Skip to main content

Failure Analysis: Case Studies

  • Chapter
  • First Online:
Handbook of Technical Diagnostics
  • 4641 Accesses

Abstract

Failure analysis is needed as a diagnostic tool to assess the sequence of primary, secondary and perhaps tertiary damage of different parts in a damaged system. This is a prerequisite to identify the contributing causes and the root cause for the causal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. German Federal Network Agency: Report on the supply disruptions in the ruled area of RWE in Münsterland on 25, Nov 2005 (2006)

    Google Scholar 

  2. Albermani, F., Kitipornchai, S., Chan, R.: Failure analysis of transmission towers. Eng. Fail. Anal. 16, 1922–1928 (2009)

    Article  Google Scholar 

  3. Rao, G.P., Lakshmanan, N., Iyer, N.R.: Investigation of transmission line tower failures. Eng. Fail. Anal. 17, 1127–1141 (2010)

    Article  Google Scholar 

  4. Pohlmann, H.: Schadensanalyse, Resttragfähigkeit und Sanierungskonzepte von Hochspannungs-Freileitungsmasten (1996)

    Google Scholar 

  5. Helms, R., Kühn, H.-D., Martin, E.: Safety against brittle fracture of structural steelwork elements with punched holes. Arch. Eisenhüttenwes. 44, 917–926 (1973)

    Google Scholar 

  6. Rao, R.P., Rokade, R., Mohan, S.: Analytical and experimental studies on 400 and 132 kV steel transmission poles. Eng. Fail. Anal. 18, 1018–1029 (2011)

    Article  Google Scholar 

  7. Moon, B.-W.B.-W., Park, J.-H., Lee, S.-K., Kim, J., Kim, T., Min, K.-W.: Performance evaluation of a transmission tower by substructure test. J. Constr. Steel Res. 65, 1–11 (2009)

    Article  Google Scholar 

  8. Lacalle, R., Cicero, S., Álvarez, J., Cicero, R., Madrazo, V.: On the analysis of the causes of cracking in a wind tower. Eng. Fail. Anal. 18, 1698–1710 (2011)

    Article  Google Scholar 

  9. Chou, J.-S., Tu, W.-T.: Failure analysis and risk management of a collapsed large wind turbine tower. Eng. Fail. Anal. 18, 295–313 (2011)

    Article  Google Scholar 

  10. Baer, W.: Zur Alterung von Thomasstählen. MP Mater. Testing 49, 37–47 (2007)

    Google Scholar 

  11. Dick, W.: Die Thomasstähle. Härterei-Technische Mitteilungen 2, 100–109 (1943)

    Google Scholar 

  12. Stolte, E., Heller, W.: Present state of our knowledge on ageing of steels. Part I. Underlaying principles. Stahl U. Eisen 90, 861–868 (1970)

    Google Scholar 

  13. Heller, W., Stolte, E.: Present state of our knowledge on ageing of steels. Part II. Effects of ageing on steels. Stahl U. Eisen 90, 909–916 (1970)

    Google Scholar 

  14. Felix W.: Investigation of natural and artificial ageing of general construction steels. Arch. Eisenhüttenwes. 36, 35–41 (1965)

    Google Scholar 

  15. Verein Deutscher Eisenhüttenleute (ed.) Werkstoffkunde Stahl, Band 1. Springer, Grundlagen (1984)

    Google Scholar 

  16. Dahl, W., Lenz, E.: Effect of manganese content on quench ageing and strain ageing of carbon and/or nitrogen. Arch. Eisenhüttenwes. 46, 119–125 (1975)

    Google Scholar 

  17. DIN EN 10002-1, Metallic materials–Tensile testing–Part 1: Method of test at ambient temperature (2001)

    Google Scholar 

  18. VDE 0210 Rules for the design of Overhead electrical transmission lines (1958)

    Google Scholar 

  19. DIN EN 50341-1: Overhead electrical lines exceeding AC 45 kV–Part 1: General requirements-Common specifications (2002)

    Google Scholar 

  20. Export Report of Federal Institute for Materials Research and Testing BAM: Failure Analysis on transmission towers failed in the Münsterland, BAM, Berlin (2006)

    Google Scholar 

  21. DIN EN 50341-3-4: Overhead electrical lines exceeding AC 45 kV–Part 3: national normative aspects (NNA) (2001)

    Google Scholar 

  22. VDE-AR-N 4210-3: Test and evaluation methods for determining the load capacity of structural members made of Thomas steel in steel lattice overhead line towers with nominal voltages of 110 kV and above (2011)

    Google Scholar 

  23. DIN EN 50341-1: Overhead electrical lines exceeding AC 45 kV–Part 1: General requirements-common specifications (2010)

    Google Scholar 

  24. Expert report of Federal Institute for Materials Research and Testing BAM: “Gutachten BAM-V.3/566: Schadensanalyse an der gebrochenen Radsatzwelle 2660419 der BR 403 ICE 3”.- BAM, Berlin, 2009-03-09 unpublished

    Google Scholar 

  25. Klinger, C.,Bettge, D., Häcker, R., Heckel, T., Gohlke, D., Klingbeil D.: Failure analysis on a broken ICE3 railway axle—Interdisciplinary approach. In: Beretta, S. (ed.) Proceedings ESIS TC 24 “Railway structures” Workshop on “Fatigue Strength and Fatigue Life of Railway Axles”, Berlin, 10 Oct 2010

    Google Scholar 

  26. EBA-Report 2008, Page 10 http://www.eba.bund.de/SharedDocs/Publikationen/DE/Infothek/Allgemeines/Sicherheitsberichte/sicherheitsbericht__2008,templateId=raw,property=publicationFile.pdf/sicherheitsbericht_2008.pdf

  27. ISO 4967:1998: Steel—Determination of content of non-metallic inclusions—Micrographic method using standard diagrams (1998)

    Google Scholar 

  28. EN 13261: Railway applications. Wheelsets and bogies. Axles product requirements, Annex A. European Committee for Standardization (CEN), Brussels, Belgium

    Google Scholar 

  29. ISO 4967:1988 Steel—Deter¬mination of content of non-metallic inclusions—Micrographic method using standard diagrams

    Google Scholar 

  30. Murtaza, G., Akid, R.: Empirical corrosion fatigue life prediction models of a high strength steel. Eng. Fracture Mech. 67, 461–474 (2000)

    Article  Google Scholar 

  31. Zhang, J.M., Li, S.X., Yang, Z.G., Li, G.Y., Hui, W.J., Weng, Y.Q.: Influence of inclusion size on fatigue behaviour of high strength steels in the gigacycle fatigue regime. Int. J. Fatigue 29, 765–771 (2007)

    Article  Google Scholar 

  32. Liu, Y.B., Yang, Z.G., Li, Y.D., Chen, S.M., Hui, W.J. Weng, Y.Q.: Dependence of fatigue strength on inclusion size for high-strength steels in very high cycle fatigue regime. Mat. Sci. Eng. A, A517, 180–184 (2009)

    Google Scholar 

  33. Ma, J., Zhang, D., Han, E.-H., Ke, W.: Effects of inclusion and loading direction on the fatigue behaviour of hot rolled low carbon steel. Int. J. Fatigue 32, 1116–1125 (2010)

    Article  Google Scholar 

  34. Pessard, E., Morel, F., Morel, A., Bellett, D.: Modelling the role of non-metallic inclusions on the anisotropic fatigue behaviour of forged steel. Int. J. Fatigue 33, 568–577 (2011)

    Article  Google Scholar 

  35. Murakami, Y., Endo, T.: Effects of small defects on fatigue strength of metals. Int. J. Fatigue 1, 23–30 (1980)

    Article  Google Scholar 

  36. Murakami, Y., Usuki, H.: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size. Int. J. Fatigue 11, 299–307 (1989)

    Article  Google Scholar 

  37. Murakami, Y., Kodama, S., Konuma, S.: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int. J. Fatigue 11, 291–298 (1989)

    Article  Google Scholar 

  38. Murakami, Y., Endo, M.: Effects of defects, inclusions and inhomogeneities on fatigue strength. Inter. J. Fatigue 16, 163–182 (1994)

