Skip to main content

Studies in Isolated Organs

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

Angus and Wright (2000) described in detail various techniques to study the pharmacodynamics of isolated large and small blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

α-Sympatholytic Activity in Isolated Vascular Smooth Muscle

  • Angus JA, Cocks TM, Satoh K (1986a) Alpha 2-adrenoceptors and endothelium-dependent relaxation in canine large arteries. Br J Pharmacol 88(4):767–777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Angus JA, Cocks TM, Satoh K (1986b) The alpha adrenoceptors on endothelial cells. Fed Proc 45(9):2355–2359

    CAS  PubMed  Google Scholar 

  • Angus JA, Wright CE (2000) Techniques to study the pharmacodynamics of isolated large and small blood vessels. J Pharmacol Toxicol Methods 44(2):395–407

    CAS  PubMed  Google Scholar 

  • Fagura MS, Lydford SJ, Dougall IG (1997) Pharmacological classification of alpha 1-adrenoceptors mediating contractions of rabbit isolated ear artery: comparison with rat isolated thoracic aorta. Br J Pharmacol 120(2):247–258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Furchgott RF (1967) Techniques for studying antagonism and potentiation of sympathomimetic drugs an isolated tissues. In: Siegler PE, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 256–266

    Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    CAS  PubMed  Google Scholar 

  • Green AF, Boura ALA (1964) Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 370–430

    Google Scholar 

  • Han C, Li J, Minneman KP (1990) Subtypes of alpha 1-adrenoceptors in rat blood vessels. Eur J Pharmacol 190(1–2):97–104

    CAS  PubMed  Google Scholar 

  • Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102(3):774–777

    PubMed Central  PubMed  Google Scholar 

  • Jähnichen S, Eltze M, Pertz HH (2004) Evidence that alpha(1B)-adrenoceptors are involved in noradrenaline-induced contractions of rat tail artery. Eur J Pharmacol 488(1–3):157–167

    PubMed  Google Scholar 

  • Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 1(1):19–26

    Google Scholar 

  • Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskolin derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-trihydroxy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43(I):313–319

    Google Scholar 

  • Regoli D, Barabé J (1980) Pharmacology of bradykinin and related peptides. Pharmacol Rev 32:1–46

    CAS  PubMed  Google Scholar 

  • Teng B, Fil D, Tilley SL, Ledent C, Krahn T, Mustafa SJ (2013) Functional and RNA expression profile of adenosine receptor subtypes in mouse mesenteric arteries. J Cardiovasc Pharmacol 61(1):70–76

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wisskirchen FM, Burt RP, Marshall I (1998) Pharmacological characterization of CGRP receptors of the rat pulmonary artery and inhibition of twitch responses of the rat vas deferens. Br J Pharmacol 123:1673–1683

    Google Scholar 

  • Yamamoto Y, Koike K (2001a) alpha(1)-Adrenoceptor subtypes in the mouse mesenteric artery and abdominal aorta. Br J Pharmacol 134(5):1045–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Koike K (2001b) Characterization of alpha1-adrenoceptor-mediated contraction in the mouse thoracic aorta. Eur J Pharmacol 424(2):131–140

    CAS  PubMed  Google Scholar 

α-Sympatholytic Activity in the Isolated Guinea Pig Seminal Vesicle

  • Brügger J (1945) Die isolierte Samenblase des Meerschweinchens als biologisches Testobjekt zur quantitativen Differenzierung der sympathikolytischen Wirkung der genuinen Mutterkornalkaloide und ihrer Dihydroderivate. Helv Physiol Acta 3:117–134

    Google Scholar 

  • Green AF, Boura ALA (1964) Depressants of peripheral sympathetic nerve function. I. Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 370–430

    Google Scholar 

  • Hsieh JT, Kuo YC, Chang HC, Liu SP, Chen JH, Tsai VF (2014) The role of sympathetic and parasympathetic nerve systems on the smooth muscle of rat seminal vesicles – experimental results and speculation for physiological implication on ejaculation. Andrology 2(1):59–64

    PubMed  Google Scholar 

  • Leitch JL (1954) The use of the rat’s isolated seminal vesicle for the assay of sympatholytic drugs. Br J Pharmacol 9:236–239

    CAS  Google Scholar 

  • Schild HO (1947) pA, a new scale for the measurement of drug antagonism. Br J Pharmacol 2:189–206

    Google Scholar 

  • Sharif SI, Gokhale SD (1986) Pharmacological evaluation of the isolated rat seminal vesicle preparation. J Pharmacol Methods 15:65–75

    CAS  PubMed  Google Scholar 

  • Yono M, Tanaka T, Tsuji S, Hori M, Irie S, Sakata Y, Otani M, Yoshida M, Latifpour J (2012) A comparison of the expression and contractile function of α1-adrenoceptors in seminal vesicle and vas deferens from normotensive and hypertensive rats. Eur J Pharmacol 694(1–3):104–110

    Google Scholar 

α-Sympatholytic Activity in the Isolated Vas Deferens of the Rat

  • Burnstock G, Verkhratsky A (2010) Vas deferens-a model used to establish sympathetic cotransmission. Trends Pharmacol Sci 31(3):131–139

    CAS  PubMed  Google Scholar 

  • Burt RP, Chapple CR, Marshall I (1995) Evidence for a functional alpha 1A- (alpha 1C-) adrenoceptor mediating contraction of the rat epididymal vas deferens and an alpha 1B-adrenoceptor mediating contraction of the rat spleen. Br J Pharmacol 115(3):467–475

    Google Scholar 

  • Cordellini S, Sannomiya P (1984) The vas deferens as a suitable preparation for the study of α-adrenoreceptor molecular mechanisms. J Pharmacol Methods 11:97–107

    CAS  PubMed  Google Scholar 

  • Couldwell C, Jackson A, O’Brien H, Chess-Williams R (1993) Characterization of the α 1-adrenoceptors of rat prostate gland. J Pharm Pharmacol 45:922–924

    CAS  PubMed  Google Scholar 

  • Donoso MV, Montes CG, Lewin J, Fournier A, Calixto JB, Huidobro-Toro JP (1992) Endothelin-1 (ET)-induced mobilization of intracellular Ca2+ stores from the smooth muscle facilitates sympathetic cotransmission by potentiation of adenosine 5΄-triphosphate (ATP) motor activity: studies in the rat vas deferens. Peptides 13:831–840

    CAS  PubMed  Google Scholar 

  • Dumont Y, Fournier A, St-Pierre S, Quirion R (1997) A potent and selective CGRP2 agonist, [Cys(Et)2.7]hCGRPα: comparison in prototypical CGRP1 and CGRP2 in vitro bioassays. Can J Physiol Pharmacol 75:671–676

    CAS  PubMed  Google Scholar 

  • Eltze M (1988) Muscarinic M1 and M2-receptors mediating opposite effects on neuromuscular transmission in rabbit vas deferens. Eur J Pharmacol 151:205–221

    CAS  PubMed  Google Scholar 

  • Holman ME (1975) Nerve-muscle preparations of the vas deferens. In: Daniel EE, Paton DM (eds) Methods in pharmacology, vol 3, Smooth muscle. Plenum Press, New York/London, pp 403–417

