Skip to main content

Adaptation of Tensor Voting to Image Structure Estimation

  • Conference paper
  • First Online:
New Developments in the Visualization and Processing of Tensor Fields

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Tensor voting is a well-known robust technique for extracting perceptual information from clouds of points. This chapter proposes a general methodology to adapt tensor voting to different types of images in the specific context of image structure estimation. This methodology is based on the structural relationships between tensor voting and the so-called structure tensor, which is the most popular technique for image structure estimation. The problematic Gaussian convolution used by the structure tensor is replaced by tensor voting. Afterwards, the results are appropriately rescaled. This methodology is adapted to gray-valued, color, vector- and tensor-valued images. Results show that tensor voting can estimate image structure more appropriately than the structure tensor and also more robustly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arseneau, S., Cooperstock, J.R.: An improved representation of junctions through asymmetric tensor diffusion. In: Bebis, G. et al. (eds.) Proc. Int. Symp. Vis. Comp. (ISVC). Lake Tahoe, NV, USA, Lecture Notes in Computer Science, vol. 4291, pp. I:363–372. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  2. Bigün, J., Granlund, G., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 775–790 (1991)

    Google Scholar 

  3. Bigün, J., Bigun, T., Nilsson, K.: Recognition by symmetry derivatives and the generalized structure tensor. IEEE Trans. Pattern Anal. Mach. Intell. 26(12), 1590–1605 (2004)

    Google Scholar 

  4. Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Image Vis. Comput. 24(1), 41–55 (2006)

    Google Scholar 

  5. Bruce, V., Green, P.R., Georgeson, M.A.: Visual Perception: Physiology, Psychology and Ecology, 4th edn. Psychology Press, London, UK (2003)

    Google Scholar 

  6. Burgeth, B., Didas, S., Weickert, J.: A general structure tensor concept and coherence-enhancing diffusion filtering for matrix fields. In: Laidlaw, D., Weikert, J. (eds.) Visualization and Processing of Tensor Fields: Advances and Perspectives, pp. 305–323. Springer, Berlin/Heidelberg (2009)

    Google Scholar 

  7. Di Zenzo, S.: A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 33(1), 116–125 (1986)

    Google Scholar 

  8. Farnebäck, G., Rydell, J., Ebbers, T., Andersson, M., Knutsson, H.: Efficient computation of the inverse gradient on irregular domains. In: Int. Conf. Comput. Vis. (ICCV), Rio de Janeiro, pp. 1–8. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  9. Felsberg, M., Jonsson, E.: Energy tensors: quadratic, phase invariant image operators. In: Kropatsch, W., Sablatnig, R., Hanbury, A. (eds.) Proc. Symp. Ger. Assoc. Pattern Recognit. (DAGM), Vienna. Lecture Notes in Computer Science, vol. 3663, pp. 493–500. Springer, Berlin/New York (2005)

    Google Scholar 

  10. Förstner, W.: A feature based correspondence algorithm for image matching. In: Int. Arch. Photogramm. Remote Sens., Rovaniemi, vol. 26, pp. 150–166. ISPRS, Enschede (1986)

    Google Scholar 

  11. Förstner, W.: A framework for low-level feature extraction. In: Eklundh, J-O. (ed.) Proc. Eur. Conf. Comput. Vis. (ECCV), Stockholm. Lecture Notes in Computer Science, vol. 801, pp. 383–394. Springer, Berlin/New York (1994)

    Google Scholar 

  12. Granlund, G., Knutsson, H.: Signal Processing for Computer Vision. Kluwer, Dordrecht (1995)

    Google Scholar 

  13. Hahn, J., Lee, C.O.: A nonlinear structure tensor with the diffusivity matrix composed of the image gradient. J. Math. Imaging Vis. 34, 137–151 (2009)

    Google Scholar 

  14. Hwang, C., Zhuang, S., Lai, S.H.: Efficient intra mode selection using image structure tensor for H.264/AVC. In: Proc. Int. Conf. Image Process. (ICIP), San Antonio, pp. V:289–292. IEEE, Piscataway (2007)

    Google Scholar 

  15. Jia, J., Tang, C.K.: Inference of segmented color and texture description by tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 771–786 (2004)

    Google Scholar 

  16. Kenney, C., Zuliani, M., Manjunath, B.: An axiomatic approach to corner detection. In: Proc. Comput. Vis. Pattern Recognit. (CVPR), San Diego, pp. I:191–197. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  17. Kim, H.S., Choi, H.K., Lee, K.H.: Feature detection of triangular meshes based on tensor voting theory. Comput.-Aided Des. 41(1), 47–58 (2009)

    Google Scholar 

  18. Kindlmann, G., Ennis, D.B., Whitaker, R., Westin, C.F.: Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Trans. Med. Imaging 26(11), 1483–1499 (2007)

    Google Scholar 

  19. Knutsson, H.: A tensor representation of 3-D structures. In: Proc. Workshop Multidimens. Signal Process. (1987)

    Google Scholar 

  20. Köthe, U.: Edge and junction detection with an improved structure tesnsor. In: Michaelis, B., Krell, G. (eds.) Proc. Symp. Ger. Assoc. Pattern Recognit. (DAGM), Magdeburg. Lecture Notes in Computer Science, vol. 2781, pp. 25–32. Springer, Berlin/New York (2003)

    Google Scholar 

  21. Köthe, U., Felsberg, M.: Riesz-transforms versus derivatives: on the relationship between the boundary tensor and the energy tensor. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 179–191. Hofgeismar, Germany (2005)

    Google Scholar 

  22. Lim, J., Park, J., Medioni, G.: Text segmentation in color images using tensor voting. Image Vis. Comput. 25(5), 671–685 (2007)

    Google Scholar 

  23. Loss, L.A., Bebis, G., Parvin, B.: Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures: application to adherens junctions. IEEE Trans. Med. Imaging 30(8), 1503–1513 (2011)

    Google Scholar 

  24. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Imagning Underst. Workshop, pp. 121–130 (1981)

    Google Scholar 

  25. Massad, A., Babós, M., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images. In: Van Gool, L. (ed.) Proc. Symp. Ger. Assoc. Pattern Recognit. (DAGM), Zürich. Lecture Notes in Computer Science, vol. 2449, pp. 306–313. Springer, Berlin/New York (2002)

    Google Scholar 

  26. Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Feature Extraction and Segmentation. Elsevier Science, Amsterdam/New York (2000)

    Google Scholar 

  27. Min, C., Medioni, G.: Inferring segmented dense motion layers using 5D tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1589–1602 (2008)

    Google Scholar 

  28. Mordohai, P., Medioni, G.: Dimensionality estimation, manifold learning and function approximation using tensor voting. J. Mach. Learn. 11, 411–450 (2010)

    Google Scholar 

  29. Moreno, R., Garcia, M.A., Puig, D.: Graph-based perceptual segmentation of stereo vision 3D images at multiple abstraction levels. In: Escolano, F., Vento, M. (eds.) Proc. Workshop Graph-Based Represent. Pattern Recognit. (GbRPR), Alicante. Lecture Notes in Computer Science, vol. 4538, pp. 148–157. Springer, Berlin/New York (2007)

    Google Scholar 

  30. Moreno, R., Garcia, M.A., Puig, D., Julià, C.: On adapting the tensor voting framework to robust color image denoising. In: Jiang, X., Petkov, N. (eds.) Proc. Comput. Anal. Images Patterns (CAIP), Münster. Lecture Notes in Computer Science, vol. 5702, pp. 492–500. Springer, Berlin/New York (2009)

    Google Scholar 

  31. Moreno, R., Garcia, M.A., Puig, D., Julià, C.: Robust color edge detection through tensor voting. In: Proceedings of International Conference on Image Processing (ICIP), Cairo, pp. 2153–2156. IEEE, Piscataway (2009)

    Google Scholar 

  32. Moreno, R., Garcia, M.A., Puig, D.: Robust color image segmentation through tensor voting. In: Proc. Int. Conf. Pattern Recognit (ICPR), Istanbul, Turkey, pp. 3372–3375 (2010)

    Google Scholar 

  33. Moreno, R., Garcia, M.A., Puig, D., Pizarro, L., Burgeth, B., Weickert, J.: On improving the efficiency of tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2215–2228 (2011)

    Google Scholar 

  34. Nagel, H.H., Gehrke, A.: Spatiotemporally adaptive estimation and segmentation of OF-fields. In: Burkhardt, H., Neumann, B. (eds.) Proc. Eur. Conf. Comput. Vis. (ECCV), Freiburg. Lecture Notes in Computer Science, vol. 1407, pp. 86–102. Springer, Berlin/New York (1998)

    Google Scholar 

  35. Nath, S., Palaniappan, K.: Adaptive robust structure tensors for orientation estimation and image segmentation. In: Boyle, R., Koracin, D., Parvin, B. (eds.) Proc. Int. Symp. Vis. Comp. (ISVC), Lake Tahoe. Lecture Notes in Computer Science, vol. 3804, pp. 445–453. Springer, Berlin/New York (2005)

    Google Scholar 

  36. Nicolescu, M., Medioni, G.: A voting-based computational framework for visual motion analysis and interpretation. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 739–752 (2005)

    Google Scholar 

  37. Pajevic, S., Aldroubi, A., Basser, P.J.: A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. J. Magn. Reson. 154, 85–100 (2002)

    Google Scholar 

  38. Rao, A.R., Schunck, B.G.: Computing oriented texture fields. CVGIP: Graph. Models Image Process. 53, 157–185 (1991)

    Google Scholar 

  39. Rohr, K.: Localization properties of direct corner detectors. J. Math. Imaging Vis. 4, 139–150 (1994)

    Google Scholar 

  40. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: Proc. Comput. Vis. Pattern Recognit. (CVPR), Madison, pp. II-699–704. IEEE, Los Alamitos (2003)

    Google Scholar 

  41. Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008)

    Google Scholar 

  42. Tai, Y.W., Tong, W.S., Tang, C.K.: Perceptually-inspired and edge-directed color image super-resolution. In: Proc. Comput. Vis. Pattern Recognit. (CVPR), New York, NY, USA, pp. II:1948–1955. IEEE, Los Alamitos (2006)

    Google Scholar 

  43. Tang, C.K., Medioni, G., Lee, M.S.: N-Dimensional tensor voting and application to epipolar geometry estimation. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 829–844 (2001)

    Google Scholar 

  44. van de Weijer, J., van den Boomgaard, R.: Least squares and robust estimation of local image structure. Int. J. Comput. Vis. 64(2/3), 143–155 (2005)

    Google Scholar 

  45. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2–3), 111–127 (1999)

    Google Scholar 

  46. Weickert, J.: Coherence-enhancing diffusion of colour images. Image Vis. Comput. 17, 199–212 (1999)

    Google Scholar 

  47. Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images. In: Nashed, M.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging, pp. 251–268. AMS, Providence (2002)

    Google Scholar 

  48. Westin, C.F., Knutsson, H.: Tensor field regularization using normalized convolution. In: Moreno Diaz, R., Pichler, F. (eds.) Proc. Int. Conf. Comput. Aided Syst. Theory (EUROCAST), Las Palmas de Gran Canaria. Lecture Notes in Computer Science, vol. 2809, pp. 564–572. Springer, Berlin/Heidelberg (2003)

    Google Scholar 

  49. Wu, T.P., Yeung, S.K., Jia, J., Tang, C.K.: Quasi-dense 3D reconstruction using tensor-based multiview stereo. In: Proc. Comput. Vis. Pattern Recognit. (CVPR), San Francisco, pp. 1482–1489. IEEE Computer Society Press, Los Alamitos (2010)

    Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Spanish Ministry of Science and Technology under project DPI2007-66556-C03-03, by the Commissioner for Universities and Research of the Department of Innovation, Universities and Companies of the Catalonian Government and by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this paper

Cite this paper

Moreno, R., Pizarro, L., Burgeth, B., Weickert, J., Garcia, M.A., Puig, D. (2012). Adaptation of Tensor Voting to Image Structure Estimation. In: Laidlaw, D., Vilanova, A. (eds) New Developments in the Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27343-8_2

Download citation

Publish with us

Policies and ethics