Skip to main content

Functional Grapes

  • Reference work entry
  • First Online:
Natural Products

Abstract

Grape is one of the earliest cultivated plants all around the world. Health-benefiting grape properties have been widely studied in vitro, ex vivo, and in vivo. These properties are mainly attributed to phenolic composition, which is also responsible for many quality properties. Grape contains anthocyanins, flavonols, flavanols, hydroxycinnamic acid derivatives, hydroxybenzoic acids, and stilbenes. All these show bioactivity and, therefore, antioxidant, cardioprotective, anticarcinogenic, neuroprotective, and other activities are nowadays associated with grape consumption. Clinical studies on the intake of grape or grape derivative products report positive results. For this reason, numerous food products are enriched with different types of grape extracts. Grape extracts are added to meat, fish, dairy products, bread, and beverages so as to increase their nutritional value. The functional product market is an emerging market, and this type of products can be expected to increase in the near future. In this sense, further research is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang Y, Song J (2010) Fruits and fruit flavor: Classification and biological characterization. In: Hui YH (ed) Handbook of Fruit and Vegetable Flavors, John Wiley & Sons, Inc., Hoboken, NJ, USA

    Google Scholar 

  2. Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, Spiegelman D, Willett WC (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. J Am Med Assoc 282:1233–1239

    Article  CAS  Google Scholar 

  3. Patil BS, Jayaprakasha GK, Chidambara Murthy KN, Vikram A (2009) Bioactive compounds: historical perspectives, opportunities and challenges. J Agric Food Chem 57:8142–8160

    Article  CAS  Google Scholar 

  4. Bertelli AAA, Das DK (2009) Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 54:468–476

    Article  CAS  Google Scholar 

  5. Zhang L, Kai G, Lu B, Zhang H, Tang K, Jiang J, Chen W (2005) Metabolic engineering of tropane alkaloid biosynthesis in plants. J Integr Plant Biotechnol 47:136–143

    Article  CAS  Google Scholar 

  6. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam K, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E (2001) Enhanced levels of aroma and flavor compound S-linalool by metabolic engineering of terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265

    Article  CAS  Google Scholar 

  7. Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379

    Article  CAS  Google Scholar 

  8. Kashif A, Federica M, Young HC, Robert V (2010) Metabolic constituents of grapevine and grape-derived products. Phytochem Rev 9:357–378

    Article  CAS  Google Scholar 

  9. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J 2:1214–1234

    Article  CAS  Google Scholar 

  10. Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268

    CAS  Google Scholar 

  11. Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hort 105:319–330

    Article  CAS  Google Scholar 

  12. Fournand D, Vicens A, Sidhoum L, Souquet JM, Moutounet M, Cheynier V (2006) Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J Agric Food Chem 54:7331–7338

    Article  CAS  Google Scholar 

  13. Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702

    Article  CAS  Google Scholar 

  14. Mazza G (1995) Anthocyanins in grape products. Crit Rev Food Sci Nutr 35:341–371

    Article  CAS  Google Scholar 

  15. Cantos E, Espin JC, Tomas-Barberan FA (2002) Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. J Agric Food Chem 50:5691–5696

    Article  CAS  Google Scholar 

  16. Guerrero RF, Liazid A, Palma M, Puertas B, Gonzalez-Barrio R, Gil-Izquierdo A, Garcia-Barroso C, Cantos-Villar E (2009) Phenolic characterisation of red grapes autochthonous to Andalusia. Food Chem 112:949–955

    Article  CAS  Google Scholar 

  17. Rodríguez Montealegre R, Romero Peces R, Chacón Vozmediano JL, Martínez Gascueña J, García Romero E (2006) Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J Food Compos Anal 19:687–693

    Article  CAS  Google Scholar 

  18. Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2007) Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J Agric Food Chem 55:992–1002

    Article  CAS  Google Scholar 

  19. Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2010) Flavonol profiles of Vitis vinifera white grape cultivars. J Food Compos Anal 23:699–705

    Article  CAS  Google Scholar 

  20. Guendez R, Kallithraka S, Makris DP, Kefalas P (2005) An analytical survey of the polyphenols of seeds of varieties of grape (Vitis vinifera) cultivated in Greece: implications for exploitation as a source of value-added phytochemicals. Phytochem Anal 16:17–23

    Article  CAS  Google Scholar 

  21. Mane C, Souquet JM, Olle D, Verries C, Veran F, Mazerolles G, Cheynier V, Fulcrand H (2007) Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of Champagne grape varieties. J Agric Food Chem 55:7224–7233

    Article  CAS  Google Scholar 

  22. Gomes-Alonso S, Garcia-Romero E, Hermosin-Gutierrez I (2007) HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. J Food Compos Anal 20:618–626

    Article  CAS  Google Scholar 

  23. Guerrero RF, Puertas B, Fernández MI, Palma M, Cantos-Villar E (2010) Induction of stilbenes in grapes by UV-C: comparison of different subspecies of Vitis. Innov Food Sci Emerg Technol 11:231–238

    Article  CAS  Google Scholar 

  24. Cantos E, Espin JC, Fernandez MJ, Oliva J, Tomas-Barberan FA (2003) Postharvest UV-C irradiated grapes as a potential source for producing stilbene-enriched red wines. J Agric Food Chem 51:1208–1214

    Article  CAS  Google Scholar 

  25. Gatto P, Vrhovsek U, Muth J, Segala C, Romualdi C, Fontana P, Pruefer D, Stefanini M, Moser C, Mattivi F, Velasco R (2008) Ripening and genotype control of stilbene accumulation in healthy grapes. J Agric Food Chem 56:11773–11785

    Article  CAS  Google Scholar 

  26. Downey MO, Harvey JS, Robison SP (2004) The effect of bunch shading on berry development on flavonoid accumulation in Shiraz grapes. Am J Enol Vitic 10:55–73

    CAS  Google Scholar 

  27. Cortell JM, Kennedy JA (2006) Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) pinot noir fruit and extraction in a model system. J Agric Food Chem 54:8510–8520

    Article  CAS  Google Scholar 

  28. Fulcrand H, Remy S, Souquet JM, Cheynier V, Moutounet M (1999) Study of wine tannins oligomers by on-line chromatography electrospray ionization mass spectrometry. J Agric Food Chem 47:1023–1028

    Article  CAS  Google Scholar 

  29. Souquet JM, Cheynier V, Brossaud F, Moutounet M (1996) Polymeric proanthocyanidins from grape skins. Phytochemistry 43:509–512

    Article  CAS  Google Scholar 

  30. De Pascual-Teresa S, Rivas-Gonzalo JC, Santos-Buelga C (2000) Prodelphinidins and related flavanols in wine. Int J Food Sci Technol 35:33–40

    Article  Google Scholar 

  31. Boselli E, Boulton RB, Thorngate JH, Frega NG (2004) Chemical and sensory characterization of DOC red wines from Marche (Italy) related to vintage and grape cultivars. J Agric Food Chem 52:3843–3854

    Article  CAS  Google Scholar 

  32. Cheynier VF, Trousdale EK, Singleton VL, Salgues MJ, Wylde R (1986) Characterization of 2-S-glutathionylcaftaric acid and its hydrolysis in relation to grape wines. J Agric Food Chem 34:217–221

    Article  CAS  Google Scholar 

  33. Pozo-Bayon MA, Hernandez MT, Martin-Alvarez PJ, Polo MC (2003) Study of low molecular weight phenolic compounds during the aging of sparkling wines manufactured with red and white grape varieties. J Agric Food Chem 51:2089–2095

    Article  CAS  Google Scholar 

  34. Vanhoenacker G, De Villiers A, Lazou K, Keukeleire D, Sandra P (2001) Comparison of high performance liquid chromatography-mass spectroscopy and capillary electrophoresis-mass spectroscopy for the analysis of phenolic compounds in diethyl ether extracts of red wines. Chromatographia 54:309–315

    Article  CAS  Google Scholar 

  35. Lu YR, Foo LY (1999) The polyphenol constituents of grape pomace. Food Chem 65:1–8

    Article  CAS  Google Scholar 

  36. Creasy LL, Coffee M (1988) Phytoalexin production potential of grape berries. J Am Soc Hortic Sci 113:230–234

    CAS  Google Scholar 

  37. Roggero JP, Garcia-Parrilla C (1995) Effects of ultraviolet irradiation on resveratrol and changes in resveratrol and various of its derivatives in the skins of ripening grapes. Sci Aliment 15:411–422

    CAS  Google Scholar 

  38. Sun BS, Ribes A, Leandro MC, Belchior AP, Spranger MI (2006) Stilbenes: quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal Chim Acta 563:382–390

    Article  CAS  Google Scholar 

  39. Bavaresco L, Cante E, Fregoni M, Trevisan M (1997) Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine. Vitis 36:115–118

    CAS  Google Scholar 

  40. Guerrero RF, García-Parrilla MC, Puertas B, Cantos-Villar E (2009) Wine, resveratrol and health: a review. Nat Prod Commun 4:635–658

    CAS  Google Scholar 

  41. Coelho E, Rocha SM, Delgadillo I, Coimbra MA (2006) Headspace-SPME applied to varietal volatile components evolution during Vitis vinifera L. cv. ‘Baga’ ripening. Anal Chim Acta 563:204–214

    Article  CAS  Google Scholar 

  42. Iriti M, Faoro F (2006) Grape phytochemicals: a bouquet of old and new nutraceuticals for human health. Med Hypotheses 67:833–838

    Article  CAS  Google Scholar 

  43. Mercolini L, Saracino MA, Bugamelli F, Ferranti A, Malaguti M, Hrelia S, Raggi MA (2008) HPLC-F analysis of melatonin and resveratrol isomers in wine using an SPE procedure. J Sep Sci 31:1007–1014

    Article  CAS  Google Scholar 

  44. Rodriguez-Naranjo MI, Gil-Izquierdo A, Troncoso AM, Cantos-Villar E, Garcia-Parrilla MC (2011) Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chem 126:1608–1613

    Article  CAS  Google Scholar 

  45. Wang TTY, Hudson TS, Wang TC, Remsberg CM, Davies NM, Takahashi Y, Kim YS, Seifried H, Vinyard BT, Perkins SN, Hursting SD (2008) Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo. Carcinogenesis 29:2001–2010

    Article  CAS  Google Scholar 

  46. Curin Y, Andriantsitohaina R (2005) Polyphenols as potential therapeutical agents against cardiovascular diseases. Pharmacol Rep 57:97–107

    Google Scholar 

  47. Martin S, Giannone G, Andriantsitohaina R, Martinez MC (2003) Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol 139:1095–1102

    Article  CAS  Google Scholar 

  48. Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, Cao L, Ling W (2009) Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr 90:485–492

    Article  CAS  Google Scholar 

  49. Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    CAS  Google Scholar 

  50. McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713

    Article  CAS  Google Scholar 

  51. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  Google Scholar 

  52. Duarte J, Perez-Palencia R, Vargas F, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J (2001) Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133:117–124

    Article  CAS  Google Scholar 

  53. Duarte J, Jimenez R, O'Valle F, Galisteo M, Perez-Palencia R, Vargas F, Perez-Vizcaino F, Zarzuelo A, Tamargo J (2002) Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats. J Hypertens 20:1843–1854

    Article  CAS  Google Scholar 

  54. Okamoto T (2005) Safety of quercetin for clinical application (review). Int J Mol Med 16:275–278

    CAS  Google Scholar 

  55. McAnlis GT, McEneny J, Pearce J, Young IS (1999) Absorption and antioxidant effects of quercetin from onions, in man. Eur J Clin Nutr 53:92–96

    Article  CAS  Google Scholar 

  56. Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52:79–104

    Article  CAS  Google Scholar 

  57. Ottaviani JI, Actis-Goretta L, Villordo JJ, Fraga CG (2006) Procyanidin structure defines the extent and specificity of angiotensin I converting enzyme inhibition. Biochimie 88:359–365

    Article  CAS  Google Scholar 

  58. Lowry JB, McSweeney CS, Palmer B (1996) Changing perceptions of the effect of plant phenolics on nutrient supply in the ruminant. Aust J Agric Res 47:829–842

    Article  CAS  Google Scholar 

  59. Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviram M (1997) Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17:2744–2752

    Article  CAS  Google Scholar 

  60. Ruidavets JB, Teissedre PL, Ferrieres J, Carando S, Bougard G, Cabanis JC (2000) Catechin in the Mediterranean diet: vegetable, fruit or wine? Atherosclerosis 153:107–117

    Article  CAS  Google Scholar 

  61. Ursini F, Sevanian A (2002) Wine polyphenols and optimal nutrition. Ann N Y Acad Sci 957:200–209

    Article  CAS  Google Scholar 

  62. Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81:243S–255S

    CAS  Google Scholar 

  63. Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501

    Article  CAS  Google Scholar 

  64. Luceri C, Giannini L, Lodovici M, Antonucci E, Abbate R, Masini E, Dolara P (2007) p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br J Nutr 97:458–463

    Article  CAS  Google Scholar 

  65. Tomera JF (1999) Current knowledge of the health benefits and disadvantages of wine consumption. Trends Food Sci Technol 10:129–138

    Article  CAS  Google Scholar 

  66. Jang MS, Cai EN, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  Google Scholar 

  67. Aggarwal B, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    CAS  Google Scholar 

  68. Schneider Y, Duranton B, Gosse F, Schleiffer R, Seiler N, Raul F (2001) Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr Cancer 39:102–107

    Article  CAS  Google Scholar 

  69. Garvin S, Ollinger K, Dabrosin C (2006) Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett 231:113–122

    Article  CAS  Google Scholar 

  70. Fernández-Mar MI, Mateos R, García-Parrilla MC, Puertas B, Cantos-Villar E (2012) Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: a review. Food Chem 130:797–813

    Article  CAS  Google Scholar 

  71. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  Google Scholar 

  72. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang L-L, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  CAS  Google Scholar 

  73. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    Article  CAS  Google Scholar 

  74. Murias M, Jaeger W, Handler N, Erker T, Horvath Z, Szekeres T et al (2005) Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem Pharmacol 69:903–912

    Article  CAS  Google Scholar 

  75. Kuo P, Hsu Y (2008) The grape and wine constituent piceatannol inhibits proliferation of human bladder cancer cells via blocking cell cycle progression and inducing Fas/membrane bound Fas ligand-mediated apoptotic pathway. Mol Nutr Food Res 52:408–418

    Article  CAS  Google Scholar 

  76. Jannin B, Menzel M, Berlot JP, Delmas D, Lancon A, Latruffe N (2004) Transport of resveratrol, a cancer chemopreventive agent, to cellular targets: plasmatic protein binding and cell uptake. Biochem Pharmacol 68:1113–1118

    Article  CAS  Google Scholar 

  77. Bertelli AAE, Giovannini L, Stradi R, Bertelli A, Tillement JP (1996) Plasma, urine and tissue levels of trans- and cis-resveratrol (3,4',5-trihydroxystilbene) after short-term or prolonged administration of red wine to rats. Int J Tissue React 18:67–71

    CAS  Google Scholar 

  78. El-Mohsen MA, Bayele H, Kuhnle G, Gibson G, Debnam E, Srai SK, Rice-Evans C, Spencer JP (2006) Distribution of [3 H]trans-resveratrol in rat tissues following oral administration. Br J Nutr 96:62–70

    Article  CAS  Google Scholar 

  79. Vitrac X, Desmouliere A, Brouillaud B, Krisa S, Deffieux G, Barthe N, Rosenbaum J, Merillon JM (2003) Distribution of [14 C]-trans-resveratrol, a cancer chemo-preventive polyphenol, in mouse tissues after oral administration. Life Sci 72:2219–2233

    Article  CAS  Google Scholar 

  80. De Santi C, Pietrabissa A, Spisni R, Mosca F, Pacifici GM (2000) Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenum. Xenobiotica 30:609–617

    Article  Google Scholar 

  81. Mertens-Talcott SU, Percival SS (2005) Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 218:141–151

    Article  CAS  Google Scholar 

  82. Chan MM, Mattiacci JA, Hwang HS, Shah A, Fong D (2000) Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochem Pharmacol 60:1539–1548

    Article  CAS  Google Scholar 

  83. Fang JG, Lu M, Chen ZH, Zhu HH, Li Y, Yang L, Wu LM, Liu ZL (2002) Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chemistry 8:4191–4198

    Article  CAS  Google Scholar 

  84. Conte A, Pellegrini S, Tagliazucchi D (2003) Synergistic protection of PC12 cells from β-amyloid toxicity by resveratrol and catechin. Brain Res Bull 62:29–38

    Article  CAS  Google Scholar 

  85. Heredia A, Davis C, Redfield R (2000) Synergistic inhibition of HIV-1 in activated and resting peripheral blood mononuclear cells, monocyte-derived macrophages, and selected drug-resistant isolates with nucleoside analogues combined with a natural product, resveratrol. J Acquir Immune Defic Syndr 25:246–255

    Article  CAS  Google Scholar 

  86. Vivancos M, Moreno JJ (2008) Effect of resveratrol, tyrosol and beta-sitosterol on oxidized low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Br J Nutr 99:1199–1207

    Article  CAS  Google Scholar 

  87. Wang Z, Zou J, Cao K, Hsieh T, Huang Y, Wu JM (2005) Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels. Int J Mol Med 16:533–540

    CAS  Google Scholar 

  88. Xu Z, Chang FR, Wang HK, Kashiwada Y, McPhail AT, Bastow KF, Tachibana Y, Cosentino M, Lee KH (2000) Anti-HIV agents 45(1) and antitumor agents (2) Two new sesquiterpenes, leitneridanins A and B, and the cytotoxic and anti-HIV principles from Leitneria floridana. J Nat Prod 63:1712–1715

    Article  CAS  Google Scholar 

  89. Tamemoto K, Takaishi Y, Chen B, Kawazoe K, Shibata H, Higuti T, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O (2001) Sesquiterpenoids from the fruits of Ferula kuhistanica and antibacterial activity of the constituents of F. kuhistanica. Phytochemistry 58:763–767

    Article  CAS  Google Scholar 

  90. Brehm-Stecher BF, Johnson EA (2003) Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 47:3357–3360

    Article  CAS  Google Scholar 

  91. Hardeland R, Pandi–Perumal SR (2005) Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab 2:22

    Article  CAS  Google Scholar 

  92. Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27:119–130

    Article  CAS  Google Scholar 

  93. Reiter R, Tan DX, Maldonado MD (2005) Melatonin as an antioxidant: physiology versus pharmacology. J Pineal Res 39:215–216

    Article  CAS  Google Scholar 

  94. Kirakosyan A, Mitchell Seymour E, Noon KR, Urcuyo Llanes DE, Kaufman PB, Warber SL, Bolling SF (2010) Interactions of antioxidants isolated from tart cherry (Prunus cerasus) fruits. Food Chem 122:78–83

    Article  CAS  Google Scholar 

  95. Srinivasan V, Pandi-Perumal SR, Maestroni GJM, Esquifino AI, Hardeland R, Cardinali DP (2005) Role of melatonin in neurodegenerative diseases. Neurotox Res 74:293–318

    Article  Google Scholar 

  96. Authority EFS (2010) Scientific opinion on the substantiation of health claims related to melatonin and subjective feelings of jet lag (ID1953), and reduction of sleep onset latency, and improvement of sleep quality (ID 1953) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 8:1467

    Google Scholar 

  97. Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S (2003) Double blind study of melatonin effects on the sleep–wake rhythm, cognitive and non–cognitive functions in Alzheimer type dementia. J Nippon Med Sch 70:334–341

    Article  Google Scholar 

  98. Harderland R, Pandi–Perumal SR, Cardinali DP (2006) Melatonin. Int J Biochem Cell Biol 38:313–316

    Article  CAS  Google Scholar 

  99. Kabadi SV, Maher TJ (2010) Posttreatment with uridine and melatonin following traumatic brain injury reduces edema in various brain regions in rats. Ann N Y Acad Sci 1199:105–113

    Article  CAS  Google Scholar 

  100. Nagata C, Nagao Y, Shibuya C, Kashiki Y, Shimizu H (2005) Association of vegetable intake with urinary 6–sulfatoxymelatonin level. Cancer Epidemiol Biomarkers Prev 14:1333–1335

    Article  CAS  Google Scholar 

  101. Dopfel RP, Schulmeister K, Schernhammer ES (2007) Nutritional and lifestyle correlates of the cancer–protective hormone melatonin. Cancer Detect Prev 31:140–148

    Article  CAS  Google Scholar 

  102. Schernhmmer ES, Hankinson SE (2005) Urinary melatonin levels and breast cancer risk. J Natl Cancer Inst 97:1084–1087

    Article  CAS  Google Scholar 

  103. Blomgren K, Hagberg H (2006) Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 40:388–397

    Article  CAS  Google Scholar 

  104. Hartman RE, Shah A, Fagan AM, Schwetye KE, Parsadanian M, Schulman RN, Finn MB, Holtzman DM (2006) Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer's disease. Neurobiol Dis 24:506–515

    Article  CAS  Google Scholar 

  105. Frankel EN, Meyer AS (1998) Antioxidants in grapes and grape juices and their potential health effects. Pharm Biol 36:14–20

    Article  CAS  Google Scholar 

  106. Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56:8418–8426

    Article  CAS  Google Scholar 

  107. O’Byrne DJ, Devaraj S, Grundy SM, Jialal I (2002) Comparison of the antioxidant effects of Concord grape juice flavonoids and alpha-tocopherol on markers of oxidative stress in healthy adults. Am J Clin Nutr 76:1367–1374

    Google Scholar 

  108. Day AP, Kemp HJ, Bolton C, Hartog M, Stansbie D (1997) Effect of concentrated red grape juice consumption on serum antioxidant capacity and low-density lipoprotein oxidation. Ann Nutr Metab 41:353–357

    Article  CAS  Google Scholar 

  109. García-Alonso J, Ros G, Vidal-Guevara ML, Periago MJ (2006) Acute intake of phenolic-rich juice improves antioxidant status in healthy subjects. Nutr Res 26:330–339

    Article  CAS  Google Scholar 

  110. Castilla P, Echarri R, Dávalos A, Cerrato F, Ortega H, Teruel JL, Lucas MF, Gómez-Coronado D, Ortuño J, Lasunción MA (2006) Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr 84:252–862

    CAS  Google Scholar 

  111. Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D, Shachter NS, Fernández ML (2005) Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 135:1911–1917

    CAS  Google Scholar 

  112. Kar P, Laight D, Rooprai HK et al (2009) Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 26:526–531

    Article  CAS  Google Scholar 

  113. Durak I, Köseoglu MH, Kaçmaz M, Büyükkoçak S, Çimen MYB, Öztürk HS (1999) Black grape enhances plasma antioxidant potential. Nutr Res 19:973–977

    Article  CAS  Google Scholar 

  114. Park YK, Park E, Kim J-S, Kang M-H (2003) Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans. Mutat Res 529:77–86

    Article  CAS  Google Scholar 

  115. Stankovic M, Teševic V, Vajs V, Todorovic N, Milosavljevic S, Godevac D (2008) Antioxidant properties of grape seed extract on human lymphocyte oxidative defence. Planta Med 74:730–735

    Article  CAS  Google Scholar 

  116. Dauchet L, Amouyel P, Dallongeville J (2009) Fruits, vegetables and coronary heart disease. Nat Rev Cardiol 6:599–608

    Article  Google Scholar 

  117. Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD (1999) Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100:1050–1055

    Article  CAS  Google Scholar 

  118. Vinson JA, Yang J, Proch J, Liang X (2000) Grape juice, but not orange juice, has in vitro, ex vivo, and in vivo antioxidant properties. J Med Food 3:167–171

    Article  CAS  Google Scholar 

  119. Cui J, Cordis GA, Tosaki A, Maulik N, Das DK (2002) Reduction of myocardial ischemia reperfusion injury with regular consumption of grapes. Ann N Y Acad Sci 957:302–307

    Article  CAS  Google Scholar 

  120. Freedman JE, Parker C 3rd, Li L, Perlman JA, Frei B, Ivanov V, Deak LR, Iafrati MD, Folts JD (2001) Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 103:2792–2798

    Article  CAS  Google Scholar 

  121. Pataki T, Bak I, Kovacs P, Bagchi D, Das DK, Tosaki A (2002) Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutr 75:894–899

    CAS  Google Scholar 

  122. Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D, Shachter NS, Fernandez ML (2005) Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 135:1911–1917

    CAS  Google Scholar 

  123. Lekakis J, Rallidis LS, Andreadou I, Vamvakou G, Kazantzoglou G, Magiatis P, Skaltsounis A-L, Kremastinos DT (2005) Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil 12:596–600

    Article  Google Scholar 

  124. Coimbra SR, Lage SH, Brandizzi L, Yoshida V, da Luz PL (2005) The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients. Braz J Med Biol Res 38:1339–1347

    Article  CAS  Google Scholar 

  125. Chou EJ, Keevil JG, Aeschlimann S, Wiebe DA, Folts JD, Stein JH (2001) Effect of ingestion of purple grape juice on endothelial function in patients with coronary heart disease. Am J Cardiol 88:553–555

    Article  CAS  Google Scholar 

  126. Folts JD (2002) Potential health benefits from the flavonoids in grape products on vascular disease. Adv Exp Med Biol 505:95–111

    Article  CAS  Google Scholar 

  127. Young GP, Le Leu RK (2002) Preventing cancer: dietary lifestyle or clinical intervention? Asia Pac J Clin Nutr 11:S618–S631

    Article  Google Scholar 

  128. Soerjomataram I, Oomen D, Lemmens V, Oenema A, Benetou V, Trichopoulou A, Coebergh JW, Barendregt J, De Vries E (2010) Increased consumption of fruit and vegetables and future cancer incidence in selected European countries. Eur J Cancer 46:2563–2580

    Article  Google Scholar 

  129. Pavia M, Pileggi C, Nobile CGA, Angelillo IF (2006) Association between fruit and vegetable consumption and oral cancer: a meta-analysis of observational studies. Am J Clin Nutr 83:1126–1134

    CAS  Google Scholar 

  130. Durak I, Çetin R, Devrim E, Ergüder IB (2005) Effects of black grape extract on activities of DNA turn-over enzymes in cancerous and non cancerous human colon tissues. Life Sci 76:2995–3000

    Article  CAS  Google Scholar 

  131. Castillo-Pichardo L, Martínez-Montemayor MM, Martínez JE, Wall KM, Cubano LA, Dharmawardhane S (2009) Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clin Exp Metastasis 26:505–516

    Article  CAS  Google Scholar 

  132. Walter A, Etienne-Selloum N, Brasse D, Khallouf H, Bronner C, Rio M-C, Beretz A, Schini-Kerth VB (2010) Intake of grape-derived polyphenols reduces C26 tumor growth by inhibiting angiogenesis and inducing apoptosis. FASEB J 24:3360–3369

    Article  CAS  Google Scholar 

  133. Singh RP, Tyagi AK, Dhanalakshmi S, Agarwal R, Agarwal C (2004) Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. Int J Cancer 108:733–740

    Article  CAS  Google Scholar 

  134. Mantena SK, Baliga MS, Katiyar SK (2006) Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis 27:1682–1691

    Article  CAS  Google Scholar 

  135. Hanausek M, Spears E, Walaszek Z, Kowalczyk MC, Kowalczyk P, Wendel C, Slaga TJ (2011) Inhibition of murine skin carcinogenesis by freeze-dried grape powder and other grape-derived major antioxidants. Nutr Cancer 63:28–38

    CAS  Google Scholar 

  136. Cantos-Villar E, Zafrilla P, Mulero J (2011) Antioxidant activity of wine polyphenols for alzheimer prevention. Funct Plant Sci Biotechnol 5:22–32

    Google Scholar 

  137. Karuppagounder SS, Pinto JT, Xu H, Chen H-L, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease. Neurochem Int 54:111–118

    Article  CAS  Google Scholar 

  138. Fujishita K, Ozawa T, Shibata K, Tanabe S, Sato Y, Hisamoto M, Okuda T, Koizumi S (2009) Grape seed extract acting on astrocytes reveals neuronal protection against oxidative stress via interleukin-6-mediated mechanisms. Cell Mol Neurobiol 29:1121–1129

    Article  Google Scholar 

  139. Ono K, Condron MM, Ho L, Wang J, Zhao W, Pasinetti GM, Teplow DB (2008) Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity. J Biol Chem 283:32176–32187

    Article  CAS  Google Scholar 

  140. Wang J, Ho L, Zhao W, Ono K, Rosensweig C, Chen L, Humala N, Teplow DB, Pasinetti GM (2008) Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease. J Neurosci 28:6388–6392

    Article  CAS  Google Scholar 

  141. Wang Y-J, Thomas P, Zhong J-H, Bi F-F, Kosaraju S, Pollard A, Fenech M, Zhou X-F (2009) Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an Alzheimer's disease mouse. Neurotox Res 15:3–14

    Article  CAS  Google Scholar 

  142. Ho L, Chen LH, Wang J, Zhao W, Talcott ST, Ono K, Teplow D, Humala N, Cheng A, Percival SS, Ferruzzi M, Janle E, Dickstein DL, Pasinetti GM (2009) Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer's disease-type neuropathology and cognitive deterioration. J Alzheimers Dis 16:59–72

    CAS  Google Scholar 

  143. Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, Breteler MM (2002) Dietary intake of antioxidants and risk of Alzheimer's disease. JAMA 287:3223–3229

    Article  CAS  Google Scholar 

  144. Laurin D, Masaki KH, Foley DJ, White LR, Launer LJ (2004) Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu–Asia Aging Study. Am J Epidemiol 159:959–967

    Article  Google Scholar 

  145. Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363

    Article  CAS  Google Scholar 

  146. Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165:1364–1371

    Article  CAS  Google Scholar 

  147. Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  CAS  Google Scholar 

  148. Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB (2006) Fruit and vegetable juices and Alzheimer's disease: the Kame Project. Am J Med 119:751–759

    Article  CAS  Google Scholar 

  149. Ho RC, Cheung MW, Fu E, Win HH, Zaw MH, Ng A, Mak A (2011) Is high homocysteine level a risk factor for cognitive decline in elderly? A systematic review, metaanalysis, and meta-regression. Am J Geriatr Psychiatry 19:607–617

    Article  Google Scholar 

  150. Morillas-Ruiz JM, Rubio-Perez JM, Albaladejo MD, Zafrilla P, Parra S, Vidal-Guevara ML (2010) Effect of an antioxidant drink on homocysteine levels in Alzheimer's patients. J Neurol Sci 299:175–178

    Article  CAS  Google Scholar 

  151. Roberfroid MB (1999) What is beneficial for health? The concept of functional food. Food Chem Toxicol 37:1039–1041

    Article  CAS  Google Scholar 

  152. Spence JT (2006) Challenges related to the composition of functional foods. J Food Compos Anal 19:S4–S6

    Article  Google Scholar 

  153. Boue SM, Cleveland TE, Carter-Wientjes C, Shih BY, Bhatnagar D, McLachlan JM, Burow ME (2009) Phytoalexin-enriched functional foods. J Agric Food Chem 57:2614–2622

    Article  CAS  Google Scholar 

  154. Honda H, Hiraoka K, Nagamori E, Omote M, Kato Y, Hiraoka S et al (2002) Enhanced anthocyanin production from grape callus in an air-lift type bioreactor using a viscous additive-supplemented medium. J Biosci Bioeng 94:135–139

    Article  CAS  Google Scholar 

  155. Karaaslan M, Ozden M, Vardin H, Turkoglu H (2011) Phenolic fortification of yogurt using grape and callus extracts. LWT- Food Sci Technol 44:1065–1072

    Article  CAS  Google Scholar 

  156. Sgarbi E, Fornasiero RB, Lins AP, Bonatti PM (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957

    Article  CAS  Google Scholar 

  157. Rózek A, Achaerandio I, Almajano MP, Güell C, López F, Ferrando M (2007) Solid foodstuff supplemented with phenolics from grape: antioxidant properties and correlation with phenolic profiles. J Agric Food Chem 55:5147–5155

    Article  CAS  Google Scholar 

  158. Han J, Britten M, St-Gelais D, Champagne CP, Fustier P, Salmieri S, Lacroix M (2011) Polyphenolic compounds as functional ingredients in cheese. Food Chem 124:1589–1594

    Article  CAS  Google Scholar 

  159. Han J, Britten M, St-Gelais D, Champagne CP, Fustier P, Salmieri S, Lacroix M (2011) Effect of polyphenolic ingredients on physical characteristics of cheese. Food Res Int 44:494–497

    Article  CAS  Google Scholar 

  160. Axten LG, Wohlers MW, Wegrzyn T (2008) Using phytochemicals to enhance health benefits of milk: impact of polyphenols on flavor profile. J Food Sci 73:H122–H126

    Article  CAS  Google Scholar 

  161. Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61:115–125

    Article  CAS  Google Scholar 

  162. O'Connell JE, Fox PF (2001) Significance and applications of phenolic compounds in the production and quality of milk and dairy products: a review. Int Dairy J 11:103–120

    Article  Google Scholar 

  163. Brannan RG, Mah E (2007) Grape seed extract inhibits lipid oxidation in muscle from different species during refrigerated and frozen storage and oxidation catalyzed by peroxynitrite and iron/ascorbate in a pyrogallol red model system. Meat Sci 77:540–546

    Article  CAS  Google Scholar 

  164. Cos P, de Bruyne T, Hermans N, Apers S, Vanden Berghe D, Vlietinck AJ (2004) Proanthocyanidins in health care: current and new trends. Curr Med Chem 11:1345–1359

    Article  CAS  Google Scholar 

  165. Hu M, McClements DJ, Decker EA (2004) Impact of chelators on the oxidative stability of whey protein isolate-stabilized oil-in-water emulsions containing x-3 fatty acids. Food Chem 88:57–62

    Article  CAS  Google Scholar 

  166. Shaker ES (2006) Antioxidative effect of extracts from red grape seed and peel on lipid oxidation in oils of sunflower. LWT- Food Sci Technol 39:883–892

    Article  CAS  Google Scholar 

  167. Perumalla AVS, Hettiarachchy NS (2011) Green tea and grape seed extracts-Potential applications in food safety and quality. Food Res Int 44:827–839

    Article  CAS  Google Scholar 

  168. Ahn J, Grun IU, Fernando LN (2002) Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J Food Sci 67:1364–1369

    Article  CAS  Google Scholar 

  169. Banon S, Diaz P, Rodriguez M, Garrido MD, Price A (2007) Ascorbate, green tea and grape seed extracts increase the shelf life of low sulphite beef patties. Meat Sci 77:626–633

    Article  CAS  Google Scholar 

  170. Brannan RG (2009) Effect of grape seed extract on descriptive sensory analysis of ground chicken during refrigerated storage. Meat Sci 81:589–595

    Article  CAS  Google Scholar 

  171. Carpenter R, O’Grady MN, O’Callaghan YC, O’Brien NM, Kerry JP (2007) Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Sci 76:604–610

    Article  CAS  Google Scholar 

  172. Lau DW, King AJ (2003) Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J Agric Food Chem 51:1602–1607

    Article  CAS  Google Scholar 

  173. Mielnik MB, Olsen E, Vogt G, Adeline D, Skrede G (2006) Grape seed extract as antioxidant in cooked, cold stored turkey meat. LWT- Food Sci Technol 39:191–198

    Article  CAS  Google Scholar 

  174. Rababah T, Hettiarachchy NS, Horax R, Cho MJ, Davis B, Dickson J (2006) Thiobarbituric acid reactive substances and volatile compounds in chicken breast meat infused with plant extracts and subjected to electron beam irradiation. Poult Sci 85:1107–1113

    CAS  Google Scholar 

  175. Rojas MC, Brewer MS (2007) Effect of natural antioxidants on oxidative stability of cooked, refrigerated beef and pork. J Food Sci 72:S282–S288

    Article  CAS  Google Scholar 

  176. Rababah T, Hettiarachchy NS, Eswaranandam S, Meullenet JF, Davis B (2005) Sensory evaluation of irradiated and nonirradiated poultry breast meat infused with plant extracts. J Food Sci 70:S228–S235

    Article  CAS  Google Scholar 

  177. Özvural EB, Vural H (2010) Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci 88:179–183

    Article  CAS  Google Scholar 

  178. Peng X, Ma J, Cheng K-W, Jiang Y, Chen F, Wang M (2010) The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem 119:49–53

    Article  CAS  Google Scholar 

  179. Lee KW, Lip GYH (2003) The role of omega-3 fatty acids in the secondary prevention of cardiovascular disease. QJM 96:465–480

    Article  CAS  Google Scholar 

  180. Medina I, Lois S, Lizárraga D, Pazos M, Touriño S, Cascante M, Torres JL (2006) Functional fatty fish supplemented with grape procyanidins. Antioxidant and proapoptotic properties on colon cell lines. J Agric Food Chem 54:3598–3603

    Article  CAS  Google Scholar 

  181. Medina I, Alcántara D, González MJ, Torres P, Lucas R, Roque J, Plou FJ, Morales JC (2010) Antioxidant activity of resveratrol in several fish lipid matrices: effect of acylation and glucosylation. J Agric Food Chem 58:9778–9786

    Article  CAS  Google Scholar 

  182. Lunn J (2006) Superfoods. Nutr Bull 31:171–172

    Article  Google Scholar 

  183. Gaudette NJ, Pickering GJ (2011) Sensory and chemical characteristics of trans-resveratrol-fortified wine. Aust J Grape Wine Res 17:249–257

    Article  CAS  Google Scholar 

  184. Gollücke AP (2010) Recent applications of grape polyphenols in foods, beverages and supplements. Recent Pat Food Nutr Agric 2:105–109

    Article  Google Scholar 

  185. Wild HP, Sass M (2006) Concentrate comprising green tea, grape skin extract and grape extract, the production thereof and use of the same. Patent No.: US 7087259 B2

    Google Scholar 

  186. Shrikhande AJ, Wang H, Kupina SA (2007) Grape extract, dietary supplement thereof, and processes therefor. Patent No.: US 2007/0071871 A1

    Google Scholar 

  187. Perlman D, Ramonas L (2008) Astringency-compensated polyphenolic antioxidant containing comestible composition. Patent No.: US 2008/0044539 A1

    Google Scholar 

  188. Draijer R, den Hartog S, Mulder, TPJ (2009) Food composition. Patent No.: US 2009/0186118 A1

    Google Scholar 

  189. Renaud S, De Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  Google Scholar 

  190. Clifford AJ, Ebeler SE, Ebeler JD, Bills ND, Hinrichs SH, Teissedre PL, Waterhouse AL (1996) Delayed tumor onset in transgenic mice fed an amino acid-based diet supplemented with red wine solids. Am J Clin Nutr 64:748–756

    CAS  Google Scholar 

  191. Paganga G, Miller N, Rice-Evans CA (1999) The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Free Radic Res 30:153–162

    Article  CAS  Google Scholar 

  192. González-Candelas L, Gil JV, Lamuela-Raventós RM, Ramón D (2000) The use of transgenic yeast expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine. Int J Food Microbiol 59:179–183

    Article  Google Scholar 

  193. Becker JVW, Armstrong GO, Van der Merwe MJ, Lambrechts MG, Vivier MA, Pretorious IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85

    Article  CAS  Google Scholar 

  194. Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031

    Article  CAS  Google Scholar 

  195. Guerrero RF, Puertas B, Fernández MI, Piñeiro Z, Cantos-Villar E (2010) UVC-treated skin-contact effect on both white wine quality and resveratrol content. Food Res Int 43:2179–2185

    Article  CAS  Google Scholar 

  196. Barreiro-Hurlé J, Colombo S, Cantos-Villar E (2008) Is there a market for functional wines? Consumer preferences and willingness to pay for resveratrol-enriched red wine. Food Qual Prefer 19:360–371

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the INIA and FEDER for their financial support (Project RTA2011-00002 and RTA2009-00022-C02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Isabel Fernández-Marín or Emma Cantos-Villar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Fernández-Marín, M.I., Guerrero, R.F., Puertas, B., García-Parrilla, M.C., Cantos-Villar, E. (2013). Functional Grapes. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_69

Download citation

Publish with us

Policies and ethics