    Google Scholar 

  • Hughes J, Kosterlitz HW, Leslie FM (1974) Assessment of the agonistic and antagonistic activities of narcotic analgesic drugs by means of the mouse vas deferens. Br J Pharmacol 51:139P–140P

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hukovic S (1961) Responses of the isolated sympathetic nerve ductus deferens preparation of the guinea pig. Br J Pharmacol 16:188–194

    CAS  Google Scholar 

  • Lindner E (1963) Untersuchungen über das Verhalten des N-(3΄-phenylpropyl-(2΄))-1,1-diphenylpropyl-(3)-amins (Segontin) gegenüber den Wirkungen des Noradrenalins. Arch Int Pharmacodyn 146:475–484

    CAS  PubMed  Google Scholar 

  • Lotti VJ, Taylor DA (1982) α 2-adrenergic agonist and antagonist activity of the respective (–)- and (+)-enantiomers of 6-ethyl-9-oxaergoline (EOE). Eur J Pharmacol 85:211–215

    CAS  PubMed  Google Scholar 

  • Moore PK, Griffiths RT (1982) Pre-synaptic and post-synaptic effects of xylazine and naphazoline on the bisected rat vas deferens. Arch Int Pharmacodyn 260:70–77

    CAS  PubMed  Google Scholar 

  • Mutafova-Yambolieva V, Radomirov R (1993) Effects of endothelin-1 on postjunctionally-mediated purinergic and adrenergic components of rat vas deferens contractile responses. Neuropeptides 24:35–42

    CAS  PubMed  Google Scholar 

  • Ohlin P, Stromblad BCR (1963) Observations on isolated vas deferens. Br J Pharmacol 20:299–306

    CAS  Google Scholar 

  • Oka T, Negishi K, Suda M, Matsumiya T, Inazu T, Ueki M (1980) Rabbits vas deferens: a specific bioassay for opioid κ-receptor agonists. Eur J Pharmacol 73:235–236

    Google Scholar 

  • Poyner DR, Taylor GM, Tomlinson AE, Richardson AG, Smith DM (1999) Characterization of receptors for calcitonin gene-related peptide and adrenomedullin on the guinea pig vas deferens. Br J Pharmacol 126:1276–1282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ross RA, Gibson TM, Brockie HC, Leslie M, Pashmi G, Craib SJ, DiMarzo V, Pertwee RC (2001) Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. Br J Pharmacol 132:631–640

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schild HO (1947) pA, a new scale for the measurement of drug antagonism. Br J Pharmacol 2:189–206

    Google Scholar 

  • Taylor DA, Wiese S, Faison EP, Yarbrough GG (1983) Pharmacological characterization of purinergic receptors in the rat deferens. J Pharmacol Exp Ther 224:40–45

    CAS  PubMed  Google Scholar 

  • van Rossum JM (1965) Different types of sympathomimetic α-receptors. J Pharm Pharmacol 17:202–216

    Google Scholar 

  • Vaupel DB, Su TP (1987) Guinea pig vas deferens preparation may contain both sigma receptors and phencyclidine receptors. Eur J Pharmacol 139:125–128

    CAS  PubMed  Google Scholar 

  • Ward SJ, Mastriani D, Casiano F, Arnold R (1990) Pravadoline: profile in isolated tissue preparations. J Pharmacol Exp Ther 255(3):1230–1239

    CAS  PubMed  Google Scholar 

  • Westfall TD, Westfall DP (2001) Pharmacological techniques for the in vitro study of the vas deferens. J Pharmacol Toxicol Methods 45(2):109–122

    CAS  PubMed  Google Scholar 

  • Wisskirchen FM, Burt RP, Marshall I (1998) Pharmacological characterization of CGRP receptors of the rat pulmonary artery and inhibition of twitch responses of the rat vas deferens. Br J Pharmacol 123:1673–1683

    Google Scholar 

  • Yono M, Tanaka T, Tsuji S, Hori M, Irie S, Sakata Y, Otani M, Yoshida M, Latifpour J (2012) A comparison of the expression and contractile function of α1-adrenoceptors in seminal vesicle and vas deferens from normotensive and hypertensive rats. Eur J Pharmacol 694(1–3):104–110

    Google Scholar 

α-Sympatholytic Activity in the Isolated Rat Spleen

  • Aboud R, Shafii M, Docherty JR (1993) Investigation of the subtypes of alpha 1-adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. Br J Pharmacol 109(1):80–87

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burt RP, Chapple CR, Marshall I (1995a) Evidence for a functional alpha 1A- (alpha 1C-) adrenoceptor mediating contraction of the rat epididymal vas deferens and an alpha 1B-adrenoceptor mediating contraction of the rat spleen. Br J Pharmacol 115(3):467–475

    Google Scholar 

  • Burt RP, Chapple CR, Marshall I (1995b) The role of capacitative Ca2+ influx in the alpha 1B-adrenoceptor-mediated contraction to phenylephrine of the rat spleen. Br J Pharmacol 116(4):2327–2333

    Google Scholar 

  • DiPalma (1964) Animal techniques for evaluating sympathomimetic and parasympathomimetic drugs. In: Nodine JH, Siegler PE (eds) Animal and pharmacologic techniques in drug evaluation, vol I. Year Book Medical Publisher, Chicago, pp 105–110

    Google Scholar 

  • Swamy VC (1971) α-adrenergic blocking agents. In: Turner RA, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York/London, pp 1–19

    Google Scholar 

  • Turner RA (1965) Sympatholytic agents. In: Screening methods in pharmacology, vol I. Academic, New York/London, pp 143–151

    Google Scholar 

α-Sympatholytic Activity in the Isolated Rat Anococcygeus Muscle

  • Brave SR, Bhat S, Hobbs AJ, Tucker JF, Gibson A (1993) Influence of l-N G-nitroarginine on sympathetic nerve induced contraction and noradrenaline release in the rat anococcygeus muscle. J Auton Pharmacol 13:219–225

    CAS  PubMed  Google Scholar 

  • Burn HJ, Rand MJ (1960) The relation of circulating noradrenaline to the effect of sympathetic stimulation. J Physiol 150:295–305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cakici I, Tunctan B, Abacioglu N, Kanzik I (1993) Epithelium dependent responses of serotonin in a coaxial bioassay system. Eur J Pharmacol 236:97–105

    CAS  PubMed  Google Scholar 

  • De Godoy MAF, Accorsi-Mendonça D, de Oliviera AM (2003) Inhibitory effects of atropine and hexamethonium on the angiotensin II-induced contraction of the rat anococcygeus muscles. Naunyn Schmiedebergs Arch Pharmacol 367:176–182

    PubMed  Google Scholar 

  • Dehpour AR, Tajkhorshid E, Radjaee-Behbahani N, Kheirollahi K (1993) Methoxamine-induced rhythmic activity in rabbit anococcygeus muscle. Gen Pharmacol 24:841–845

    CAS  PubMed  Google Scholar 

  • Doggrell SA (1980) The assessment of pre- and post-synaptic a-adrenoceptor blocking activity of drugs using the rat anococcygeus muscle. J Pharmacol Methods 3:323–331

    CAS  PubMed  Google Scholar 

  • Doggrell SA (1983) On the assessment of the potency of antagonists using the rat isolated anococcygeus muscle. J Pharmacol Methods 10:243–254

    CAS  PubMed  Google Scholar 

  • Gibson A, Gillespie JS (1973) The effect of immunosympathectomy and of 6-hydroxydopamine on the response of the rat anococcygeus muscle to nerve stimulation and to some drugs. Br J Pharmacol 47:261–267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gibson A, Hobbs AJ, Mirzazadeh D (1990) l-N G-nitroarginine is a potent inhibitor of non-adrenergic, non-cholinergic relaxations in the rat anococcygeus muscle. Eur J Pharmacol 183:1793

    Google Scholar 

  • Gillespie JS (1972) The rat anococcygeus muscle and its response to nerve stimulation and to some drugs. Br J Pharmacol 45:404–416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gillespie JS (1980) The physiology and pharmacology of the anococcygeus muscle. Trends Pharmacol Sci 1:453–457

    CAS  Google Scholar 

  • Gwee MCE, Cheahj LS, Shoon ML (1995) Prejunctional and postjunctional inhibition of adrenergic transmission in the rat isolated anococcygeus muscle by cimetidine. J Auton Pharmacol 15:177–185

    CAS  PubMed  Google Scholar 

  • Iravani MM, Zar MA (1993) Differential effects of nifedipine on nerve-mediated and noradrenaline-evoked contractions of rat anococcygeus muscle. Eur J Pharmacol 250:193–195

    CAS  PubMed  Google Scholar 

  • Kulkarni SK, Sharma A (1994) Rat anococcygeus: a dynamic smooth muscle preparation for experimental pharmacology. Methods Find Exp Clin Pharmacol 16:379–385

    CAS  PubMed  Google Scholar 

  • Mudumbi RV, Leighton HJ (1994) Analysis of bradykinin-induced relaxations in the rat isolated anococcygeus muscle. Life Sci 54:813–821

    CAS  PubMed  Google Scholar 

  • Najbar ATZ, Li CG, Rand MJ (1996) Evidence for two distinct P-2-purinoreceptors subserving contraction of the rat anococcygeus smooth muscle. Br J Pharmacol 118:537–542

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oliveira AM, Bendhack LM (1992) Dopamine-induced contractile responses of the rat anococcygeus muscle. Arch Int Pharmacodyn Ther 316:97–104

    CAS  PubMed  Google Scholar 

  • Pettibone DJ, Clineschmidt BV, Guidotti MT, Lis EV, Reiss DR, Woyden CJ, Bock MG, Evans BE, Freidinger RM, Hobbs DW, Veber DF, Williams PD, Chiu SHL, Thompson KL, Schorn TW, Siegl PKS, Kaufman MJ, Cukierski MA, Haluska GJ, Cook MJ, Novy MJ (1993) L-368,899, a potent orally active oxytocin antagonist for potential use in preterm labor. Drug Dev Res 30:129–142

    CAS  Google Scholar 

  • Radjaee-Behbahani N, Dehpour AR, Tajkhorshid E, Kheirollahi K (1996) Clonidine-induced rhythmic activity in rabbit anococcygeus muscle. Gen Pharmacol 27:525–528

    CAS  PubMed  Google Scholar 

  • Rand MJ, Li CG (1993) Modulation of acetylcholine-induced contractions of the rat anococcygeus muscle by activation of nitrergic nerves. Br J Pharmacol 110:1479–1482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schild HO (1947) pA, a new scale for the measurement of drug antagonism. Br J Pharmacol 2:189–206

    Google Scholar 

  • Toque HA, Priviero FB, Zemse SM, Antunes E, Teixeira CE, Webb RC (2009) Effect of the phosphodiesterase 5 inhibitors sildenafil, tadalafil and vardenafil on rat anococcygeus muscle: functional and biochemical aspects. Clin Exp Pharmacol Physiol 36(4):358–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang SH, Wang CY, Jiang ZZ, Ni PZ, Zhou JP, Xi BM, Chen WH (2011) Synthesis and blocking activities of isoindolinone- and isobenzofuranone-containing phenoxylalkylamines as potent α(1)-adrenoceptor antagonists. Chem Pharm Bull (Tokyo) 59(1):96–99

    CAS  Google Scholar 

β 1-Sympatholytic Activity in Isolated Guinea Pig Atria

  • Berthold H, Scholtysik G, Schaad A (1990) Identification of cardiotonic sodium channel activators by potassium depolarization in isolated guinea pig atria. J Pharmacol Methods 24:121–135

    CAS  PubMed  Google Scholar 

  • Boer DC, Bassani JW, Bassani RA (2011) Functional antagonism of β-adrenoceptor subtypes in the catecholamine-induced automatism in rat myocardium. Br J Pharmacol 162(6):1314–1325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doggrell DH (1988) Simultaneous assessment of membrane-stabilizing and β-adrenoreceptor blocking activity of drugs with the rat isolated left atria. J Pharmacol Methods 19:93–107

    CAS  PubMed  Google Scholar 

  • Doggrell S, Hughes EW (1986) On the assessment of the β-adrenoreceptor blocking activity of propranolol using the rat isolated right ventricle. J Pharmacol Methods 15:119–131

    CAS  PubMed  Google Scholar 

  • Furchgott RF (1967) Techniques for studying antagonism and potentiation of sympathomimetic drugs an isolated tissues. In: Siegler PE, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 256–266

    Google Scholar 

  • Gardner NM, Broadley KJ (1999) Analysis of the atypical characteristics of adenosine receptors mediating negative inotropic and chronotropic responses of guinea-pig isolated atria and papillary muscles. Br J Pharmacol 127(7):1619–1626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goineau S, Castagné V, Guillaume P, Froget G (2012) The comparative sensitivity of three in vitro safety pharmacology models for the detection of lidocaine-induced cardiac effects. J Pharmacol Toxicol Methods 66(1):52–58

    CAS  PubMed  Google Scholar 

  • Grodzinska L, Gryglewski R (1971) Action of beta-adrenolytics on the isolated guinea pig atria. Arch Int Pharmacodyn Ther 191:133–141

    CAS  PubMed  Google Scholar 

  • Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in pharmacology, vol 5, Myocardial biology. Plenum Press, New York/London, pp 111–128

    Google Scholar 

  • Levy JV (1971) Isolated atrial preparations. In: Schwartz A (ed) Methods in pharmacology, vol 1. Appleton-Century-Crofts, Meredith Corporation, New York, pp 77–104

    Google Scholar 

  • Olson RD, Vestal RE, Mednhall WA, Mudumbi RV (1995) Quantification of the voltage-response relationship between punctate and field electrical stimulation and the function of isolated rat left atria and papillary muscles. J Pharmacol Toxicol Methods 34:225–230

    CAS  PubMed  Google Scholar 

  • Penson PE, Ford WR, Kidd EJ, Broadley KJ (2008) Activation of beta-adrenoceptors mimics preconditioning of rat-isolated atria and ventricles against ischaemic contractile dysfunction. Naunyn Schmiedebergs Arch Pharmacol 378(6):589–597

    CAS  PubMed  Google Scholar 

  • Quan HX, Jin JY, Wen JF, Cho KW (2010) Beta1-adrenergic receptor activation decreases ANP release via cAMP-Ca2+ signaling in perfused beating rabbit atria. Life Sci 87(7–8):246–253

    CAS  PubMed  Google Scholar 

  • Shirayama T, Inoue D, Inoue M, Tatsumi T, Yamahara Y, Asayama J, Katsume H, Nakagawa M (1991) Electrophysiological effects of sodium channel blockers on guinea pig left atrium. J Pharmacol Exp Ther 259(2):884–893

    CAS  PubMed  Google Scholar 

β 2-Sympatholytic Activity in the Isolated Tracheal Chain

  • Buckner CK, Fishleder RI, Conklin R, Graziano FM (1995) A comparison of the effects of isoproterenol and forskolin on immunologic and nonimmunologic release of histamine from guinea-pig superfused trachea and dispersed tracheal cells. J Pharmacol Toxicol Methods 33:47–52

    CAS  PubMed  Google Scholar 

  • Castillo JC, de Beer EJ (1947) The tracheal chain. I. A preparation for the study of antispasmodics with particular reference to bronchodilator drugs. J Pharmacol Exp Ther 90:104–109

    CAS  PubMed  Google Scholar 

  • Cheng LH, Wu PC, Liu SC, Chiu FS, Chu YH, Chang YN, Wang HW (2014) Effects of sumatriptan nasal spray (Imigran) on isolated rat’s tracheal smooth muscle. Eur Arch Otorhinolaryngol [Epub ahead of print]

    Google Scholar 

  • Fedan JS, Van Scott MR, Johnston RA (2001) Pharmacological techniques for the in vitro study of airways. J Pharmacol Toxicol Methods 45(2):159–174

    CAS  PubMed  Google Scholar 

  • Foster RW (1965) The nature of the adrenergic receptors of the trachea of the guinea-pig. J Pharm Pharmacol 18:1–12

    Google Scholar 

  • Green AF, Boura ALA (1964) Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 370–430

    Google Scholar 

  • Liu SC, Chu YH, Kao CH, Wu CC, Wang HW (2014) Steroids and antihistamines synergize to inhibit rat’s airway smooth muscle contractility. Eur Arch Otorhinolaryngol [Epub ahead of print]

    Google Scholar 

  • Longmore J, Miller M, Trezise DJ, Weston AL (1991) Further studies on the mechanism of action of isoprenaline in bovine tracheal smooth muscle. Br J Pharmacol 102:Proc Suppl 182P

    Google Scholar 

  • Lundblad KA, Persson CG (1988) The epithelium and the pharmacology of guinea-pig tracheal tone in vitro. Br J Pharmacol 93:909–917

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Donnell SR, Wanstall JC (1980) The use of guinea pig K+-depolarized tracheal chain preparations in β-adrenoreceptor studies. J Pharmacol Methods 4:43–50

    PubMed  Google Scholar 

  • Trendelenburg P (1912) Physiologische und pharmakologische Untersuchungen an der isolierten Bronchialmuskulatur. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 69:79–107

    Google Scholar 

  • Van Rossum JM (1963) Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn Ther 143:299–300

    Google Scholar 

  • Waldeck B, Widmark E (1985) Comparison of the effects of forskolin and isoprenaline on tracheal, cardiac and skeletal muscle from guinea-pig. Eur J Pharmacol 112:349–353

    CAS  PubMed  Google Scholar 

Angiotensin Converting Enzyme Inhibition in the Isolated Guinea Pig Ileum

  • Campbell DJ, Alexiou T, Xiao HD, Fuchs S, McKinley MJ, Corvol P, Bernstein KE (2004) Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension 43:854–859

    CAS  PubMed  Google Scholar 

  • Carmona AK, Juliano L (1996) Inhibition of angiotensin converting enzyme and potentiation of bradykinin by retro-inverso analogues of short peptides and sequences related to angiotensin I and bradykinin. Biochem Pharmacol 51(8):1051–1060

    CAS  PubMed  Google Scholar 

  • Minshall RD, Nedumgottil SJ, Igić R, Erdös EG, Rabito SF (2000) Potentiation of the effects of bradykinin on its receptor in the isolated guinea pig ileum. Peptides 21(8):1257–1264

    CAS  PubMed  Google Scholar 

  • Rubin B, Laffan RJ, Kotler DG, O’Keefe EH, Demaio DA, Goldberg ME (1978) SQ 14,225 (D-3-mercapto-2-methylpropanoyl- l-proline), a novel orally active inhibitor of angiotensin I-converting enzyme. J Pharmacol Exp Ther 204:271–280

    CAS  PubMed  Google Scholar 

Contractile and Relaxing Activity on Isolated Blood Vessels Including Effects of Potassium-Channel Openers

  • Ashcroft JH, Ashcroft FM (1990) Properties and functions of ATP-sensitive K-channels. Cell Signal 2:197–214

    CAS  PubMed  Google Scholar 

  • Ashcroft FM, Gribble FM (2000) New windows on the mechanism of action of KATP channel openers. Trends Pharmacol Sci 21:439–445

    CAS  PubMed  Google Scholar 

  • Barhanin J, Duprat F, Fink M, Guillemare E, Heurteaux C, Honoré E, Lesage F, Patel A, Reyes R, Romey G, Lazdunski M (1998) Novel structural and functional types of K+ channels. Naunyn Schmiedeberg’s Arch Pharmacol 358(Suppl 1):R23

    Google Scholar 

  • Blatz AL, Magleby KL (1987) Calcium-activated potassium channels. Trends Neurosci 10:463–467

    CAS  Google Scholar 

  • Bolton TB, Prestwich SA, Zhang HL (1998) The target channel for potassium channel opener drugs in vasodilatation. Naunyn Schmiedeberg’s Arch Pharmacol 358(Suppl 1):R200

    Google Scholar 

  • BrÃ¥tveit M, Helle KB (1984) VIP inhibition of vascular smooth muscle: complementary to β 2-adrenoceptor mediated relaxation in the isolated rat portal vein. Acta Physiol Scand 121:269–276

    PubMed  Google Scholar 

  • Calderone V, Martinotti E, Scatizzi R, Pelegrini A, Breschi MC (1996) A modified aortic multiple-ring preparation for functional studies. J Pharmacol Toxicol Methods 35:131–138

    CAS  PubMed  Google Scholar 

  • Cheng H, Fetscher C, Schäfers RF, Wambach G, Philipp TH, Michel MC (1996) Effects of noradrenaline and neuropeptide Y on rat mesenteric microvessel contraction. Naunyn Schmiedeberg’s Arch Pharmacol 353:314–323

    Google Scholar 

  • Cook NS (1988) The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci 9:21–28

    CAS  PubMed  Google Scholar 

  • Dacquet C, Mironneau C, Mironneau J (1987) Effects of calcium entry blockers on calcium-dependent contractions of rat portal vein. Br J Pharmacol 92:203–211

    PubMed Central  CAS  PubMed  Google Scholar 

  • De la Lande IS, Stafford I, Horowitz JD (1996) Heterogeneity of glyceryl trinitrate response in isolated bovine coronary arteries. Eur J Pharmacol 318:65–71

    PubMed  Google Scholar 

  • Edwards G, Weston AH (1990) Potassium channel openers and vascular smooth muscle relaxation. Pharmacol Ther 48:237–258

    CAS  PubMed  Google Scholar 

  • Edwards G, Henshaw M, Miller M, Weston AH (1991) Comparison of the effects of several potassium-channel openers on rat bladder and rat portal vein in vitro. Br J Pharmacol 102:679–680

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards G, Weston AH (1993) The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol 33:597–637

    CAS  PubMed  Google Scholar 

  • Eltze M (1989) Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery. Eur J Pharmacol 165:231–239

    CAS  PubMed  Google Scholar 

  • Fouda AK, Capdeville C, Henrion D, Thorin-Trescases N, Thorin E, Atkinson J (1991) Differences between the in vitro vasoconstrictor responses of the tail artery to potassium and norepinephrine between spontaneously hypertensive, renovascular hypertensive, and various strains of normotensive rats. J Pharmacol Methods 25:61–68

    CAS  PubMed  Google Scholar 

  • French JF, Riera LC, Sarmiento JG (1990) Identification of high and low (GTP-sensitive) affinity [3H]glibenclamide binding sites in cardiac ventricular membranes. Biochem Biophys Res Commun 167:1400–1405

    CAS  PubMed  Google Scholar 

  • Frøbert O, Mikkelsen EO, Gregersen H, Nyborg NBC, Bagger JP (1996) Porcine coronary artery pharmacodynamics in vitro evaluated by a new intravascular technique: relation to axial stretch. J Pharmacol Toxicol Methods 36:13–19

    PubMed  Google Scholar 

  • Gurden MF, Coates J, Ellis F et al (1993) Functional characteristics of three adenosine receptor types. Br J Pharmacol 109:693–698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamel E, Grégoire L, Lau B (1993) 5-HT1 receptors mediating contractions in bovine cerebral arteries: a model for human cerebrovascular ‘5-HT1D β’ receptors. Eur J Pharmacol 242:75–82

    CAS  PubMed  Google Scholar 

  • Hamilton TC, Weston AH (1989) Cromakalim, nicorandil and pinacidil: novel drugs which open potassium channels in smooth muscle. Gen Pharmacol 20:1–9

    CAS  PubMed  Google Scholar 

  • Hamilton TC, Weir SW, Weston AH (1986) Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol 88:103–111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izumi H, Tanaka Y, Okada N, Izawa T (1996) Structure-activity relationship of a novel K+-channel opener and related compounds in porcine coronary artery. Gen Pharmacol 27:985–989

    CAS  PubMed  Google Scholar 

  • Jan LY, Jan YN (1990) How might the diversity of potassium channels be generated? Trends Neurosci 13:415–419

    CAS  PubMed  Google Scholar 

  • Kent RL, Harakal C, Santamore WP, Carey RA, Bove AA (1982) An index for comparing the inhibitory action of vasodilators. Eur J Pharmacol 85:85–91

    CAS  PubMed  Google Scholar 

  • Kurachi Y (1998) Molecular pharmacology of potassium channels. Naunyn Schmiedeberg’s Arch Pharmacol 358(Suppl 1):R6

    Google Scholar 

  • Langer SZ, Trendelenburg U (1969) The effect of a saturable uptake mechanism on the slopes of dose-response curves for sympathomimetic amines and on the shifts of dose response curves produced by a competitive antagonist. J Pharmacol Exp Ther 167:117–142

    CAS  PubMed  Google Scholar 

  • Lauth M, Cattaruzza M, Hecker M (2001) ACE inhibitor and AT1 antagonist blockade of deformation-induced gene expression in the rabbit jugular vein through B2 receptor activation. Arterioscler Thromb Vasc Biol 21:61–66

    CAS  PubMed  Google Scholar 

  • Löhn M, Kämpf D, Gui-Xuan C, Haller H, Luft FC, Gollasch M (2002) Regulation of arterial tone by smooth muscle myosin type II. Am J Physiol Cell Physiol 283(5):C1383–C1389

    PubMed  Google Scholar 

  • Makujina SR, Abebe W, Ali S, Mustafa SJ (1995) Simultaneous measurement of intracellular calcium and tension in vascular smooth muscle: validation of the everted ring preparation. J Pharmacol Toxicol Methods 34:157–163

    CAS  PubMed  Google Scholar 

  • Martin W, Villani GM, Jothianandan D, Furchgott RF (1985) Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232:708–716

    CAS  PubMed  Google Scholar 

  • McBean DE, Harper AM, Rudolphi KA (1986) Effects of adenosine and its analogues on the cerebrovasculature and their antagonism by 8-phenyltheophylline: identification of the receptor(s) involved. Pfluegers Arch 407(Suppl 1):31

    Google Scholar 

  • McBean DE, Harper AM, Rudolphi KA (1988) Effects of adenosine and its analogues on porcine basilar arteries: are only A2 receptors involved? J Cereb Blood Flow Metab 8:40–45

    CAS  PubMed  Google Scholar 

  • Meisheri KD, Dubray LAC, Olynek JJ (1990) A sensitive in vitro functional assay to detect K+-channel-dependent vasodilators. J Pharm Methods 24:251–261

    CAS  Google Scholar 

  • Merkel LA, Lappe RW, Rivera LM, Cox BF, Perrone MH (1992) Demonstration of vasorelaxant activity with an A1- selective adenosine agonist in porcine coronary artery: involvement of potassium channels. J Pharmacol Exp Ther 260:437–443

    CAS  PubMed  Google Scholar 

  • Miller JA, Velayo NL, Dage RC, Rampe D (1991) High affinity [3H]glibenclamide binding sites in rat neuronal and cardiac tissue: localization and development characteristics. J Pharmacol Exp Ther 256:358–364

    CAS  PubMed  Google Scholar 

  • Mironneau J, Gargouil YM (1979) Action of indapamide on excitation- contraction coupling in vascular smooth muscle. Eur J Pharmacol 57:57–67

    CAS  PubMed  Google Scholar 

  • Miwa A, Kasai H, Motoki K, Jinno Y, Yokoyama T, Fukushima H, Ogawa N (1993) Effect of KRN2391, a novel vasodilator, on endothelin-1-induced contraction of porcine coronary artery. Comparison with cromakalim, nitroglycerin and nifedipine. Arch Int Pharmacodyn Ther 326:52–61

    CAS  PubMed  Google Scholar 

  • Mourre C, Hugues M, Lazdunski M (1986) Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+- dependent K+ channels. Brain Res 382:239–249

    CAS  PubMed  Google Scholar 

  • Mourre C, Widman C, Lazdunski M (1990) Sulfonylurea binding sites associated with ATP-regulated K+ channels in the central nervous system: autoradiographic analysis of their distribution and ontogenesis, and their localization in mutant mice cerebellum. Brain Res 519:29–43

    CAS  PubMed  Google Scholar 

  • Nishimura H, Buikema H, Baltatu O, Ganten D, Urata H (1998) Functional evidence for alternative ANG II-forming pathways in hamster cardiovascular system. Am J Physiol 275:H1307–H1312

    CAS  PubMed  Google Scholar 

  • Nishimura Y, Suzuki A (1995) Enhanced contractile responses mediated by different 5-HT receptor subtypes in basilar arteries, superior mesenteric arteries and thoracic aortas from stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol Suppl 1:S99–S101

    Google Scholar 

  • O’Donnell SR, Wanstall JC (1987) Choice and concentration of contractile agent influence responses of rat aorta to vascular relaxant drugs. J Pharm Pharmacol 39:848–850

    PubMed  Google Scholar 

  • Pikkers P, Hughes AD (1995) Relaxation and decrease in [Ca2+]i by hydrochlorothiazide in guinea pig isolated mesenteric arteries. Br J Pharmacol 114:703–707

    Google Scholar 

  • Pongs O (1992) Structural basis of voltage-gated K+ channel pharmacology. Trends Pharmacol Sci 13:359–365

    CAS  PubMed  Google Scholar 

  • Rehm H, Lazdunski M (1988) Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I. Proc Natl Acad Sci U S A 85:4919–4923

    PubMed Central  CAS  PubMed  Google Scholar 

  • Satoh K, Mori T, Yamada H, Taira N (1993) Nicorandil as a nitrate, and cromakalim as a potassium channel opener, dilate isolated porcine large coronary arteries in an agonist-nonselective manner. Cardiovasc Drugs Ther 7:691–699

    CAS  PubMed  Google Scholar 

  • Saxena PR, Maassen van den Brink A, Heiligers JPC, Scalbert E, Guardiola-Lemaitire B (1996a) Effects of S20794, a close analogue of sumatriptan, on porcine carotid haemodynamics and human isolated coronary artery. Pharmacol Toxicol 79:199–204

    CAS  PubMed  Google Scholar 

  • Saxena PR, De Vries P, Heiligers JPC, Maassen van den Brink A, Bax WA, Barf T, Wikström H (1996b) Investigations with GMC2021 in experimental models predictive of antimigraine activity and coronary side-effect potential. Eur J Pharmacol 312:53–62

    CAS  PubMed  Google Scholar 

  • Saxena PR, De Vries P, Wang W, Heiligers JPC, Maassen van den Brink A, Bax WA, Yocca FD (1997) Effects of avitriptan, a new 5-HT1B/1D receptor agonist, in experimental models predictive of antimigraine activity and coronary side-effect potential. Naunyn Schmiedeberg’s Arch Pharmacol 355:295–302

    CAS  Google Scholar 

  • Scherf H, Pietsch R, Landsberg G, Kramer HJ, Düsing R (1986) Converting enzyme inhibitor ramipril stimulates prostacyclin synthesis by isolated rat aorta: evidence for a kinin-dependent mechanism. Klin Wochenschr 64:742–745

    CAS  PubMed  Google Scholar 

  • Shetty SS, Weiss GB (1987) Dissociation of actions of BRL 34915 in the rat portal vein. Eur J Pharmacol 141:485–488

    CAS  PubMed  Google Scholar 

  • Smith DD, Li J, Wang Q, Murphy RF, Adrian TE, Elias Y, Bockman CS, Abel PW (1993) Synthesis and biological activity of C-terminally truncated fragments of human α-calcitonin gene-related peptide. J Med Chem 36:2536–2541

    CAS  PubMed  Google Scholar 

  • Szentmiklósi AJ, Ujifalusi A, Cseppentö A, Nosztray K, Kovács P, Szabó JZ (1995) Adenosine receptors mediate both contractile and relaxant effects of adenosine in main pulmonary artery of guinea pigs. Naunyn Schmiedeberg’s Arch Pharmacol 351:417–425

    Google Scholar 

  • Wann KT (1993) Neuronal sodium and potassium channels: structure and function. Br J Anaesth 71:2–14

    CAS  PubMed  Google Scholar 

  • Werner G, Klaus W, Kojda G, Fricke U (1991) Hydrophobic properties of novel dihydronaphthyridine calcium antagonists and biological activity in porcine isolated cardiac and vascular smooth muscle. Naunyn Schmiedeberg’s Arch Pharmacol 344:337–344

    CAS  Google Scholar 

  • Weston AH, Edwards G (1992) Recent progress in potassium channel opener pharmacology. Biochem Pharmacol 43:47–54

    CAS  PubMed  Google Scholar 

  • Wilson C, Buckingham RE, Mootoo S, Parrott LS, Hamilton TC, Pratt SC, Cawthorne MA (1988) In vivo and in vitro studies of cromakalim (BRL 34915) and glibenclamide in the rat. Br J Pharmacol 93:126P

    Google Scholar 

  • Yokoyama T, Okada Y, Jinno Y, Izumi H, Izawa T, Ogawa N (1994) Comparative analysis of vasodilating mechanisms of Ki1769, Ki3315 and KRN2391, pyridinecarboximidamide derivatives, in porcine isolated coronary artery. Gen Pharmacol 25:941–945

    CAS  PubMed  Google Scholar 

Isolated Guinea Pig Ureter

  • Al-Aown A, Kyriazis I, Kallidonis P, Sakellaropoulos G, Vrettos T, Perimenis P, Filos K, Liatsikos E (2011) Vardenafil effect on ureteric smooth muscle: in vitro study in porcine model. J Endourol 25(3):505–509

    PubMed  Google Scholar 

  • Jerde TJ, Saban R, Nakada SY (1999) Evaluation of ureteric contraction: a comparison among ring, spiral-cut and longitudinal segments. BJU Int 83(1):95–100

    CAS  PubMed  Google Scholar 

  • Kalsner S (1992) Adrenergic presynaptic antagonists and their mechanism of action in smooth muscle. Am J Physiol 262 (Regul Intergr Comp Physiol 31):R400–R406

    Google Scholar 

  • Kobayashi S, Tomiyama Y, Maruyama K, Hoyano Y, Yamazaki Y, Kusama H (2009) Effects of four different alpha(1)-adrenoceptor antagonists on alpha-adrenoceptor agonist-induced contractions in isolated mouse and hamster ureters. J Smooth Muscle Res 45(4):187–195

    PubMed  Google Scholar 

  • Kontani H, Ginkawa M, Sakai T (1993) A simple method for measurement of ureteric peristaltic function in vivo and the effects of drugs acting on ion channels applied from the ureter lumen in anesthetized rats. Jpn J Pharmacol 62:331–338

    CAS  PubMed  Google Scholar 

  • Laird JMA, Cervero F (1996) Effects of metamizol on nociceptive responses to stimulation of the ureter and on ureter motility in anaesthetized rats. Inflamm Res 45:150–154

    CAS  PubMed  Google Scholar 

  • Linz W, Englert H, Kaiser J, Klaus E, Metzger H, Wirth K, Schölkens BA (1992) Evidence for an involvement of potassium channels in the action of forskolin and 1,9-dideoxyforskolin. Pharma Pharmacol Lett 1:99–102

    CAS  Google Scholar 

  • Maggi CA, Giuliani S (1994) Calcitonin gene-related peptide (CGRP) regulates excitability and refractory period of the guinea pig ureter. J Urol 152:520–524

    CAS  PubMed  Google Scholar 

  • Roza C, Laird JMA (1995) Pressor responses to distension of the ureter in anaesthetized rats: characterization of a model of acute visceral pain. Neurosci Lett 198:9–12

    CAS  PubMed  Google Scholar 

  • Susano S, Moriyama K, Shimamura K (1992) Potentiation of twitch contraction in guinea pig ureter by sodium vanadate. Am J Physiol Cell Physiol 263:C953–C958

    Google Scholar 

  • Villa L, Buono R, Fossati N, Rigatti P, Montorsi F, Benigni F, Hedlund P (2013) Effects by silodosin on the partially obstructed rat ureter in vivo and on human and rat isolated ureters. Br J Pharmacol 169(1):230–238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida S, Kuga T (1980) Effects of field stimulation on cholinergic fibers of the pelvic region in the isolated guinea pig ureter. Jpn J Physiol 30:415–426

    CAS  PubMed  Google Scholar 

  • Young CJ, Attele A, Toledano A, Núñez R, Moss J (1994) Volatile anesthetics decrease peristalsis in the guinea pig ureter. Anesthesiology 81:452–458

    CAS  PubMed  Google Scholar 

Isolated Corpus Cavernosum

  • Ari G, Vardi Y, Hoffman A, Finberg JPM (1996) Possible role of endothelins in penile erection. Eur J Pharmacol 307:69–74

    CAS  PubMed  Google Scholar 

  • Ayajiki K, Hayashida H, Okamura T, Toda N (1997) Pelvic nerve stimulation-induced pressure responses in corpus cavernosum of anesthetized dogs. Am J Physiol 273, Heart Circ Physiol 42:H2141–H2145

    Google Scholar 

  • Aydin S, Ozbeck H, Yilmaz Y, Atilla MK, Bayrakli H, Catin H (2001) Effects of sildenafil citrate, acetylcholine, and sodium nitroprusside on the relaxation of rabbit cavernosal tissue in vitro. Urology 58:119–124

    CAS  PubMed  Google Scholar 

  • Ballard SA, Turner LA, Naylor AM (1996) Sildenafil, a potent selective inhibitor of type 5 phosphodiesterase, enhances nitric oxide-dependent relaxation of rabbit corpus cavernosum. Br J Pharmacol 118, Proc Suppl:153P

    Google Scholar 

  • Ballard SA, Gingell CJ, Tang K, Turner LA, Price ME, Naylor AM (1998) Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and the activities of cyclic nucleotide phosphodiesterase isozymes. J Urol 159:2164–2171

    CAS  PubMed  Google Scholar 

  • Bischoff E, Schneider K (2000) A conscious-rabbit model to study vardenafil hydrochloride and other agents that influence penile erection. Int J Impot Res 13:230–235

    Google Scholar 

  • Bush PA, Aronson WJ, Buga GM, Ignarro LJ (1992) Nitric oxide is a potent relaxant of human and rabbit corpus cavernosum. J Urol 147:1650–1655

    CAS  PubMed  Google Scholar 

  • Carter AJ, Ballard SA, Naylor AM (1998) Effect of the selective phosphodiesterase type5 inhibitor sildenafil on erectile function in the anesthetized dog. J Urol 160:242–246

    CAS  PubMed  Google Scholar 

  • Cashen DE, McIntyre DE, Martin WJ (2002) Effects of sildenafil on erectile activity in mice lacking endothelial nitric oxide synthase. Br J Pharmacol 136:693–700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cellec S, Moncada S (1997) Nitrergic control of peripheral sympathetic responses in the human corpus cavernosum. Proc Natl Acad Sci U S A 94:8226–8231

    Google Scholar 

  • Cellec S, Moncada S (1998) Nitrergic transmission mediates the non-adrenergic non-cholinergic responses in the clitoral corpus cavernosum of the rabbit. Br J Pharmacol 125:1627–1629

    Google Scholar 

  • Champion HC, Wang R, Hellstrom WJG, Kadowitz PJ (1997) Nociceptin, a novel endogenous ligand for the ORL1 receptor, has potent erectile activity in the cat. Am J Physiol 273, Endocrinol Metab 36:E214–E219

    Google Scholar 

  • Chan YH, Huang C-L, Chan SHH (1996) Nitric oxide as a mediator of cocaine-induced penile erection in the rat. Br J Pharmacol 118:155–161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang AYW, Chan JYH, Chan SHH (1998) Participation of hippocampal formation in negative feedback inhibition of penile erection in rats. Brain Res 788:160–168

    CAS  PubMed  Google Scholar 

  • Chuang AT, Strauss JD, Murphy RA, Steers WD (1998) Sildenafil, a type-5 cGMP phosphodiesterase inhibitor, specifically amplifies cGMP-dependent relaxation in rabbit corpus cavernosum muscle in vitro. J Urol 160:257–261

    CAS  PubMed  Google Scholar 

  • Comiter CV, Sullivan MP, Yalla SV, Kifor I (1997) Effect of angiotensin II on corpus cavernosum smooth muscle in relation to nitric oxide environment: in vitro studies in canines. Int J Impot Res 9:135–140

    CAS  PubMed  Google Scholar 

  • Gemalmaz H, Waldeck K, Chapman TN, Tuttle JB, Steers WD, Andersson KE (2001) In vivo and in vitro investigation of the effects of sildenafil on rat cavernous smooth muscle. J Urol 165:1010–1014

    CAS  PubMed  Google Scholar 

  • Gocmen C, Ucar P, Singirik E, Dikmen A, Baysal F (1997) An in vitro study of nonadrenergic-noncholinergic activity on the cavernous tissue of mouse. Urol Res 25:269–275

    CAS  PubMed  Google Scholar 

  • Gupta S, Moreland RB, Yang S, Gallant CM, Goldstein I, Traish A (1998) The expression of functional postsynaptic α 2-adrenoceptors in the corpus cavernosum smooth muscle. Br J Pharmacol 123:1237–1245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashida H, Okamura T, Tomoyoshi T, Toda N (1996) Neurogenic nitric oxide mediates relaxation of canine corpus cavernosum. J Urol 155:1122–1127

    CAS  PubMed  Google Scholar 

  • Holmquist F, Hedlund H, Andersson KE (1991) l-N G-nitro arginine inhibits non-adrenergic, non-cholinergic relaxation of human isolated corpus cavernosum. Acta Physiol Scand 141:441–442

    CAS  PubMed  Google Scholar 

  • Jeremy JY, Ballard SA, Naylor AM, Miller MAW, Angelini GD (1997) Effects of sildenafil, a type-5 cGMP phosphodiesterase inhibitor, and papaverine on cyclic GMP and cyclic AMP levels in the rabbit corpus cavernosum in vitro. Br J Urol 79:958–963

    CAS  PubMed  Google Scholar 

  • Lin C-S, Lau A, Tu R, Lue TF (2000) Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum. Biochem Biophys Res Commun 268:628–635

    CAS  PubMed  Google Scholar 

  • Lin RJ, Wu BN, Lo YC, Shen KP, Lin YT, Huang CH, Chen IJ (2002) KMUP-1 relaxes rabbit corpus cavernosum smooth muscle in vitro and in vivo: involvement of cyclic GMP and K+ channels. Br J Pharmacol 135:1159–1166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S-P, Horan P, Levin RM (1998) Digital analysis of the pharmacological effects of in vitro ischemia of rabbit corpus cavernosum. Pharmacology 56:216–222

    CAS  PubMed  Google Scholar 

  • Mills TM, Lewis RW, Stopper VS, Reilly CM (1998) Loss of alpha-adrenergic effect during the erectile response in the long-term diabetic rat. J Androl 19:473–478

    CAS  PubMed  Google Scholar 

  • Mizusama H, Hedlund P, HÃ¥kansson A, Alm P, Andersson KE (2001) Morphological and functional in vitro and in vivo characterization of the mouse corpus cavernosum. Br J Pharmacol 132:1333–1341

    Google Scholar 

  • Moody JA, Vernet D, Laidlaw S, Rajfer J, Gonzalez-Cadavid HF (1997) Effects of long-term oral administration of l-arginine on the rat erectile response. J Urol 158:942–947

    CAS  PubMed  Google Scholar 

  • Noto T, Inoue H, Ikeo T, Kikkawa K (2000) Potentiation of penile tumescence by T-1032, a new potent and specific phosphodiesterase type V inhibitor, in dogs. J Pharmacol Exp Ther 294:870–875

    CAS  PubMed  Google Scholar 

  • Okamura T, Ayajiki K, Toda N (1998) Monkey corpus cavernosum relaxation mediated by NO and other relaxing factor derived from nerves. Am J Physiol 274, Heart Circ Physiol 43:H1075–H1081

    Google Scholar 

  • Omote M (1999) Pharmacological profiles of sildenafil (VIAGRATM) in the treatment of erectile dysfunction: efficacy and drug interaction with nitrate. Folia Pharmacol Jpn 114:213–218

    CAS  Google Scholar 

  • Park J-K, Kim S-Z, Kim S-H, Park Y-K, Cho K-W (1997) Renin angiotensin system in rabbit corpus cavernosum: functional characterization of angiotensin II receptors. J Urol 158:653–658

    CAS  PubMed  Google Scholar 

  • Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ (1992) Nitric oxide as a mediator of relaxation of the corpus cavernosum response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 326:90–94

    CAS  PubMed  Google Scholar 

  • Rajasekaran M, White S, Baquir A, Wilkes N (2005) Rho-kinase inhibition improves erectile function in aging male Brown- Norway rats. J Androl 26:182–188

    CAS  PubMed  Google Scholar 

  • Recio P, Lopez JLG, Garcia-Sacristan A (1997) Pharmacological characterization of adrenoceptors in horse corpus cavernosum penis. J Auton Pharmacol 17:191–198

    CAS  PubMed  Google Scholar 

  • Reilly CM, Zamorano P, Stopper VS, Mills TM (1997) Androgenic regulation of NO availability in rat penile erection. J Androl 18:110–115

    CAS  PubMed  Google Scholar 

  • Sarikaya S, Asci R, Aybek Z, Yilmaz AF, Buyukalpelli R, Yildiz S (1997) Effect of intracavernous calcium blockers in dogs. Int Urol Nephrol 29:673–680

    CAS  PubMed  Google Scholar 

  • Stief CG, Uckert S, Becker AJ, Truss MC, Jonas U (1998) The effect of the specific phosphodiesterase (PDE) inhibitors on human and rabbit cavernous tissue in vitro and in vivo. J Urol 159:1390–1393

    CAS  PubMed  Google Scholar 

  • Stief CG (2000) Phosphodiesterase inhibitors in the treatment of erectile dysfunction. Drugs Today 36:93–99

    CAS  PubMed  Google Scholar 

  • Stief CG, Uckert S, Becker AJ, Harringer W, Truss MC, Forssmann WG, Jonas U (2000) Effects of sildenafil on cAMP and cGMP levels in isolated human cavernous and cardiac tissue. Urology 55:146–150

    CAS  PubMed  Google Scholar 

  • Takagi M, Mochida H, Noto T, Yano K, Inoue H, Ikeo T, Kikkawa K (2001) Pharmacological profile of T-1032, a novel specific phosphodiesterase type 5 inhibitor, in isolated rat aorta and rat corpus cavernosum. Eur J Pharmacol 411:161–168

    CAS  PubMed  Google Scholar 

  • Teixeira CE, Bento AC, Lopes-Martins RAB, Teixeira SA, von Eickestedt V, Muscará MN, Arantes EC, Giglio JR, Antunes E, de Nucci G (1998) Effect of Tityus serrulatus scorpion venom on the rabbit isolated corpus cavernosum and the involvement of NANC nitrergic nerve fibres. Br J Pharmacol 123:435–442

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson CS, Mumtaz FH, Khan MA, Wallis RM, Mikhailidis DP, Morgan RJ, Angelini GD, Jereremy JY (2001) The effect of sildenafil on corpus cavernosal smooth muscle relaxation and cyclic GMP formation in the diabetic rabbit. Eur J Pharmacol 425:57–64

    CAS  PubMed  Google Scholar 

  • Tong Y-C, Cheng J-T (1997) Subtyping of α 1-adrenoceptors responsible for the contractile response in the rat corpus cavernosum. Neurosci Lett 228:159–162

    CAS  PubMed  Google Scholar 

  • Turko IV, Ballard SA, Francis SH, Corbin JD (1999) Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (type 5) by sildenafil and related compounds. Mol Pharmacol 56:124–130

    CAS  PubMed  Google Scholar 

  • Wallis RM (1999) The pharmacology of sildenafil, a novel and selective inhibitor of phosphodiesterase (PDE) type 5. Folia Pharmacol Jpn 114(Suppl 1):22P–26P

    Google Scholar 

  • Wallis RM, Corbin JD, Francis SH (1999) Tissue distribution of phosphodiesterase families and the effect of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 83:3C–12C

    CAS  PubMed  Google Scholar 

  • Wingard CJ, Johnson JA, Holmes A, Prikosch A (2003) Improved erectile function after Rho-kinase inhibition in a rat castrate model of erectile dysfunction. Am J Physiol 284:R1572–R1578

    CAS  Google Scholar 

  • Yildirim MK, Yildirim S, Utkan T, Sarioglu Y, Yalman Y (1997) Effects of castration on adrenergic, cholinergic and nonadrenergic, noncholinergic responses of isolated corpus cavernosum from rabbit. Br J Urol 79:964–970

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gralinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gralinski, M., Neves, L.A.A., Tiniakova, O. (2015). Studies in Isolated Organs. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics