Skip to main content

Abstract

Enzyme induction in humans may lead to drug-drug interactions. Possible pharmacokinetic consequences of enzyme induction include decreased or absent bioavailability for orally administered drugs, increased hepatic clearance, or accelerated formation of active or toxic metabolites. The “gold standard” accepted for in vitro enzyme induction assays are freshly isolated human hepatocytes. A procedure for in vitro induction studies in freshly isolated human hepatocytes is described including evaluation of CYP1A2, CYP2B6, and CYP3A4 enzyme activities and mRNA levels, and an example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amacher DE, Schomaker SJ, Burkhardt JE (1998) The relationship among microsomal enzyme induction, liver weight and histological change in rat toxicology studies. Food Chem Toxicol 36:831–839

    Article  PubMed  CAS  Google Scholar 

  • Amacher DE, Schomaker SJ, Burkhardt JE (2001) The relationship among microsomal enzyme induction, liver weight and histological change in beagle dog toxicology studies. Food Chem Toxicol 39:817–825

    Article  PubMed  CAS  Google Scholar 

  • Chandok N, Watt KDS (2010) Pain management in the cirrhotic patient: the clinical challenge. Mayo Clin Proc 85:451–458

    Article  PubMed  Google Scholar 

  • Chu V, Einolf HJ, Evers R et al (2009) In vitro and in vivo induction of cytochrome P450: a survey of the current practises and recommendations: a pharmaceutical research and manufacturers of America perspective. Drug Metab Dispos 37:1339–1354

    Article  PubMed  CAS  Google Scholar 

  • Cunha GC, van Ravenzwaay B (2005) Evaluation of mechanisms inducing thyroid toxicity and the ability of the enhanced OECD test guideline 407 to detect these changes. Arch Toxicol 79:390–405

    Article  PubMed  CAS  Google Scholar 

  • Easterbrook J, Lu C, Sakai Y et al (2001) Effects of organic solvents on the activities of cytochrome P450 isoforms, UDP-dependent glucuronyl transferase, and phenol sulfotransferase in human hepatocytes. Drug Metab Dispos 29:141–144

    PubMed  CAS  Google Scholar 

  • FDA (2012) Guidance for industry: drug interaction studies – study design, data analysis, implications for dosing, and labeling recommendations. Draft guidance, Rockville

    Google Scholar 

  • Foisy MM, Yakiwchuk EM, Hughes CA (2008) Induction effects if ritonavir: implications for drug interactions. Ann Pharmacother 42:1048–1059

    Article  PubMed  CAS  Google Scholar 

  • Fromm MF, Busse D, Kroemer HK et al (1996) Differential induction of prehepatic and hepatic metabolism of verapamil by rifampicin. Hepatology 24:796–801

    Article  PubMed  CAS  Google Scholar 

  • Graham RA, Downey A, Mudra D et al (2002) In vivo and in vitro induction of cytochrome P450 enzymes in beagle dogs. Drug Metab Dispos 30:1206–1213

    Article  PubMed  CAS  Google Scholar 

  • Hewitt NJ, de Kanter R, LeClyse E (2007a) Induction of drug metabolizing enzymes: a survey of in vitro methodologies and interpretations used in the pharmaceutical industry – do they comply with FDA recommendations? Chem Biol Interact 168:51–65

    Article  PubMed  CAS  Google Scholar 

  • Hewitt NJ, Gomez Lechon MJ, Houstan JB et al (2007b) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Dispos 39:159–234

    CAS  Google Scholar 

  • Hewitt NJ, LeClyse EL, Fergusson SS (2007c) Induction of hepatic cytochrome P450 enzymes: methods, mechanisms, recommendations, and in vitro-in vivo correlations. Xenobiotica 37:1196–1224

    Article  PubMed  CAS  Google Scholar 

  • Honkakoski P, Negishi M (2000) Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 347:321–337

    Article  PubMed  CAS  Google Scholar 

  • Iwase M, Kurata N, Ehana R et al (2006) Evaluation of the effects of hydrophilic organic solvents on CYP3A-mediated drug-drug interaction in vitro. Hum Exp Toxicol 25:715–721

    Article  PubMed  CAS  Google Scholar 

  • Jones SA, Moore LB, Shenk JL et al (2000) The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 14:27–39

    Article  PubMed  CAS  Google Scholar 

  • Kaneko A, Kato M, Endo C et al (2010) Prediction of clinical CYP3A4 induction using cryopreserved human hepatocytes. Xenobiotica 40:791–799

    Article  PubMed  CAS  Google Scholar 

  • Kewley RJ, Whitelaw ML, Chapman-Smith A (2004) The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36:189–204

    Article  PubMed  CAS  Google Scholar 

  • Koose T, Bünning P (2010) Drug Disposition. Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany

    Google Scholar 

  • LeBel M, Masson E, Guilbert E et al (1998) Effects of rifabutin and rifampicin on the pharmacokinetics of ethinylestradiol and norethindrone. J Clin Pharmacol 38:1042–1050

    Article  PubMed  CAS  Google Scholar 

  • LeClyse EL (2001) Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics. Chem Biol Interact 134:283–289

    Article  Google Scholar 

  • LeClyse EL, Alexandre E, Hamilton GA et al (2005) Isolation and culture of primary human hepatocytes. Methods Mol Biol 290:207–229

    Google Scholar 

  • Lee MD, Ayanoglu E, Gong L (2006) Drug-induced changes in P450 enzyme expression at the gene expression level: a new dimension to the analysis of drug-drug interactions. Xenobiotica 36:1013–1080

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, McKee DD, Watson MA et al (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102:1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Li AP, Hartman NR, Lu C et al (1999) Effects of cytochrome P450 inducers on 17α-ethinylestradiol (EE2) conjugation by primary human hepatocytes. Br J Clin Pharmacol 48:733–742

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Li AP (2001) Species comparison in P450 induction: effects of dexamethasone, omeprazole and rifampin on P450 isoforms 1A and 3A in primary hepatocytes from man, Sprague–Dawley rat, minipig and beagle dog. Chem Biol Interact 134:271–281

    Article  PubMed  CAS  Google Scholar 

  • Madan A, Graham RA, Carroll KM et al (2003) Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultures human hepatocytes. Drug Metab Dispos 31:421–431

    Article  PubMed  CAS  Google Scholar 

  • Marker A (2007) Multiple normalisation and statistical evaluation of gene activation in complex pharmacological processes. B.A. thesis, University of Mainz, Germany

    Google Scholar 

  • McGinnity DF, Zhang G, Kenny JR et al (2009) Evaluation of multiple in vitro systems for assessment of CYP3A4 induction in drug discovery: human hepatocytes, pregnane X receptor reporter gene, and Fa2N-4 and HepaRG cells. Drug Metab Dispos 37:1259–1268

    Article  PubMed  CAS  Google Scholar 

  • Raucy JL, Lasker JM (2010) Current in vitro high throughput screening approaches to assess nuclear receptor activation. Curr Drug Metab 11:806–814

    Article  PubMed  CAS  Google Scholar 

  • Raucy JL, Lasker JM, Lieber CS et al (1989) Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch Biochem Biophys 271:270–283

    Article  PubMed  CAS  Google Scholar 

  • Roymans D, Van Looveren C, Leone A et al (2005) Determination of cytochrome P450 1A2 and cytochrome P450 3A4 induction in cryopreserved human hepatocytes. Biochem Pharmacol 67:427–437

    Article  CAS  Google Scholar 

  • Search-LC GmbH (2010) Proprietary information. Search-LC GmbH, Heidelberg, Germany

    Google Scholar 

  • Shou M, Hayashi M, Pan Y et al (2008) Modeling, prediction, and in vitro in vivo correlation of CYP3A4 induction. Drug Metab Dispos 36:2355–2370

    Article  PubMed  CAS  Google Scholar 

  • Sueyoshi T, Negishi M (2001) Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol 41:123–143

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Sanchez RI, Franklin RB et al (2004) The involvement of CYP3A4 and CYP2C9 in the metabolism of 17α-ethinylestradiol. Drug Metab Dispos 32:1209–1212

    Article  PubMed  CAS  Google Scholar 

  • Waxman DJ (1999) P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 369:11–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Martin Burschka for critical reading of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bünning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bünning, P. (2013). Drug–Drug Interaction: Enzyme Induction. In: Vogel, H.G., Maas, J., Hock, F.J., Mayer, D. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25240-2_43

Download citation

Publish with us

Policies and ethics