Skip to main content

Broadening of Hydrogenic Spectral Lines in Magnetized Plasmas: Diagnostic Applications

  • Chapter
  • First Online:
Atomic Processes in Basic and Applied Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 68))

Abstract

In diagnostics based on the broadening of spectral lines in plasmas, magnetic fields are important only if their strength is relatively high—to compete with the Stark and Doppler broadenings. We review the corresponding theories and their diagnostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In principle, there might exist also another adiabatic effect of the stochastic electric field of Langmuir turbulence if \({\gamma }_{\mathrm{p}} \ll{\omega }_{\mathrm{p}}\): the formation of satellites separated by \(\pm \kappa {\omega }_{\mathrm{p}}\)(in the frequency scale) from each component of the Zeeman triplet (k = 1, 2, 3, ). For the case, where Langmuir turbulence develops anisotropically in such a way, that its electric field is linearly polarized, the satellite intensities were calculated analytically in paper [82] (see also book [46]). However, the satellite intensities are relatively small. Even for the most intense satellite (k = 1), the ratio of its intensity I s to the intensity of the corresponding component of the Zeeman triplet I 0is

    $${I}_{\mathrm{s}}/{I}_{0} \sim \left ({n}^{2}{T}_{\mathrm{e}}/{U}_{\mathrm{ Hi}}\right )\left [{E}_{0}^{2}/(8\pi {N}_{\mathrm{e}}{T}_{\mathrm{e}})\right ].$$

    Here, U Hi = 13. 6 eV is the ionization potential hydrogen/deuterium atoms, Te is the electron temperature; the quantity \({E}_{0}^{2}/(8\pi {N}_{\mathrm{e}}{T}_{\mathrm{e}}\)), which is called the degree of turbulence, is the ratio of the energy density of the Langmuir turbulence to the thermal energy density of the plasma. The latter ratio is always much smaller than unity: usually it is in the range 10 − 2–10 − 4. Given that for spectroscopic experiments related to tokamak divertors, where the most intense hydrogenic lines are used (\({L}_{\alpha },{L}_{\beta },{H}_{\alpha },{H}_{\beta }\)) one has \({n}^{2}{T}_{\mathrm{e}}/{U}_{\mathrm{Hi}} \sim1\), it is seen that indeed \({I}_{\mathrm{s}}/{I}_{0} \sim(1{0}^{-2} - 1{0}^{-4}) \ll1\). Thus, these satellites do not seem to be useful for diagnostics of magnetic fusion plasmas unless highly excited hydrogenic lines (\(n \gg1\)) are employed.

References

  1. H.R. Griem, Principles of Plasma Spectroscopy(Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  2. V.S. Lisitsa, Sov. Phys. Uspekhi 122, 449 (1977)

    Google Scholar 

  3. E. Oks, Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The Physical Insight(Alpha Science International, Oxford, 2006)

    Google Scholar 

  4. E.A. McLean, J.A. Stamper, C.K. Manka, H.R. Griem, D.W. Droemer, B.H. Ripin, Phys. Fluids 27, 1327 (1984)

    Google Scholar 

  5. E. Stambulchik, K. Tsigutkin, Y. Maron, Phys. Rev. Lett. 98, 225001 (2007)

    Google Scholar 

  6. Yu. Demkov, B. Monozon, V. Ostrovsky, Sov. Phys. JETP 30, 775 (1970)

    Google Scholar 

  7. V. Fock, Z. Phys. 98, 145 (1935)

    Google Scholar 

  8. L.D. Landau, E.M. Lifshitz, Mechanics(Pergamon, Oxford, 1960)

    Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, Quantum Mechanics(Pergamon, Oxford, 1965)

    Google Scholar 

  10. V.S. Lisitsa, G.V. Sholin, Sov. Phys. JETP 34, 484 (1972)

    Google Scholar 

  11. A. Derevianko, E. Oks, in Physics of Strongly Coupled Plasmas, ed. by W.D. Kraeft, M. Schlanges (World Scientific, Singapore, 1996), p. 286, 291

    Google Scholar 

  12. H.R. Griem, Spectral Line Broadening by Plasmas(Academic, New York, 1974)

    Google Scholar 

  13. M.L. Strekalov, A.I. Burshtein, Sov. Phys. JETP 34, 53 (1972)

    Google Scholar 

  14. R.L. Greene, J. Cooper, E.W. Smith, J. Quant. Spectr. Rad. Tran. 15, 1025 (1975)

    Google Scholar 

  15. R.L. Greene, J. Cooper, J. Quant. Spectr. Rad. Tran. 15, 1037, 1045 (1975)

    Google Scholar 

  16. E. Oks, Europ. Phys. J. D 28, 171 (2004)

    Google Scholar 

  17. E. Lee, D. Farrelly, T. Uzer, Optic. Express 1, 221 (1997)

    Google Scholar 

  18. T.C. Germann, D.R. Herschbach, M. Dunn, D.K. Watson, Phys. Rev. Lett. 74, 658 (1995)

    Google Scholar 

  19. C.H. Cheng, C.Y. Lee, T.F. Gallagher, Phys. Rev. Lett. 73, 3078 (1994)

    Google Scholar 

  20. L. Chen, M. Cheret, F. Roussel, G. Spiess, J. Phys. B 26, L437 (1993)

    Google Scholar 

  21. S.K. Dutta, D. Feldbaum, A. Walz-Flannigan, J.R. Guest, G. Raithel, Phys. Rev. Lett. 86, 3993 (2001)

    Google Scholar 

  22. R.G. Hulet, E.S. Hilfer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985)

    Google Scholar 

  23. K.B. MacAdam, E. Horsdal-Petersen, J. Phys. B 36, R167 (2003)

    Google Scholar 

  24. V.M. Vainberg, V.S. Popov, A.V. Sergeev, Sov. Phys. JETP 71, 470 (1990)

    Google Scholar 

  25. T.C. Killian, M.J. Lim, S. Kulin, R. Dumke, S.D. Bergeson, S.L. Rolston, Phys. Rev. Lett. 86, 3759 (2001)

    Google Scholar 

  26. T.C. Killian, S. Kulin, S.D. Bergeson, L.A. Orozco, C. Orzel, S.L. Rolston, Phys. Rev. Lett. 83, 4776 (1999)

    Google Scholar 

  27. M.P. Robinson, B.L. Tolra, M.W. Noel, T.F. Galagher, P. Pillet, Phys. Rev. Lett. 85, 4466 (2000)

    Google Scholar 

  28. M.R. Flannery, E. Oks, Phys. Rev. A 73, 013405 (2006)

    Google Scholar 

  29. D. Salzmann, Atomic Physics in Hot Plasmas(Oxford University Press, Oxford, 1998), Chaps. 2, 3

  30. M.S. Murillo, J.C. Weisheit, Phys. Rep. 302, 1 (1998)

    Google Scholar 

  31. C. Stehle, J.M. Caillol, A. Escarguel, D. Gilles, J. Phys. IV France 10, Pr0–901 (2000)

    Google Scholar 

  32. Ďjachkov, J. Quant. Spectr. Rad. Tran. 59, 65 (1998)

    Google Scholar 

  33. J. Stein, I.B. Goldberg, D. Shalitin, D. Salzmann, Phys. Rev. A 39, 2078 (1989)

    Google Scholar 

  34. D. Salzmann, J. Stein, I.B. Goldberg, R.H. Pratt, Phys. Rev. A 44, 1270 (1991)

    Google Scholar 

  35. J. Stein, D. Salzmann, Phys. Rev. A 45, 3943 (1992)

    Google Scholar 

  36. P. Malnoult, B. ĎEtat, H. Nguen, Phys. Rev. A 40, 1983 (1989)

    Google Scholar 

  37. Y. Furutani, K. Ohashi, M. Shimizu, A. Fukuyama, J. Phys. Soc. Jpn. 62, 3413 (1993)

    Google Scholar 

  38. P. Sauvan, E. Leboucher-Dalimier, P. Angelo, H. Derfoul, T. Ceccotti, A. Poquerusse, A. Calisti, B. Talin, J. Quant. Spectr. Rad. Tran. 65, 511 (2000)

    Google Scholar 

  39. E. Oks, Phys. Rev. E 63, 057401 (2001)

    Google Scholar 

  40. E. Oks, Phys. Rev. Lett. 85, 2084 (2000)

    Google Scholar 

  41. E. Oks, J. Phys. B Atom. Mol. Opt. Phys. 33, 3319 (2000)

    Google Scholar 

  42. C. Stehle, A. Mazure, G. Nollez, N. Feautrier, Astron. Astrophys. 127, 263 (1983)

    Google Scholar 

  43. C. Stehle, N. Feautrier, J. Phys. B 17, 1477 (1984)

    Google Scholar 

  44. C. Stehle, Astron. Astrophys. 305, 677 (1996)

    Google Scholar 

  45. A. Derevianko, E. Oks, Phys. Rev. Lett. 73, 2079 (1994)

    Google Scholar 

  46. E. Oks, Plasma Spectroscopy: The Influence of Microwave and Laser Fields. Springer Series on Atoms and Plasmas, vol. 9 (Springer, New York, 1995)

    Google Scholar 

  47. Ya. Ispolatov, E. Oks, J. Quant. Spectr. Rad. Tran. 51, 129 (1994)

    Google Scholar 

  48. E. Oks, A. Derevianko, Ya. Ispolatov, J. Quant. Spectr. Rad. Tran. 54, 307 (1995)

    Google Scholar 

  49. E. Oks, in Spectral Line Shapes, vol. 18. AIP Conf. Proc. 874, Auburn, Alabama, USA, 2006, p. 19

    Google Scholar 

  50. J. Touma, E. Oks, S. Alexiou, A. Derevianko, J. Quant. Spectr. Rad. Tran. 65, 543 (2000)

    Google Scholar 

  51. J. Rosato, Y. Marandet, H. Capes, S. Ferri, C. Mosse, L. Godbert-Mouret, M. Koubiti, R. Stamm, Phys. Rev. E 79, 046408 (2009)

    Google Scholar 

  52. B.L. Welch, H.R. Griem, J. Terry, C. Kurz, B. LaBombard, B. Lipschultz, E. Marmar, G. McCracken, Phys. Plasmas 2, 4246 (1995)

    Google Scholar 

  53. B.L. Welch, H.R. Griem, J.L Weaver, J.L. Terry, R.L. Boivin, B. Lipschultz, D. Lumma, E.S. Marmar, G. McCracken, J.C. Rost, in 10th Conf. “Atomic Processes in Plasmas”, AIP Conf. Proceedings 381, New York, 1996, p. 159

    Google Scholar 

  54. N.H. Brooks, S. Lisgo, E. Oks, D. Volodko, M. Groth, A.W. Leonard, the DIII-D Team, Plasma Phys. Rep. 35, 112 (2009)

    Google Scholar 

  55. B.L. Welch, H.R. Griem, J.L Weaver, J.U. Brill, J.L. Terry, B. Lipschultz, D. Lumma, G. McCracken, S. Ferri, A. Calisti, R. Stamm, B. Talin, R.W. Lee, in 13th Int. Conf. “Spectral Line Shapes”, AIP Conf. Proceedings 386, New York, 1997, p. 113

    Google Scholar 

  56. E. Oks, Phys. Rev. E, Rapid Comm. 60, R2480 (1999)

    Google Scholar 

  57. S. Ferri, A. Calisti, R. Stamm, B. Talin, R.W. Lee, in 14th Int. Conf. “Spectral Line Shapes”, AIP Conf. Proceedings 467, New York, 1999, p. 115

    Google Scholar 

  58. E. Stambulchik, Y. Maron, J. Phys. B Atom. Mol. Opt. Phys. 41, 095703 (2008)

    Google Scholar 

  59. V.N. Tsytovich, Theory of Turbulent Plasmas(Consultants Bureau, New York, 1977)

    Google Scholar 

  60. B.B. Kadomtsev, Plasma Turbulence(Academic, New York, 1965)

    Google Scholar 

  61. Turbulence and Anomalous Transport in Magnetized Plasmas, in Proc. Int. Workshop at “Institut d’Etudes Scientifiques de Cargese”, Corse de Sud, France, ed. by D. Gresillon, M.A. Dubois (Editions de Physique, Les Ulis, 1987)

    Google Scholar 

  62. E. Oks, Sov. Phys. Doklady 29, 224 (1984)

    Google Scholar 

  63. E. Oks, Meas. Tech. 29, 805 (1986)

    Google Scholar 

  64. P. Sauvan, E. Dalimier, E. Oks, O. Renner, S. Weber, C. Riconda, J. Phys. B 42, 195501 (2009)

    Google Scholar 

  65. Ja.B. Zeĺdovich, Sov. Phys. JETP 24, 1006 (1967)

    Google Scholar 

  66. V.I. Ritus, Sov. Phys. JETP 24, 1041 (1967)

    Google Scholar 

  67. E. Oks, G.V. Sholin, Sov. Phys. JETP 41, 482 (1975)

    Google Scholar 

  68. G.V. Sholin, E. Oks, Sov. Phys. Doklady 18, 254 (1973)

    Google Scholar 

  69. E. Oks, G.V. Sholin, Sov. Phys. Tech. Phys. 21, 144 (1976)

    Google Scholar 

  70. J. Holtsmark, Ann. Phys. 58, 577 (1919)

    Google Scholar 

  71. E. Sarid, Y. Maron, L. Troyansky, Phys. Rev. E 48, 1364 (1993)

    Google Scholar 

  72. V.N. Tsytovich, L. Stenflo, Phys. Scripta 12, 323 (1975)

    Google Scholar 

  73. A.I. Zhuzhunashvili, E. Oks, Sov. Phys. JETP 46, 2142 (1977)

    Google Scholar 

  74. E. Oks, V.A. Rantsev-Kartinov, Sov. Phys. JETP 52, 50 (1980)

    Google Scholar 

  75. V.P. Gavrilenko, E. Oks, Sov. Phys. JETP 53, 1122 (1981)

    Google Scholar 

  76. V.P. Gavrilenko, E. Oks, Sov. Phys. Plasma Phys. 13, 22 (1987)

    Google Scholar 

  77. E. Oks, St. Böddeker, H.-J. Kunze, Phys. Rev. A 44, 8338 (1991)

    Google Scholar 

  78. O. Renner, E. Dalimier, E. Oks, F. Krasniqi, E. Dufour, R. Schott, E. Förster, J. Quant. Spectr. Rad. Tran. 99, 439 (2006)

    Google Scholar 

  79. E. Oks, G.V. Sholin, Opt. Spectrosc. 42, 434 (1977)

    Google Scholar 

  80. E. Oks, J. Phys. B Atom. Mol. Opt. Phys. Fast Track Comm. 44, 101004 (2011)

    Google Scholar 

  81. E. Oks, Intern. Rev. Atom. Mol. Phys. 1, 169 (2010)

    Google Scholar 

  82. E.M. Lifshitz, Sov. Phys. JETP 26, 570 (1968)

    Google Scholar 

  83. M.V. Babykin, A.I. Zhuzhunashvili, E. Oks, V.V. Shapkin, G.V. Sholin, Sov. Phys. JETP 38, 86 (1974)

    Google Scholar 

  84. C.C. Klepper, private communication (2011)

    Google Scholar 

  85. M.L. Adams, R.W. Lee, H.A. Scott, H.K. Chung, and L. Klein, Phys. Rev. E 66. 066413 (2002).

    Google Scholar 

  86. A. Derevianko, E. Oks, Rev. Sci. Instr. 68, 998 (1997)

    Google Scholar 

  87. E.L. Foley, F.M. Levinton, Rev. Sci. Instr. 75, 3462 (2004)

    Google Scholar 

  88. N.A. Pablant, K.H. Burrell, R.J, Groebner, C.T. Holcomb, D.H. Kaplan, Rev. Sci. Instrum. 81, 10D729 (2010)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Chris Klepper for sharing one recent experimental result at the Tore Supra.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oks, E. (2012). Broadening of Hydrogenic Spectral Lines in Magnetized Plasmas: Diagnostic Applications. In: Shevelko, V., Tawara, H. (eds) Atomic Processes in Basic and Applied Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25569-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25569-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25568-7

  • Online ISBN: 978-3-642-25569-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics