Skip to main content

Monte Carlo Techniques for Carrier Transport in Semiconductor Materials

  • Chapter
  • First Online:
Semiconductor Modeling Techniques

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 159))

Abstract

Monte Carlo has become a powerful tool for describing complex systems with many degrees of freedom. It involves simulating a combination of deterministic and stochastic processes. Here, after a basic introduction to the technique, we focus on its application in the analysis of carrier transport in semiconductors. This method is applied to GaAs and to dilute nitride materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The simulation time is the time after which the carriers stop drifting. It should not be confused with the time required for computer simulation, which will be referred to as computational time.

References

  1. Wolfram Mathworld: http://mathworld.wolfram.com/BuffonsNeedleProblem.html. Cited 17 June 2011

  2. LANL-Histroy-People-Staff Biographies: http://www.lanl.gov/history/people/S_Ulam.shtml. Cited 2 April 2012

  3. N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44, 335 (1946)

    Article  MathSciNet  Google Scholar 

  4. R.W. Shonkwiler, F. Mendivil, in Explorations in Monte Carlo Methods (Springer Science+Business Media, Dordrecht, 2009)

    Google Scholar 

  5. P.N. Butcher, W. Fawcett, Phys. Lett. 21, 489 (1966)

    Article  ADS  Google Scholar 

  6. H. Budd, in Proceedings of the International Conference on the Physics of Semiconductors, 1967, Kyoto. J. Phys. Soc. Jpn Suppl. vol. 21, p. 420

    Google Scholar 

  7. T. Kurosawa, in Proceedings of the International Conference on the Physics of Semiconductors, 1967, Kyoto. J. Phys. Soc. Jpn Suppl. vol. 21, p. 464

    Google Scholar 

  8. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)

    Article  ADS  Google Scholar 

  9. C. Jacoboni, P. Lugli, in The Monte-Carlo Method for Semiconductor Device Simulation (Springer-Verlag, Wien, 1989)

    Google Scholar 

  10. P.J. Price, in Monte Carlo Calculation of Electron Transport in Solids, ed. by R.K. Willardson and A.C. Beer, Vol. 14 of Semiconductors and Semimetals (Academic, New York, 1979), p. 249

    Google Scholar 

  11. A.D. Boardman, in Computer Simulation of Hot Electron Behavior in Semiconductors Using Monte Carlo Methods, Chap. 11 in Physics Programms (John Wiley, New York, 1980)

    Google Scholar 

  12. B.K. Ridley, Quantum Processes in Semiconductors (Oxford University Press, New York, 1988)

    Google Scholar 

  13. B.K. Ridley, Electrons and Phonons in Semiconductor Multilayers (Cambridge University Press, New York, 1997)

    Google Scholar 

  14. W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 70, 1963 (1970)

    Article  Google Scholar 

  15. E.M. Conwell, M.O. Vassell, Phys. Review 166, 797 (1968)

    Article  ADS  Google Scholar 

  16. H. Ehrenreich, Phys. Review 120, 1951 (1960)

    Article  ADS  Google Scholar 

  17. H.D. Rees, J. Phys. Chem. Solids 300, 643 (1969)

    Article  ADS  Google Scholar 

  18. E. Sangiorgi, B. Ricco, F. Venturi, IEEE Trans. Comput. Aided Des. 7, 259 (1988)

    Google Scholar 

  19. R. Yorston, J. Comput. Phys. 64, 177 (1986)

    Article  ADS  MATH  Google Scholar 

  20. K. Tomizawa, in Numerical Simulation of Submicron Semiconductor Devices (Artech House Publishers, Cambridge, 2000)

    Google Scholar 

  21. M. Lundstrom, in Fundamentals of Carrier Transport (Cambridge University Press, Boston, 1993)

    Google Scholar 

  22. P. Price, IBM J. Res. Develop. 14, 12 (1970)

    Article  Google Scholar 

  23. K. Yokoyama, M. Tomizawa, A. Yoshii, IEEE Electron. Dev. Lett. 6, 536 (1985)

    Article  ADS  Google Scholar 

  24. D.K. Ferry, Phys. Lett. A 78, 379 (1980)

    Article  ADS  Google Scholar 

  25. W. Fawcett, in Electrons in Crystalline Solids, ed. by A. Salam (IAEA, Vienna, 1973), p. 531

    Google Scholar 

  26. J.G. Ruch, IEEE Trans. Electron. Dev. 19, 652 (1972)

    Article  Google Scholar 

  27. M.V. Fischetti, Phys. Rev. B 38, 9721 (1988)

    Article  ADS  Google Scholar 

  28. H. Shichijo, K. Hess, Phys. Rev. B 23, 4197 (1981)

    Article  ADS  Google Scholar 

  29. M.V. Fischetti, IEEE Trans. Electron. Dev. 38, 634 (1991)

    Article  ADS  Google Scholar 

  30. C. Bulutay, B.K. Ridley, N.A. Zahleniuk, Phys. Rev B 62, 15754 (2000)

    Article  ADS  Google Scholar 

  31. C. Bulutay, B.K. Ridley, N.A. Zahleniuk, Phys. Rev B 68, 115205 (2003)

    Article  ADS  Google Scholar 

  32. DAMOCLES: Monte Carlo simulation of semiconductor devices, http://www.research.ibm.com/DAMOCLES/. Cited 2 April 2012

  33. M. Weyers, M. Sato, H. Ando, Jpn. J. Appl. Phys. 31, L853 (1992)

    Article  ADS  Google Scholar 

  34. M. Kondow, K. Uomi, K. Hosomi, T. Mozume, Jpn. J. Appl. Phys. 33, L1056 (1994)

    Article  ADS  Google Scholar 

  35. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)

    Article  ADS  Google Scholar 

  36. F. Masia, G. Pettinari, A. Polimeni, M. Felici, A. Miriametro, M. Capizzi, A. Lindsay, S.B. Healy, E.P. O’Reilly, A. Cristofoli, G. Bais, M. Piccin, S. Rubini, F. Martelli, A. Franciosi, P.J. Klar, K. Volz, W. Stolz, Phys. Rev. B. 73, 073201 (2006)

    Article  ADS  Google Scholar 

  37. E.P. O’Reilly, A. Lindsay, S. Fahy, J. Phys. Condens. Matter, 16, S3257, (2004)

    Google Scholar 

  38. A. Lindsay, E.P. O’Reilly, Phys. Rev. Letters 93, 196402 (2004)

    Article  ADS  Google Scholar 

  39. C. Skierbiszewski, Semicond. Sci. Technol. 17, 803 (2002)

    Article  ADS  Google Scholar 

  40. S.R. Kurtz, A.A. Allerman, C.H. Seager, R.M. Sieg, E.D. Jones, Appl. Phys. Lett. 77, 400 (2000)

    Article  ADS  Google Scholar 

  41. S. Fahy, O’Reilly. Appl. Phys. Lett. 83, 3731 (2003)

    Article  ADS  Google Scholar 

  42. S. Fahy, A. Lindsay, H. Ouerdane, E.P. O’Reilly, Phys. Rev. B 74, 035203 (2006)

    Article  ADS  Google Scholar 

  43. M.P. Vaughan, B.K. Ridley, Phys. Rev. B 75, 195205 (2007)

    Article  ADS  Google Scholar 

  44. A. Patanè, G. Allison, L. Eaves, M. Hopkinson, G. Hill, A. Ignatov, J. Phys. Condens. Matter, 21, 174209, (2009)

    Google Scholar 

  45. N. Vogiatzis, J.M. Rorison, J. Appl. Phys. 109, 083720 (2011)

    Article  ADS  Google Scholar 

  46. M. Seifikar, E.P. O’Reilly, S. Fahy, Phys. Status Solidu B 248, 1176 (2011)

    Article  ADS  Google Scholar 

  47. J. Wu, W. Walukiewicz, E.E. Haller, Phys. Rev. B 65, 233210 (2011)

    Article  ADS  Google Scholar 

  48. N. Vogiatzis, J.M. Rorison, J. Phys. Condens. Matter, 21, 255801, (2009)

    Google Scholar 

  49. G.D. Mahan, in Many-Particle Physics (Plenum Press, New York, 1990)

    Google Scholar 

  50. P.R.C. Kent, A. Zunger, Appl. Phys. Lett. 79, 2339 (2001)

    Article  ADS  Google Scholar 

  51. P.R.C. Kent, L. Bellaiche, A. Zunger, Semicond. Sci. Technol. 17, 851 (2002)

    Article  ADS  Google Scholar 

  52. A. Patanè, J. Endicott, J. Ibez, P.N. Brunkov, L. Eaves, S.B. Healy, A. Lindsay, E.P. O’Reilly, M. Hopkinson, Phys. Rev. B 71, 195307 (2005)

    Article  ADS  Google Scholar 

  53. Y. Sun, M.P. Vaughan, A. Agarwal, M. Yilmaz, B. Ulug, A. Ulug, N. Balkan, M. Sopanen, O. Reentilä, M. Mattila, C. Fontaine, A. Arnoult, Phys. Rev. B 75, 205316 (2007)

    Article  ADS  Google Scholar 

  54. N. Vogiatzis, J.M. Rorison, Phys. Stat. Solidi B 248, 1183 (2011)

    Article  ADS  Google Scholar 

  55. S. Spasov, G. Allison, A. Patanè, L. Eaves, MYu. Tretyakov, A. Ignatov, M. Hopkinson, G. Hill, Appl. Phys. Lett. 93, 022111 (2008)

    Article  ADS  Google Scholar 

  56. N.W. Ashcroft, N.D. Mermin in textitSolid State Physics, vol. 2, Seminumerical Algorithms, (Harcourt College Publishers, Fort Worth, 1976)

    Google Scholar 

  57. A.J. James, Dissertation, Imperial College, (1995) http://www.imperial.ac.uk/research/cmth/research/theses/A.J.James.pdf. Cited 2 April 2012

  58. M.L. Stedman, Dissertation, Imperial College, (1999) http://www.imperial.ac.uk/research/cmth/research/theses/M.L.Stedman.pdf. Cited 2 April 2012

  59. R. Gaudoin, Dissertation, Imperial College, (1999) http://www.imperial.ac.uk/research/cmth/research/theses/R.Gaudoin.pdf. Cited 2 April 2012

  60. (Quantum Monte Carlo and the CASINO Program) Available via University of Cambridge. http://www.tcm.phy.cam.ac.uk/~mdt26/casino2_introduction.html. Cited 2 April 2012

  61. Random.org: True random number service, http://www.random.org. Cited 2 April 2012

  62. D.E. Knuth, in The Art of Computer Programming, Seminumerical Algorithms, vol. 2 (Addison Wesley, Reading, 1998)

    Google Scholar 

  63. S. Tezuka, in Uniform Random Numbers: Theory and Practice (Kluwer Academic Publishers, Boston, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vogiatzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogiatzis, N., Rorison, J.M. (2012). Monte Carlo Techniques for Carrier Transport in Semiconductor Materials. In: Balkan, N., Xavier, M. (eds) Semiconductor Modeling Techniques. Springer Series in Materials Science, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27512-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27512-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27511-1

  • Online ISBN: 978-3-642-27512-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics