Skip to main content

Introduction and Fundamentals of Pinhole Scintigraphy

  • Chapter
  • First Online:
Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases
  • 1633 Accesses

Abstract

To those who acquired their anatomical knowledge of the skeleton with the aid of clean, dried bone specimens or a plastic mannequin it may appear as a mere inert weight-bearing scaff old of the human body. However, like all other organs, bone constantly undergoes remodeling and tubulation through the physiological and metabolic activities of osteoblasts and osteoclasts. Th e principal role played by these bone cells is the maintenance of bone integrity and calcium homeostasis by balancing between the ratio of bone collagen production and resorption and by governing mineralization processes. Collagen production is a histological property common to various connective tissues, but mineralization is unique to bone cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References


  • Abe K, Sasaki M, Kuwabara Y, et al (2005) Comparison of 18FDG‑PET with 99mTc‑HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 19:573–579


    Article  PubMed  Google Scholar 

  • Alazraki N (1988) Radionuclide techniques. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 2nd edn. WB Saunders, Philadelphia


    Google Scholar 

  • Anger HO, Rosenthall DJ (1959) Scintillation camera and positron camera. Medical Radioisotope Scanning. IAEA, Vienna


    Google Scholar 

  • Bahk YW (1982) Usefulness of pinhole scintigraphy in bone and joint diseases (abstract). Jpn J Nucl Med 29:1307–1308


    Google Scholar 

  • Bahk YW (1985) Usefulness of pinhole collimator scintigraphy in the study of bone and joint diseases (abstract). European Nuclear Medicine Congress. London, p 262


    Google Scholar 

  • Bahk YW (1988) Pinhole scintigraphy as applied to bone and joint studies. In: Proceedings of Fourth Asia and Oceania Congress of Nuclear Medicine and Biology. Taipei, pp 93–95


    Google Scholar 

  • Bahk YW (1992) Scintigraphic and radiographic imaging of inflammatory bone and joint diseases. Pre‑Congress Teaching Course of Fifth Asia and Oceania Congress of Nuclear Medicine and Biology, Jakarta, pp 19–35


    Google Scholar 

  • Bahk YW, Kim OH, Chung SK (1987) Pinhole collimator scintigraphy in differential diagnosis of metastasis, fracture, and infections of the spine. J Nucl Med 28:447–451


    PubMed  CAS  Google Scholar 

  • Bahk YW, Chung SK, Kim SH, et al (1992) Pinhole scintigraphic manifestations of sternocostoclavicular hyperostosis: report of a case. Korean J Nucl Med 26:155–159


    Google Scholar 

  • Bahk YW, Park YH, Chung SK, et al (1994) Pinhole scintigraphic sign of chondromalacia patellae in older subjects: a prospective assessment with differential diagnosis. J Nucl Med 35:855–862


    PubMed  CAS  Google Scholar 

  • Bahk YW, Park YH, Chung SK, et al (1995) Bone pathologic correlation of multimodality imaging of Paget’s disease. J Nucl Med 36:1421–1426


    PubMed  CAS  Google Scholar 

  • Bahk YW, Kim SH, Chung SK, et al (1998a) Dual‑head pinhole bone scintigraphy. J Nucl Med 39:1444–1448


    PubMed  CAS  Google Scholar 

  • Bahk YW, Chung SK, Park YH, et al (1998b) Pinhole SPECT imaging in normal and morbid ankles. J Nucl Med 39:130–139


    PubMed  CAS  Google Scholar 

  • Blau M, Nagler W, Bender MA (1962) Fluorine‑18: a new isotope for bone scanning. J Nucl Med 3:332–334


    PubMed  CAS  Google Scholar 

  • Blum T (1924) Osteomyelitis of the mandible and max illa. Am J Dent Assoc 11:802–805


    Google Scholar 

  • Buck AK, Glatting G, Reske SN (2004) Quantification of 18F‑FDG uptake in non‑small cell lung cancer: a feasible prognostic marker? J Nucl Med 45:1274–1276


    PubMed  CAS  Google Scholar 

  • Castronovo FP, Callahan RJ (1972) New bone scanning agent: 99mTc‑labelled 1‑hydroxy‑ethyledene‑1,1‑sodium phosphate. J Nucl Med 13:823–827


    PubMed  CAS  Google Scholar 

  • Charkes ND (1969) Some differences between bone scans made with 87mSr and 85Sr. J Nucl Med 10:491–494


    PubMed  CAS  Google Scholar 

  • Citrin DL, Bessent RG, Tuohy JB, et al (1975) A comparison of phosphate bone-scanning agents in normal subjects and patients with malignant disease. Br J Radiol 48:118–121


    Article  PubMed  CAS  Google Scholar 

  • Conway JJ (1993) A scintigraphic classification of Legg- Calvé‑Perthes disease. Semin Nucl Med 33:274–295


    Google Scholar 

  • Corey KR, Kenney O, Greenberg E, et al (1961) The use of calcium-47 in diagnostic studies of patients with bone lesions. AJR Am J Roentgenol 85:955–975


    CAS  Google Scholar 

  • Danigelis JA, Fisher RL, Ozonoff MB, et al (1975) 99mTc-polyphosphate bone imaging in Legg‑Perthes disease. Radiology 115:407–413


    PubMed  CAS  Google Scholar 

  • Davis MA, Jones AG (1976) Comparison of 99mTc labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med 6:19–31


    Article  PubMed  CAS  Google Scholar 

  • Fleming WH, McIlraith ID, King R (1961) Photoscanning of bone lesions utilizing strontium 85. Radiology 77:635–636


    PubMed  CAS  Google Scholar 

  • Fogelman I, McKillop JH, Citrin DL (1977) A clinical comparison of 99mTc‑hydroxyethylidene diphosphonate (HEDP) and 99mTc‑pyrophosphate in the detection of bone metastases. Clin Nucl Med 2:364–367


    Article  Google Scholar 

  • Francis MD, Ferguson DL, Tofe AJ, et al (1980) Comparative evaluation of three diphosphonates: in vivo adsorption (C‑14 labeled) and in vivo osteogenic uptake (Tc‑99 m complexed). J Nucl Med 21:1185–1189


    PubMed  CAS  Google Scholar 

  • Francis MD, Horn PA, Tofe AJ (1981) Controversial mechanism of technetium‑99 m deposition on bone (abstract). J Nucl Med 22:72


    Google Scholar 

  • Guillermart A, Le Page A, Galy YG, et al (1980) Bone kinetics of calcium‑45 and pyrophosphate labeled with technetium 96. An autoradiographic evaluation. J Nucl Med 21:466–470


    Google Scholar 

  • Gynning I, Langeland P, Lindberg S, et al (1961) Localization with Sr‑85 of spinal metastases in mammary cancer and changes in uptake after hormone and roentgen therapy. Acta Radiol 55:119–128


    Article  PubMed  CAS  Google Scholar 

  • Harper PV, Lathrop KA, Jiminez F, et al (1965) Technetium 99 m as a scan agent. Radiology 85:101–109


    PubMed  CAS  Google Scholar 

  • Hoffman FL (1925) Radium (mesothorium) necrosis. JAMA 85:961–965


    Article  Google Scholar 

  • Jones AG, Francis MD, Davis MA (1976) Bone scanning: radionuclide reaction mechanisms. Semin Nucl Med 6:3–18


    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Chung SK, Park YH, et al (1992) Pinhole bone scan appearance of osteoid osteoma. Korean J Nucl Med 26:160–163


    Google Scholar 

  • Kim SH, Chung SK, Bahk YW (1993) Photopenic metastases with septation from papillary thyroid carcinoma: a case report. Korean J Nucl Med 26:305–308


    Google Scholar 

  • Kim SH, Chung SK, Bahk YW, et al (1999) Whole‑body and pinhole bone scintigraphic manifestations of Reiter’s syndrome: distribution patterns and early and characteristic signs. Eur J Nucl Med 26:163–170


    Article  PubMed  CAS  Google Scholar 

  • Lilien DL, Berger HG, Anderson DP, Bennett LR (1973) 111In‑chloride: a new agent for bone marrow imaging. J Nucl Med 14:184–186


    PubMed  CAS  Google Scholar 

  • Mallinckrodt (1996) TechneScan HDP kit for the preparation of technetium Tc‑99 m oxidronate. Mallinckrodt, St. Louis, MO. http://imaging.mallinckrodt.com/_attachments/packageinserts/pin091.doc


    Google Scholar 

  • Martland HS (1926) Microscopic changes of certain anemias due to radioactivity. Arch Pathol Lad Med 2:465–472


    CAS  Google Scholar 

  • O’Conner MK, Brown ML, Hung JC, et al (1991) The art of bone scintigraphy – technical aspects. J Nucl Med 32:2332-2341


    Google Scholar 

  • Owen M (1985) Lineage of osteogenic cells and their relationship to the stromal systems. In: Perk WA (ed) Bone and mineral research. Elsevier, Amsterdam


    Google Scholar 

  • Pitt WR, Sharp PF (1985) Comparison of quantitative and visual detection of new focal bone lesions, J Nucl Med 26:230-236


    PubMed  CAS  Google Scholar 

  • Richards P (1960) A survey of the production at Brookhaven National Laboratory of radioisotopes for medical research. In: Congresso Nucleare, vol. 2. Comitato Nazionale Ricerche Nucleari, Rome


    Google Scholar 

  • Rosenthall L, Kaye M (1975) Technetium‑99 m‑pyrophosphate kinetics and imaging in metabolic bone disease. J Nucl Med 16(1):33–39


    PubMed  CAS  Google Scholar 

  • Silberstein EB, McAfee JG (1984) Bone localization. In: Differential diagnosis in nuclear medicine. McGraw‑Hill, New York


    Google Scholar 

  • Silberstein EB, Francis MD, Tofe AJ, et al (1975) Distribution of 99mTc‑Sn‑diphosphaonate and free 99mTc-pertechnetate in selected soft and hard tissues. J Nucl Med 16:58–61


    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG (1971) A new complex of 99mTc for skeletal imaging. Radiology 99:192–196


    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG, Bell EG, et al (1972) 99mTc-labeled polyphosphate as a skeletal imaging agent. Radiology 102:701–704


    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee, Blair RJ, et al (1975) Technetium‑99 m‑methylene diphosphate – a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755


    PubMed  CAS  Google Scholar 

  • Treadwell A de G, Low‑Beer BV, Friedell HL, Lawrence GH (1942) Metabolic studies on neoplasm of bone with the aid of radioactive strontium. Am J Med Sci 204:521–530


    Google Scholar 

  • Treves ST, Connolly LP, Kirkpatrick AB, et al (1995) Bone. In: Treves ST (ed) Pediatric nuclear medicine, 2nd edn. Springer, New York Berlin Heidelberg


    Google Scholar 

  • Yang WJ, Bahk YW, Chung SK, et al (1994) Pinhole skeletal scintigraphic manifestations of Tietze’s disease. Eur J Nucl Med 21:947–952

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Whee Bahk .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bahk, YW. (2013). Introduction and Fundamentals of Pinhole Scintigraphy. In: Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25144-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25144-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25143-6

  • Online ISBN: 978-3-642-25144-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics