Skip to main content

Geometric and Statistical Properties of Pseudorandom Number Generators Based on Multiple Recursive Transformations

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2010

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 23))

Abstract

The equidistribution property is studied for the generators of the MRG type. A new algorithm for generating uniform pseudorandom numbers is proposed. The theory of the generator, including detailed study of its geometric and statistical properties, in particular, proofs of periodic properties and of statistical independence of bits at distances up to logarithm of mesh size, is presented. Extensive statistical testing using available test packages demonstrates excellent results, while the speed of the generator is comparable to other modern generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Barash, L.N. Shchur, Physical Review E 73 (2006), 036701.

    Google Scholar 

  2. L.Yu. Barash, L.N. Shchur, Computer Physics Communications 182 (2011) 1518–1527.

    Google Scholar 

  3. L.Yu. Barash, Europhysics Letters 95 (2011) 10003.

    Google Scholar 

  4. K.S.D. Beach, P.A. Lee, P. Monthoux, Physical Review Letters 92 (2004) 026401.

    Google Scholar 

  5. A.R. Bizzarri, Journal of Physics: Condensed Matter 16 (2004) R83–R110.

    Google Scholar 

  6. http://www.comphys.ru/barash/rng_sse2.zip

  7. R. Couture, P. L’Ecuyer, S. Tezuka, Mathematics of Computation 60, 749–761 (1993).

    Google Scholar 

  8. A.M. Ferrenberg, D.P. Landau, Y.J. Wong, Physical Review Letters 69 (1992) 3382–3384.

    Google Scholar 

  9. M. Fushimi, S. Tezuka, Communications of the ACM 26(7), 516–523 (1983).

    Google Scholar 

  10. http://www.ginac.de/CLN/

  11. P. Grassberger Physics Letters A 181 (1993) 43–46.

    Google Scholar 

  12. H. Grothe, Statistische Hefte, 28 (1987) 233–238.

    Google Scholar 

  13. http://www.intel.com/support/processors/pentium4/sb/CS-029967.htm

  14. D.E. Knuth, The Art of Computer Programming, Vol. 2 (Addison-Wesley, Reading, Mass., 3rd edition, 1997).

    Google Scholar 

  15. D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  16. P. L’Ecuyer, Communications of the ACM, 33(10) (1990) 85–98.

    Google Scholar 

  17. P. L’Ecuyer, Mathematics of Computation 65, 203–213 (1996).

    Google Scholar 

  18. P. L’Ecuyer, Chapter 4 of the Handbook of Simulation, Jerry Banks Ed., Wiley, 1998, pp. 93–137.

    Google Scholar 

  19. P. L’Ecuyer, Mathematics of Computation, 68 (1999) 261–269.

    Google Scholar 

  20. P. L’Ecuyer, Operations Research, 47 (1999) 159–164.

    Google Scholar 

  21. P. L’Ecuyer, R. Simard, TestU01: A Software Library in ANSI C for Empirical Testing of Random Number Generators (2002), Software user’s guide, http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

  22. P. L’Ecuyer, R. Simard, TestU01: A C Library for Empirical Testing of Random Number Generators, ACM Transactions On Mathematical Software, 33(4) (2007) article 22.

    Google Scholar 

  23. A. Lüchow, Annual Review of Physical Chemistry, 51 (2000) 501–526.

    Google Scholar 

  24. M. Matsumoto and T. Nishimura, ACM Transactions on Modeling and Computer Simulation, 8 (1998) 3–30.

    Google Scholar 

  25. H. Niederreiter, in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, ed. H. Niederreiter and P. J.-S. Shiue, Lecture Notes in Statistics, (Springer-Verlag, 1995).

    Google Scholar 

  26. F. Panneton, P. L’Ecuyer, M. Matsumoto, ACM Transactions on Mathematical Software, 32(1) (2006) 1–16.

    Google Scholar 

  27. S.C. Pieper and R.B. Wiring, Annual Review of Nuclear and Particle Science, 51 (2001) 53–90.

    Google Scholar 

  28. F. Schmid, N.B. Wilding, International Journal of Modern Physics C 6 (1995) 781–787.

    Google Scholar 

  29. L.N. Shchur, Computer Physics Communications 121–122 (1999) 83–85.

    Google Scholar 

  30. L.N. Shchur, J.R. Heringa, H.W.J. Blöte, Physica A 241 (1997) 579–592.

    Google Scholar 

  31. L.N. Shchur, H.W.J. Blöte, Physical Review E 55 (1997) R4905–R4908.

    Google Scholar 

  32. http://support.amd.com/us/Embedded_TechDocs/24592.pdf

  33. S. Tezuka, P. L’Ecuyer, ACM Transactions on Modeling and Computer Simulation 1, 99–112 (1991).

    Google Scholar 

  34. J.P.R. Tootil, W.D. Robinson, D.J. Eagle, Journal of the ACM 20(3), 469–481 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Barash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barash, L.Y. (2012). Geometric and Statistical Properties of Pseudorandom Number Generators Based on Multiple Recursive Transformations. In: Plaskota, L., Woźniakowski, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer Proceedings in Mathematics & Statistics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27440-4_12

Download citation

Publish with us

Policies and ethics