    Article  Google Scholar 

  39. Zhang, J.M., Zhang, J.F., Yang, Z.G., Li, G.Y., Yao, G., Li, S.X., Hui, W.J., Weng, Y.Q.: Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Mater. Sci. Eng. A394, 126–131 (2005)

    Article  Google Scholar 

  40. Wang, Q.Y., Bathias, C., Kawagoishi, N., Chen, Q.: Effect of inclusion on subsurface crack initiation an gigacycle fatigue strength. Int. J. Fatigue 24, 1269–1274 (2002)

    Article  Google Scholar 

  41. Ekengren, J., Kazymyrovych, V., Burman, C., Bergström, J.: Relating gigacycle fatigue to other methods in evaluating the inclusion distribution of a H13 tool steel. Fourth Int. Conf. Very High Cycle Fatig. 4, 45–50 (2007)

    Google Scholar 

  42. Murakami, Y.: Effects of non-metallic inclusions on fatigue strength. In: Murakami, Y. (ed.) Metal Fatigue: Effects of Small Defects and Non-Metallic Inclusions, pp. 75–127. Elsevier, Amsterdam (2002). (Chapter 6)

    Google Scholar 

  43. Sakai, T.: Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. Fourth Int. Conf. Very High Cycle Fatig. 4, 3–12 (2007)

    Google Scholar 

  44. Yang, Z.G., Zhang, J.M., Li, S.X., Li, G.Y., Wang, Q.Y., Hui, W.J., Weng, Y.Q.: On the critical inclusion size of high strength steels under ultra-high cycle fatigue, Mater. Sci. Eng. A427, 167–174 (2006)

    Google Scholar 

  45. Yang, Z.G., Zhanga, J.M., Lia, S.X., Lia, G.Y., Wanga, Q.Y., Huib, W.J., Weng, Y.Q.: The fatigue behaviours of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime. Acta Mater. 52, 5235–5241 (2004)

    Article  Google Scholar 

  46. Zerbst et al.: Safe life and damage tolerance aspects of railway axles—A review. EFM 2012 paper to be published

    Google Scholar 

  47. Lange, G.: Technische Schadensfälle, 5. Wiley VCH, Auflage (2001)

    Google Scholar 

  48. Erscheinungsformen von Rissen und Brüchen metallischer Werkstoffe, Verlag Stahleisen, 1996

    Google Scholar 

  49. Bargel, H.-J., Schulze,G.: Werkstoffkunde.- Berlin, Schroedel, 1978, S. 359–360 basierend auf: Wohler, H.: Prüfbericht 1.2/11323, Schwingbruch einer Kurbelwelle aufgrund nichtmetallischer Einschlüsse.- BAM-Berlin 1977 (unveröffentlicht)

    Google Scholar 

  50. Gohlke, D., Behrendt, B., Matthies, K., DiIorio, I.: Lösungsansätze für die Bewertung kleinster Fehlstellen in Superlegierungen.–DGZfP-Jahrestagung 1999—Celle, 10.-12.Mai 1999, Berichtsband Nr. 86, Band 2, Seite 599–613

    Google Scholar 

  51. Matthies, K., Ernst, H., Gieschler, W.: Bestimmung des mikroskopischen Reinheitsgrades von Stählen mit Ultraschall, Berichtsband 80 (CD) der DGZFP-Jahrestagung 2002, 6–8. Mai 2002 in Weimar

    Google Scholar 

  52. Klinger, C., Bettge, D., Heckel, T.: Outcome of the cologne accident investigation. Presentation on: WOALXIM Kick off meeting TWI LIMITED Granta Park, Great Abington CAMBRIDGE, UNITED KINGDOM, 22 Nov 2010

    Google Scholar 

  53. Zerbst, U., Beretta, S., Klinger, C., Klingbeil, D.: Structural assessment of railway axles—A critical review.- EFA 2012 paper to be published (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Klinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klinger, C. (2013). Failure Analysis: Case Studies. In: Czichos, H. (eds) Handbook of Technical Diagnostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25850-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25850-3_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25849-7

  • Online ISBN: 978-3-642-25850-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics