-HT1A syndrome. Pharmacol Biochem Behav 57:897–908

    CAS  PubMed  Google Scholar 

  • Deakin JFW, Green AR (1978) The effects of putative 5-hydroxytryptamine antagonists on the behaviour produced by administration of tranylcypromine and L-Dopa in rats. Br J Pharmacol 64:201–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Boer T, Ruigt GSF, Berendsen HHG (1995) The alpha-2-selective adrenoceptor antagonist Org 3770 (mirtazapine, Remeron registered) enhances noradrenergic and serotonergic transmissions. Hum Psychopharmacol 10(Suppl 2):S107–S118

    Google Scholar 

  • Evenden JL (1994) The effect of 5-HT1A receptor agonists on locomotor activity in the guinea pig. Br J Pharmacol 112:861–866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foreman MM, Fuller RW, Leander JD, Benvenga MJ, Wong DT, Nelson DL, Calligaro DO, Swanson SP, Lucot JP, Flaugh ME (1993) Preclinical studies in LY228729: a potent and selective serotonin1A agonist. J Pharmacol Exp Ther 267:58–71

    Google Scholar 

  • Foreman MM, Fuller RW, Rasmussen K, Nelson DL, Calligaro DO, Zhang L, Barrett JE, Booher RN, Paget CJ Jr, Flaugh ME (1994) Pharmacological characterization of LY293284: a 5-HT1A receptor agonist with high potency and selectivity. J Pharmacol Exp Ther 270:1270–1291

    Google Scholar 

  • Foreman MM, Fuller RW, Leander JD, Nelson DL, Calligaro DO, Lucaites VL, Wong DT, Zhang L, Barrett JE, Schaus HM (1995) Pharmacological characterization of enantiomers of 8-thiomethyl-2-(di-n-propylamino)tetralin, potent and selective 5-HT1A receptor agonists. Drug Dev Res 34:66–85

    Google Scholar 

  • Forster EA, Cliffed IA, Bill DJ, Dover GM, Jones D, Reilly Y, Fletcher A (1995) A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol 281:81–88

    CAS  PubMed  Google Scholar 

  • Gaggi R, DaU’Olio R, Roncada P (1997) Effects of the selective 5-HT receptor agonists 8-OHDPAT and DOI on behavior and brain biogenic amines of rats. Gen Pharmacol 28:583–587

    CAS  PubMed  Google Scholar 

  • Goodwin GM, Green AR (1985) A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol 84:743–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodwin GM, De Souza RJ, Wood AJ, Green AR (1986) The enhancement by lithium of the 5-HT1A mediated serotonin syndrome produced by 8-OH-DPAT in the rat: evidence for a postsynaptic mechanism. Psychopharmacology (Berl) 90:488–493

    CAS  Google Scholar 

  • Green AR, Heal DJ (1985) The effects of drugs on serotoninmediated behavioural models. In: Green A (ed) Neuropharmacol of serotonin. Oxford University Press, Oxford, pp 326–365

    Google Scholar 

  • Green AR, O’Shaughnessy K, Hammond M, Schächter M, Grahame-Smith DG (1983) Inhibition of 5-hydroxytryptamine-mediated behaviour by the putative 5-HT2 antagonist pirenperone. Neuropharmacology 22:573–578

    CAS  PubMed  Google Scholar 

  • Groenink L, Van der Gugten J, Compaan JC, Maes RAA, Olivier B (1997) Flesinoxan pretreatment differently affects corticosterone, prolactin and behavioural responses to a flesinoxan challenge. Psychopharmacology (Berl) 131:93–100

    CAS  Google Scholar 

  • Jacobs BL (1976) An animal behavior model for studying serotonergic synapses. Life Sci 19:777–786

    CAS  PubMed  Google Scholar 

  • Kleven MS, Assié MB, Koek W (1997) Pharmacological characterization of in vivo properties of putative mixed 5-HT1A agonist/5-HT1A/2C antagonist anxiolytics. II. Drug discrimination and behavioral observation studies in rats. J Pharmacol Exp Ther 282:747–759

    CAS  PubMed  Google Scholar 

  • Kofman O, Levin U (1995) Myo-inositol attenuates the enhancement of the serotonin syndrome by lithium. Psychopharmacology (Berl) 118:213–218

    CAS  Google Scholar 

  • Lu JQ, Nagayama H (1996) Circadian rhythm in the response of central 5-HT1A receptors to 8-OH-DPAT in rats. Psychopharmacology (Berl) 123:42–45

    CAS  Google Scholar 

  • Martin KF, Phillips I, Hearson M, Prow MR, Heal DJ (1992) Characterization of 8-OH-DPAT-induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identify antidepressants. Br J Pharmacol 107:15–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore NA, Rees G, Sanger G, Perrett L (1993) 5-HT1Amediated lower lip retraction: effects of 5-HT1A agonists and antagonists. Pharmacol Biochem Behav 46:141–143

    CAS  PubMed  Google Scholar 

  • O’Connell MT, Curzon G (1996) A comparison of the effects of 8-OH-DPAT pretreatment on different behavioural responses to 8-OH-DPAT. Eur J Pharmacol 312:137–143

    PubMed  Google Scholar 

  • O’Neill MF, Parameswaran T (1997) RU24699-induced behavioural syndrome requires activation of both 5-HT1A and 5-HT1B receptors. Psychopharmacology (Berl) 132:255–260

    Google Scholar 

  • Porsolt RD, Lenègre A, Caignard DH, Pfeiffer B, Mocaër E, Guardiola-Lemaître B (1992) Psychopharmacological profile of a new chroman derivative with 5-hydroxytryptamine1A agonist properties: S20499(+). Drug Dev Res 27:389–402

    CAS  Google Scholar 

  • Schoeffter P, Fozard JR, Stoll A, Siegl H, Seiler MP, Hoyer D (1993) SDZ 216–525, a selective and potent 5-HT1A receptor antagonist. Eur J Pharmacol 244:251–257

    CAS  PubMed  Google Scholar 

  • Simiand J, Keane PE, Barnouin MC, Keane M, Soubrié P, Le Fur G (1993) Neuropsychopharmacological profile in rodents of SR 57746A, a new, potent 5-HT1A receptor agonist. Fundam Clin Pharmacol 7:413–427

    CAS  PubMed  Google Scholar 

  • Smith LM, Peroutka SJ (1986) Differential effects of 5-hydroxytrytamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav 24:1513–1519

    CAS  PubMed  Google Scholar 

  • Tricklebank MD (1985) The behavioural response to 5-HT receptor agonists and subtypes of the central 5-HT receptor. Trends Pharmacol Sci 14:403–407

    Google Scholar 

  • Trulson ME, Eubanks EE, Jacobs BL (1976) Behavioral evidence for supersensitivity following destruction of central serotonergic nerve terminals by 5,7-dihydroxytryptamine. J Pharmacol Exp Ther 198:23–32

    CAS  PubMed  Google Scholar 

  • Wolff MC, Benvenga MJ, Calligaro DO, Fuller RW, Gidda JS, Hemrick-Luecke S, Lucot JB, Nelson DL, Overshiner CD, Leander JD (1997) Pharmacological profile of LY301317, a potent and selective 5-HT1A agonist. Drug Dev Res 40:17–34

    CAS  Google Scholar 

  • Yu H, Lewander T (1997) Pharmacokinetic and pharmacodynamic studies of (R)-8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur Neuropsychopharmacol 7:165–172

    CAS  PubMed  Google Scholar 

Hypermotility in Olfactory-Bulbectomized Rats

  • Bilkei-Gorzo A, Racz I, Michel K, Zimmer A (2002) Diminished anxiety- and depression-related behaviors in mice with selective deletion of the Tac1 gene. J Neurosci 22:10046–10052

    CAS  PubMed  Google Scholar 

  • Bissette G (2001) Effects of sertraline on regional neuropeptide concentrations in olfactory bulbectomized rats. Pharmacol Biochem Behav 69:269–281

    CAS  PubMed  Google Scholar 

  • Briley M, Prost JF, Moret C (1996) Preclinical pharmacology of milnacipran. Int Clin Psychopharmacol 11(Suppl 4):9–14

    PubMed  Google Scholar 

  • Cairncross KD, Wren A, Cox B, Schieden H (1977) Effects of olfactory bulbectomy and domicile on stress-induced corticosterone release in the rat. Physiol Behav 19:405–487

    Google Scholar 

  • Cairncross KD, Cox B, Forster C, Wren AF (1978) A new model for the detection of antidepressant drugs: olfactory bulbectomy in the rat compared with existing models. J Pharmacol Methods 1:131–143

    CAS  Google Scholar 

  • Cairncross KD, Cox B, Forster C, Wren AF (1979) Olfactory projection system, drugs and behaviour: a review. Psychoneuroendocrinology 4:253–272

    CAS  PubMed  Google Scholar 

  • Chaki S, Nakazato A, Kennis L, Nakamura M, Mackie C, Sugiura M, Vinken P, Ashton D, Langlois X, Steckler T (2004) Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278955/CRA0450. Eur J Pharmacol 485:145–158

    CAS  PubMed  Google Scholar 

  • Cryan JF, McGrath C, Leonard BE, Norman TR (1999) Onset of the effects of the 5-HT1A antagonist, WAY-100635, alone, and in combination with paroxetine, on olfactory bulbectomy and 8-OH-DPAT-induced changes in the rat. Pharmacol Biochem Behav 63:333–338

    CAS  PubMed  Google Scholar 

  • Hancock AA, Buckner SA, Oheim KW, Morse PA, Brune ME, Meyer MD, Williams M, Kervin LF Jr (1995) A-80426, a potent α 2-adrenoceptor antagonist with serotonin uptake blocking activity and putative antidepressant-like effects: I. Biochemical profile. Drug Dev Res 35:237–245

    CAS  Google Scholar 

  • Ho YJ, Chang YC, Liu TM, Tai MY, Wong CS, Tsai YF (2000) Striatal glutamate release during novelty exposureinduced hyperactivity in olfactory bulbectomized rats. Neurosci Lett 287:117–120

    CAS  PubMed  Google Scholar 

  • Holmes PV, Davis RC, Masini CV, Primeaux SD (1998) Effects of olfactory bulbectomy on neuropeptide gene expression in the rat olfactory/limbic system. Neuroscience 86:587–596

    CAS  PubMed  Google Scholar 

  • Janscár SM, Leonard BE (1984) The effect of (±)mianserin and its enantiomers on the behavioural hyperactivity of the olfactory bulbectomized rat. Neuropharmacology 23:1065–1070

    Google Scholar 

  • Kelly JP, Leonard BE (1994) The effects of tianeptine and sertraline in three animal models of depression. Neuropharmacology 33:1011–1016

    CAS  PubMed  Google Scholar 

  • Kelly JP, Leonard BE (1995) The contribution of pre-clinical drug evaluation in predicting the clinical profile of the selective serotonin reuptake inhibitor paroxetine. J Serotonin Res 1:27–46

    Google Scholar 

  • Kelly JP, Leonard BE (1999) An investigation of the antidepressant properties of lofepramine and its desmethylated metabolites in the forced swim and olfactory bulbectomized rat model of depression. Eur Neuropsychopharmacol 9:101–105

    CAS  PubMed  Google Scholar 

  • Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74:299–316

    CAS  PubMed  Google Scholar 

  • Leonard BE, O’Connor WJ (1984) Effect of isomers of the 6-aza derivative of mianserin on behaviour and noradrenaline metabolism in bulbectomized rats. Br J Pharmacol 82:246P

    Google Scholar 

  • Leonard BE, Tuite M (1981) Anatomical, physiological and behavioral aspects of olfactory bulbectomy in the rat. Int Rev Neurobiol 22:251–286

    CAS  PubMed  Google Scholar 

  • Martin JR, Bös M, Jenck F, Moreau JL, Mutel V, Sleight AJ, Wichmann J, Andrews JS, Berendsen HHG, Broekkamp CLE, Ruigt GSF, Köhler C, van Delft AML (1998) 5-HT2C receptor antagonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 286:913–924

    CAS  PubMed  Google Scholar 

  • McGrath C, Norman TR (1999) (+)-S-20499 – a potential antidepressant? A behavioural and neurochemical investigation in the olfactory bulbectomized rat. Eur Neuropsychopharmacol 9:21–27

    CAS  PubMed  Google Scholar 

  • McNamara MG, Kelly JP, Leonard BE (1995) Effect of 8-OHDPAT in the olfactory bulbectomized rat model of depression. J Serotonin Res 2:91–99

    CAS  Google Scholar 

  • Nowak G, Szewczyk B, Wieronska JM, Branski P, Palucha A, Pilc A, Sadlik K, Piekoszewski W (2003) Antidepressantlike effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res Bull 61:159–164

    CAS  PubMed  Google Scholar 

  • O’Connor WT, Leonard BE (1986) Effect of chronic administration of the 6-aza analogue of mianserin (ORG 3770) and its enantiomers on behaviour and changes in noradrenaline metabolism of olfactory-bulbectomized rats in the “open field” apparatus. Neuropharmacology 25:267–270

    PubMed  Google Scholar 

  • Porsoit RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

  • Redmont AM, Kelly JP, Leonard BE (1995) Effect of chronic antidepressant administration on the conditioned taste aversion to 8-OHDPAT in the olfactory bulbectomized rat model of depression. Med Sci Res 23:487–488

    Google Scholar 

  • Redmont AM, Kelly JP, Leonard BE (1997) Behavioral and neurochemical effects of dizocilpine in the olfactory bulbectomized rat model of depression. Pharmacol Biochem Behav 58:355–359

    Google Scholar 

  • Slotkin TA, Miller DB, Fumagalli F, McCook EC, Zhang J, Bissette G, Seidler FJ (1999) Modeling geriatric depression in animals: biochemical and behavioral effects of olfactory bulbectomy in young versus old rats. J Pharmacol Exp Ther 289:334–345

    CAS  PubMed  Google Scholar 

  • Song C, Leonard BE (1994) Serotonin reuptake inhibitors reverse the impairments in behaviour neurotransmitter and immune functions in the olfactory bulbectomized rat. Hum Psychopharmacol 9:135–146

    CAS  Google Scholar 

  • Song C, Early B, Leonard BE (1996a) The effects of central administration of neuropeptide Y on behavior, neurotransmitter, and immune functions in the olfactory bulbectomized rat model of depression. Brain Behav Immun 10:1–16

    CAS  PubMed  Google Scholar 

  • Song C, Early B, Leonard BE (1996b) Behavioural and immunological effects of the antihistamine terfenadine in olfactory bulbectomized rats. Eur Neuropsychopharmacol 6:157–162

    CAS  PubMed  Google Scholar 

  • Van Riezen H, Leonard BE (1990) Effects of psychotropic drugs on the behavior and neurochemistry of olfactory bulbectomized rats. Pharmacol Ther 47:21–34

    PubMed  Google Scholar 

  • Wren A, van Riezen H, Rigter H (1977) A new animal model for the prediction of antidepressant activity. Pharmakopsychiatr Neuropsychopharmakol 10:96–100

    CAS  PubMed  Google Scholar 

  • Wrynn AS, MacSweeney CP, Franconi F, Lemaire L, Pouliquen D, Herlidou S, Leonard BA, Ganton J, de Certaines JD (2000) An in-vivo magnetic resonance imaging study on the olfactory bulbectomized rat model of depression. Brain Res 879:193–199

    CAS  PubMed  Google Scholar 

  • Zhou D, Greksch G, Becker A, Frank C, Pilz J, Hueter G (1998) Serotoninergic hyperinnervation of the frontal cortex in an animal model of depression, the bulbectomized rat. J Neurosci Res 54:109–116

    CAS  PubMed  Google Scholar 

  • Zueger M, Urani A, Chourbaji S, Zacher C, Roche M, Hrkin A, Gass P (2005) Olfactory bulbectomy in mice induces alterations in exploratory behavior. Neurosci Lett 374:142–146

    CAS  PubMed  Google Scholar 

Sexual Behavior in Male Rats

  • Ahlenius S, Larsson K (1997) Specific involvement of central 5-HT1A receptors in the mediation of male rat ejaculatory behavior. Neurochem Res 22:1065–1070

    CAS  PubMed  Google Scholar 

  • Ahlenius S, Larsson K, Svensson L, Hjorth S, Carlsson A, Lindberg P, Wikström H, Sanchez D, Arvidsson LE, Hacksell U, Nilsson JLG (1981) Effects of a new type of 5-HT receptor agonist on male rat sexual behavior. Pharmacol Biochem Behav 15:785–792

    CAS  PubMed  Google Scholar 

  • Andersson G, Larsson K (1994) Effects of FG 5893, a new compound with 5-HT1A receptor agonistic and 5-HT2 receptor antagonistic properties, on male rat sexual behavior. Eur J Pharmacol 255:131–137

    Google Scholar 

  • Arnone M, Baroni M, Gai J, Guzzi U, Desclaux MF, Keane PE, Le Fur G, Soubrié P (1995) Effect of ST 59026A, a new 5-HT1A receptor agonist, on sexual activity in male rats. Behav Pharmacol 6:276–282

    CAS  PubMed  Google Scholar 

  • Barr AM, Florino DF, Phillips AG (1999) Effects of withdrawal from an escalating dose schedule of d-amphetamine on sexual behavior in the male rat. Pharmacol Biochem Behav 64:597–604

    CAS  PubMed  Google Scholar 

  • Fernández-Guasti A, Rodriguez-Manzo G (1997) OH-DPAT and male rat sexual behavior: partial blockade by noradrenergic lesion and sexual exhaustion. Pharmacol Biochem Behav 56:111–116

    PubMed  Google Scholar 

  • Fernández-Guasti A, Escalante A, Agmo Ǻ (1989) Inhibitory actions of various HT1B receptor agonists on rat masculine sexual behaviour. Pharmacol Biochem Behav 34:811–816

    PubMed  Google Scholar 

  • Foreman MM, Fuller RW, Leander JD, Benvenga MJ, Wong DT, Nelson DL, Calligaro DO, Swanson SP, Lucot JP, Flaugh ME (1993) Preclinical studies in LY228729: a potent and selective serotonin1A agonist. J Pharmacol Exp Ther 267:58–71

    Google Scholar 

  • Foreman MM, Fuller RW, Rasmussen K, Nelson DL, Calligaro DO, Zhang L, Barrett JE, Booher RN, Paget CJ Jr, Flaugh ME (1994) Pharmacological characterization of LY293284: a 5-HT1A receptor agonist with high potency and selectivity. J Pharmacol Exp Ther 270:1270–1291

    Google Scholar 

  • Foreman MM, Fuller RW, Leander JD, Nelson DL, Calligaro DO, Lucaites VL, Wong DT, Zhang L, Barrett JE, Schaus HM (1995) Pharmacological characterization of enantiomers of 8-thiomethyl-2-(di-n-propylamino)tetralin, potent and selective 5-HT1A receptor agonists. Drug Dev Res 34:66–85

    Google Scholar 

  • Gorzalka BB, Mendelson SD, Watson NV (1990) Serotonin receptor subtypes and sexual behavior. Ann N Y Acad Sci 600:435–446

    CAS  PubMed  Google Scholar 

  • Mendelson SD, Gorzalka BB (1981) Serotonin antagonist pirenperone inhibits sexual behavior in the male rat: attenuation by quipazine. Pharmacol Biochem Behav 22:565–571

    Google Scholar 

  • Pomerantz SM, Hepner BC, Wertz JM (1993) 5-HT1A and 5-HT1C/1D receptor agonists produce reciprocal effects on male sexual behavior of rhesus monkeys. Eur J Pharmacol 243:227–234

    CAS  PubMed  Google Scholar 

  • Tallentire D, McRae G, Spedding M, Clark R, Vickery B (1996) Modulation of sexual behaviour in the rat by a potent and selective α 2-adrenoceptor agonist, delequamine (RS-15835–197). Br J Pharmacol 118:63–72

    CAS  PubMed Central  PubMed  Google Scholar 

Flinders Sensitive Line of Rats

  • Daws LC, Overstreet DH (1999) Ontogeny of muscarinic cholinergic supersensitivity in the Flinders sensitive line rat. Physiol Biochem Behav 62:367–380

    CAS  Google Scholar 

  • Dremencov E, Gispan-Herman I, Rosenstein M, Mendelman A, Overstrett DH, Zohar J, Yadid G (2004) The serotonindopamine interaction is critical for fast-onset action of antidepressant treatment: in vivo studies in an animal model of depression. Prog Neuropsychopharmacol Biol Psychiatry 28:141–147

    CAS  PubMed  Google Scholar 

  • Dremencov E, Newman ME, Kinor N, Blatman-Jan G, Schindler CJ, Overstreet DH, Yadid G (2005) Hyperfunctionality of serotonin-2C receptor mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48:34–42

    CAS  PubMed  Google Scholar 

  • Ferreira-Nuño A, Overstreet DH, Morales Otat A, VelaźquesMoctezuma J (2002) Masculine sexual behavior features in the Flinders sensitive and resistant line rats. Behav Brain Res 128:113–119

    PubMed  Google Scholar 

  • King JA, Edwards E (1999) Early stress and genetic influences on hypothalamic-pituitary-adrenal axis functioning in adulthood. Horm Behav 36:79–85

    CAS  PubMed  Google Scholar 

  • King JA, Abend S, Edwards E (2001) Genetic predisposition and the development of posttraumatic stress disorder in an animal model. Biol Psychiatry 50:231–237

    CAS  PubMed  Google Scholar 

  • Lavi-Avnon Y, Yadid G, Overstreet DH, Weller A (2005) Abnormal patterns of maternal behavior in a genetic animal model of depression. Physiol Behav 84:607–615

    CAS  PubMed  Google Scholar 

  • Maayan R, Morad O, Dorfamn P, Overstreet DH, Weizman A, Yadid G (2005) The involvement of dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) in blocking the therapeutic effect of electroconvulsive shocks in an animal model of depression. Eur Neuropsychopharmacol 15:253–262

    CAS  PubMed  Google Scholar 

  • Overstreet DH (1986) Selective breeding for increases cholinergic function: development of a new animal model of depression. Biol Psychiatry 21:49–58

    CAS  PubMed  Google Scholar 

  • Overstreet DH (1993) The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev 17:51–68

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Griebel G (2004) Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. Eur J Pharmacol 497:49–51

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Russell RW (1982) Selective breeding for dllsopropyl fluorophosphates-sensitivity: behavioural effects of cholinergic agonists and antagonists. Psychopharmacology (Berl) 78:150–155

    CAS  Google Scholar 

  • Overstreet DH, Janowsky DS, Gillin JC, Shiromani PJ, Sutin EL (1986) Stress-induced immobility in rats with cholinergic hypersensitivity. Biol Psychiatry 21:657–664

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Rezvani AH, Janowsky DS (1990) Impaired active avoidance responding in rats selectively bred for increased cholinergic function. Physiol Behav 47:787–788

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Russell RW, Hay DA, Crocker AD (1992) Selective breeding for increased cholinergic function: biometrical genetic analysis of muscarinic responses. Neuropsychopharmacology 7:197–204

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Pucilowski O, Rezvani AH, Janowsky DS (1995) Administration of antidepressants, diazepam and psychomotor stimulants further confirm the utility of Flinders Sensitive Line rats as an animal model of depression. Psychopharmacology (Berl) 121:27–37

    CAS  Google Scholar 

  • Overstreet DH, Keeney A, Hogg S (2004) Antidepressant effects of citalopram and CRF receptor antagonist CP-154,526 in a rat model of depression. Eur J Pharmacol 492:195–201

    CAS  PubMed  Google Scholar 

  • Paré WP (2000) Investigatory behavior of a novel conspecific by Wistar Kyoto, Wistar and Sprague–Dawley rats. Brain Res Bull 53:759–765

    PubMed  Google Scholar 

  • Shayit M, Yadid G, Overstreet DH, Weller A (2003) 5-HT1A receptor subsensitivity in infancy and supersensitivity in adulthood in an animal model of depression. Brain Res 980:100–108

    CAS  PubMed  Google Scholar 

  • Shumake J, Edwards E, Gonzalez-Lima F (2003) Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res 963:274–281

    CAS  PubMed  Google Scholar 

  • Vasquez PAJ, Salmi P, Ahlenius S, Mathé AA (2000) Neuropeptide Y in brains of the Flinders Sensitive Line rat, a model of depression. Effects of electroconvulsive stimuli and damphetamine on peptide concentrations and locomotion. Behav Brain Res 111:115–123

    Google Scholar 

  • Will CC, Aird F, Redel EE (2003) Selectively bred Wistar–Kyoto rats: an animal model of depression and hyper-responsiveness to antidepressants. Mol Psychiatry 8:925–932

    CAS  PubMed  Google Scholar 

  • Yadid G, Nakash R, Deri I, Tamar G, Kinor N, Gispan I, Zangen A (2000) Elucidation of the neurobiology of depression: insight from a novel genetic animal model. Prog Neurobiol 62:353–378

    CAS  PubMed  Google Scholar 

Genetically Altered Mice as Models of Depression

  • Calapai G, Crupi A, Firenzuoli F, Inferrera G, Ciliberto G, Parisi A, De Sarro G, Caputi AP (2001) Interleukin-6 involvement in antidepressant action of Hypericum perforatum. Pharmacopsychiatry 34(Suppl 1):S8–S10

    CAS  PubMed  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Müller U, Aguet M, Babinet C, Shih JC (1995) Aggressive behavior and altered amounts of brain serotonin and epinephrine in mice lacking MAOA. Science 268:1763–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA (2002) cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 22:3262–3268

    CAS  PubMed  Google Scholar 

  • Cyran JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326–357

    Google Scholar 

  • Cyran JF, Dalvi A, Jin SH, Hirsch BR, Lucki I, Thomas SA (2001) Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanisms of action of antidepressant drugs. J Pharmacol Exp Ther 298:651–657

    Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and further needs. Trends Pharmacol Sci 23:238–245

    Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Bertorelli R, Ongini E, Costentin J, Vaugeous JM (2001) Adenosine A 2A receptor antagonists are potential depressants: evidence based on pharmacology and A 2A receptor knockout mice. Br J Pharmacol 134:68–77

    PubMed Central  PubMed  Google Scholar 

  • El Yacoubi M, Bouali S, Popa D, Naudon L, Leroux-Nicollet I, Hamon M, Costentin J, Adrien J, Vaugeois JM (2003) Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc Natl Acad Sci U S A 100:6227–6232

    PubMed Central  PubMed  Google Scholar 

  • Froger N, Gardier AM, Moratalla R, Alberti I, Lena I, Boni C, De Felipe C, Rupniak NM, Hunt SP, Jacquot C, Hamon M, Lanfumey L (2001) 5-Hydroxytryptamine1A autoreceptor adaptive changes in substance P (neurokinin 1) receptor knock-out mice mimic antidepressant-induced desensitization. J Neurosci 21:8188–8197

    CAS  PubMed  Google Scholar 

  • Grimsby J, Toth M, Chen K, Kumatawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC (1997) Increased stress response and β-phenylethylamine in MAOB deficient mice. Nat Genet 17:206–210

    CAS  PubMed  Google Scholar 

  • Holmes A, Hollon TR, Gleason TC, Liu Z, Dreiling J, Sibley DR, Crawley JN (2001) Behavioral characterization of dopamine receptor D5 null mutant mice. Behav Neurosci 115:1129–1144

    CAS  PubMed  Google Scholar 

  • Jaber M, Jones S, Giros B, Caron MG (1997) The dopamine transporter: a crucial component regulating dopamine transmission. Mov Disord 12:629–633

    CAS  PubMed  Google Scholar 

  • Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K, Stevens KE, Maccaferri G, McBain CJ, Sussman DJ, Wynshaw-Boris A (1997) Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell 90:895–905

    CAS  PubMed  Google Scholar 

  • MacQueen GM, Ramakrishnan K, Croll SD, Siuciak JA, Yu G, Young LT, Fahnestock M (2001) Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci 115:1145–1153

    CAS  PubMed  Google Scholar 

  • Mayorga AJ, Dalvi A, Page ME, Zimov-Levinson S, Hen R, Lucki I (2001) Antidepressant-like behavioral effects in 5hydroxytryptamine1A and 5-hydroxytryptamine1B receptor mutant mice. J Pharmacol Exp Ther 298:1101–1107

    CAS  PubMed  Google Scholar 

  • Porsolt RD (2000) Animal models of depression: utility for transgenic research. Rev Neurosci 11:53–58

    CAS  PubMed  Google Scholar 

  • Sallinen J, Haapalinna A, MacDonald E, Viitamaa T, Lähdesmâki J, Rybnikova A, Pelto-Huikko M, Kobilka BK, Scheinin M (1999) General alteration of the á2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. Mol Psychiatry 4:443–452

    CAS  PubMed  Google Scholar 

  • Stork O, Ji FY, Kaneko K, Stork S, Yoshinobu Y, Moriya T, Shibata S, Obata K (2000) Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res 865:45–58

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Tzavara ET, Witkin JM, Flenberg AA, Nomikos GG, Greengard P (2002) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Natl Acad Sci U S A 99:3182–3187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S, Robinson TE, Watson SJ, Seasholtz AF, Akil H (2004) Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci U S A 101:11851–11856

    Google Scholar 

  • Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, Wang YM, Caron MG (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3:465–471

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jeanne Kallman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kallman, M.J. (2015). Antidepressant Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Antidepressant Activity
    Published:
    18 May 2016

    DOI: https://doi.org/10.1007/978-3-642-27728-3_31-2

  2. Original

    Antidepressant Activity
    Published:
    22 July 2015

    DOI: https://doi.org/10.1007/978-3-642-27728-3_31-1