Skip to main content

Essential Oils: Analytical Methods to Control the Quality of Perfumes

  • Reference work entry
  • First Online:
Natural Products

Abstract

Cosmetic products, including perfumes, are regulated by a single law concerning important aspects, such as composition or labeling, in order to protect public health. A revision on the regulatory aspects for fragrance chemicals in cosmetics and household products is exposed here.

Quality control of both, commercial perfumes and raw materials, is important for perfume manufacturers to assure that the finished perfume is the one that was formulated. On the other hand, analytical methods are necessary to assure, for safety purposes, that there are no undesired or banned compounds present in the finished product. Methods for perfume analysis are compiled and revised with special emphasis on the potentially allergenic fragrance-related substances and some other groups of substances such as musks and phthalates, being some of them restricted or forbidden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHTN:

6-acetyl-1,1,2,4,4,7-hexamethyltetralin

AITI:

5-acetyl-3-isopropyl-1,1,2,6-tetramethylindane

ALEX:

Automated liner exchange

ANN:

Artificial neuronal networks

BBP:

Benzyl butyl phthalate

CE:

Capillary electrophoresis

DBP:

Dibutyl phthalate

DEHP:

Bis(2-ethylhexyl) phthalate

DEP:

Diethyl phthalate

DIBP:

Diisobutyl phthalate

DIPP:

Diisopentyl phthalate

DMEP:

Bis(2-methoxyethyl) phthalate

DMP:

Dimethyl phthalate

DNOP:

Di-n-octyl-phthalate

DNPP:

Di-n-pentyl-phthalate

DPP:

Dipropyl phthalate

ECD:

Electron capture detector

EESI:

Electrospray ionization mass spectrometry

EIC:

Extracted ion chromatogram

FDA:

Food and Drug Administration

FID:

Flame ionization detector

FS:

Full scan

GC:

Gas chromatography

HHCB:

1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran

HS:

Head space

IFRA:

International Fragrance Association

LC:

Liquid chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

MA:

Musk ambrette

MD:

Multidimensional

MEEKC:

Microemulsion electrokinetic chromatography

MK:

Musk ketone

MM:

Musk moskene

MS:

Mass spectrometry

MSPD:

Matrix solid-phase dispersion

MT:

Musk tibetene

MX:

Musk xylene

NPIPP:

n-pentyl-isopentylphthalate

PAS:

Potentially allergenic substance

PCA:

Principal component analysis

PLE:

Pressurized liquid extraction

PTV:

Programmed temperature vaporizing

RIFM:

Research Institute for Fragrance Materials

SBSE:

Stir bar sorptive extraction

SIM:

Selected ion monitoring

SPD:

Solid-phase dispersion

SPE:

Solid-phase extraction

TIC:

Total ion chromatogram

TLC:

Thin-layer chromatography

TOF:

Time-of-flight

UV:

Ultraviolet

References

  1. Chisvert A, Salvador A (2007) Perfumes in cosmetics. Regulatory aspects and analytical methods for fragrance ingredients and other related chemicals in cosmetics. In: Salvador A, Chisvert A (eds) Analysis of cosmetic products. Elsevier, Amsterdam

    Google Scholar 

  2. Salvador A, Chisvert A (2005) Perfumes. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science. Elsevier, Amsterdam

    Google Scholar 

  3. Regulation (EC) no 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products

    Google Scholar 

  4. Commission decision of 9 Feb 2006 amending Decision 96/335/EC establishing an inventory and a common nomenclature of ingredients employed in cosmetic products (2006/257/EC)

    Google Scholar 

  5. http://www.fda.gov/Cosmetics/GuidanceComplianceRegulatoryInformation/ucm074162.htm

  6. Directive 2003/15/EC of the European Parliament and of the Council of 27 February 2003 amending council directive 76/768/EEC on the approximation of the laws of the member states relating to cosmetic products

    Google Scholar 

  7. Bridges B (2002) Fragrance: emerging health and environmental concerns. Flavour Fragr J 17:361–371

    Article  CAS  Google Scholar 

  8. Regulation (EC) no 648/2004 of the European Parliament and of the Council of 31 March 2004 on detergents

    Google Scholar 

  9. van Asten A (2002) The importance of GC and GC-MS in perfume analysis. Trends Anal Chem 21:698–708

    Article  Google Scholar 

  10. Negri RM (2007) Electronic noses in perfume analysis. In: Salvador A, Chisvert A (eds) Analysis of cosmetic products. Elsevier, Amsterdam

    Google Scholar 

  11. Rodriguez PA, Tan TT, Gygax H (2003) Cosmetics and fragrances. In: Pearce TC, Schiffman SS, Nagle HT, Gardner JW (eds) Handbook of machine olfaction. Wiley-VCH, Germany

    Google Scholar 

  12. Carrasco A, Saby C, Bernadet P (1998) Discrimination of Yves Saint Laurent perfumes by an electronic nose. Flavour Fragr J 13:335–348

    Article  CAS  Google Scholar 

  13. Branca A, Simonian P, Ferrante M, Novas E, Negri R (2003) Electronic nose based discrimination of a perfumery compound in a fragrance. Sens Actuators B 92:222–227

    Article  CAS  Google Scholar 

  14. Cano M, Borrego V, Roales J, Idigoras J, Lopes-Costa T, Mendoza P et al (2011) Rapid discrimination and counterfeit detection of perfumes by an electronic olfactory system. Sens Actuators B 156:319–324

    Article  CAS  Google Scholar 

  15. Ye T, Jin C, Zhou J, Li X, Wang H, Deng P et al (2011) Can odors of TCM be captured by electronic nose? The novel quality control method for musk by electronic nose coupled with chemometrics. J Pharm Biomed Anal 55:1239–1244

    Article  CAS  Google Scholar 

  16. Chingin K, Gamez G, Chen H, Zhu L, Zenobi R (2008) Rapid classification of perfumes by extractive electrospray ionization mass spectrometry (EESI-MS). Rapid Commun Mass Spectrom 22:2009–2014

    Article  CAS  Google Scholar 

  17. Chaintreau A (2007) Analytical methods to determine potentially allergenic fragrance-related substances in cosmetics. In: Salvador A, Chisvert A (eds) Analysis of cosmetic products. Elsevier, Amsterdam

    Google Scholar 

  18. Rastogi SC (1995) Analysis of fragrances in cosmetics by gas chromatography–mass spectrometry. J High Resolut Chromatogr 18:653–658

    Article  CAS  Google Scholar 

  19. Rastogi SC (2002) Survey of chemical compounds in consumer products. Content of selected fragrance materials in cleaning products and other consumer products. Survey No. 8. http://www.mst.dk/chemi/PDF/duftstofsrapport%20_UK_.pdf

  20. Ellendt K, Hempel G, Köbler H (2001) Analysis of sensitizing fragrances by gas chromatography – mass spectrometry. SÖFW J 127:29–34

    Google Scholar 

  21. Chaintreau A, Joulain D, Marin C, Schmidt C, Vey M (2003) GC-MS quantitation of fragrance compounds suspected to cause skin reactions. 1. J Agric Food Chem 51:6398–6403

    Article  CAS  Google Scholar 

  22. International Fragrance Association (IFRA), 2003, GC/MS quantitation of potential fragrance allergens in fragrance compounds. http://www.ifraorg.org

  23. Bassereau M, Chaintreau A, Duperrex S, Joulain D, Leijs H, Loesing G et al (2007) GC-MS quantification of suspected volatile allergens in fragrances. 2. Data treatment strategies and method performances. J Agric Food Chem 55:25–31

    Article  CAS  Google Scholar 

  24. Chaintreau A, Cicchetti E, David N, Earls A, Gimeno P, Grimaud B et al (2011) Collaborative validation of the quantification method for suspected allergens and test of an automated data treatment. J Chromatogr A 1218:7869–7877

    Article  CAS  Google Scholar 

  25. Leijs H, Broekhans J, van Pelt L, Mussinan C (2005) Quantitative analysis of the 26 allergens for cosmetic labeling in fragrance raw materials and perfume oils. J Agric Food Chem 53:5487–5491

    Article  CAS  Google Scholar 

  26. Mondello L, Sciarrone D, Casilli A, Tranchida PQ, Dugo P, Dugo G (2007) Fast gas chromatography-full scan quadrupole mass spectrometry for the determination of allergens in fragrances. J Sep Sci 30:1905–1911

    Article  CAS  Google Scholar 

  27. Niederer M, Bollhalder R, Hohl C (2006) Determination of fragrance allergens in cosmetics by size-exclusion chromatography followed by gas chromatography–mass spectrometry. J Chromatogr A 1132:109–116

    Article  CAS  Google Scholar 

  28. David F, Devos C, Sandra P (2006) Method selection for the determination of suspected allergens in essential oils, flavour, fragrances and cosmetics. LC-GC Europe 19:602–612

    Google Scholar 

  29. David F, Devos C, Joulain D, Chaintreau A, Sandra P (2006) Determination of suspected allergens in non-volatile matrices using PTV injection with automated liner exchange and GC-MS. J Sep Sci 29:1587–1594

    Article  CAS  Google Scholar 

  30. Chen Y, Begnaud F, Chaintreau A, Pawliszyn J (2007) Analysis of flavor and perfume using an internally cooled coated fiber device. J Sep Sci 30:1037–1043

    Article  CAS  Google Scholar 

  31. Pablo Lamas J, Sanchez-Prado L, Garcia-Jares C, Lores M, Llompart M (2010) Development of a solid phase dispersion-pressurized liquid extraction method for the analysis of suspected fragrance allergens in leave-on cosmetics. J Chromatogr A 1217:8087–8094

    Article  Google Scholar 

  32. Sanchez-Prado L, Pablo Lamas J, Alvarez-Rivera G, Lores M, Garcia-Jares C, Llompart M (2011) Determination of suspected fragrance allergens in cosmetics by matrix solid-phase dispersion gas chromatography mass spectrometry analysis. J Chromatogr A 1218:5055–5062

    Article  CAS  Google Scholar 

  33. Sanchez-Prado L, Llompart M, Pablo Lamas J, Garcia-Jares C, Lores M (2011) Multicomponent analytical methodology to control phthalates, synthetic musks, fragrance allergens and preservatives in perfumes. Talanta 85:370–379

    Article  CAS  Google Scholar 

  34. Shellie R, Marriott P, Chaintreau A (2004) Quantitation of suspected allergens in fragrances (part I): evaluation of comprehensive two-dimensional gas chromatography for quality control. Flavour Fragr J 19:91–98

    Article  CAS  Google Scholar 

  35. Debonneville C, Chaintreau A (2004) Quantitation of suspected allergens in fragrances part II. Evaluation of comprehensive gas chromatography-conventional mass spectrometry. J Chromatogr A 1027:109–115

    Article  CAS  Google Scholar 

  36. Debonneville C, Thome M, Chaintreau A (2004) Hyphenation of quadrupole MS to GC and comprehensive two-dimensional GC for the analysis of suspected allergens: review and improvement. J Chromatogr Sci 42:450–455

    Article  CAS  Google Scholar 

  37. LECO Separation Science (2004) Application note no. 203-821-237: quantitative analysis of allergens in perfumes using comprehensive two-dimensional GC and time-of-flight mass spectrometry. http://www.leco.com

  38. Dunn MS, Vulic N, Shellie RA, Whitehead S, Morrison P, Marriott PJ (2006) Targeted multidimensional gas chromatography for the quantitative analysis of suspected allergens in fragrance products. J Chromatogr A 1130:122–129

    Article  CAS  Google Scholar 

  39. Cordero C, Bicchi C, Joulain D, Rubiolo P (2007) Identification, quantitation and method validation for the analysis of suspected allergens in fragrances by comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry and with flame ionization detection. J Chromatogr A 1150:37–49

    Article  CAS  Google Scholar 

  40. Villa C, Gambaro R, Mariani E, Dorato S (2007) High-performance liquid chromatographic method for the simultaneous determination of 24 fragrance allergens to study scented products. J Pharm Biomed Anal 44:755–762

    Article  CAS  Google Scholar 

  41. Furlanetto S, Orlandini S, Giannini I, Pasquini B, Pinzauti S (2010) Microemulsion electrokinetic chromatography an application for the simultaneous determination of suspected fragrance allergens in rinse-off products. Talanta 83:72–77

    Article  CAS  Google Scholar 

  42. Joulain D, Tabacchi R (2009) Lichen extracts as raw materials in perfumery. Part 1: Oakmoss. Flavour Fragr J 24:49–61

    Article  CAS  Google Scholar 

  43. Joulain D, Tabacchi R (2009) Lichen extracts as raw materials in perfumery. Part 2: Treemoss. Flavour Fragr J 24:105–116

    Article  CAS  Google Scholar 

  44. Bernard G, Gimenez-Arnau E, Rastogi S, Heydorn S, Johansen J, Menne T et al (2003) Contact allergy to oak moss: Search for sensitizing molecules using combined bioassay-guided chemical fractionation, GC-MS, and structure-activity relationship analysis. Arch Dermatol Res 295:229–235

    Article  Google Scholar 

  45. Hiserodt R, Swijter D, Mussinan C (2000) Identification of atranorin and related potential allergens in oakmoss absolute by high-performance liquid chromatography-tandem mass spectrometry using negative ion atmospheric pressure chemical ionization. J Chromatogr A 888:103–111

    Article  CAS  Google Scholar 

  46. Bossi R, Rastogi S, Bernard G, Gimenez-Arnau E, Johansen J, Lepoittevin J et al (2004) A liquid chromatography-mass spectrometric method for the determination of oak moss allergens atranol and chloroatranol in perfumes. J Sep Sci 27:537–540

    Article  CAS  Google Scholar 

  47. Rastogi S, Bossi R, Johansen J, Menne T, Bernard G, Gimenez-Arnau E et al (2004) Content of oak moss allergens atranol and chloroatranol in perfumes and similar products. Contact Derm 50:367–370

    Article  CAS  Google Scholar 

  48. Kannan K, Reiner JL, Yun SH, Perrotta EE, Tao L, Johnson-Restrepo B et al (2005) Polycyclic musk compounds in higher trophic level aquatic organisms and humans from the United States. Chemosphere 61:693–700

    Article  CAS  Google Scholar 

  49. Mersch-Sundermann V, Emig M, Reinhardt A (1996) Nitro musks are cogenotoxicants by inducing toxifying enzymes in the rat. Mutat Res 356:237–245

    Article  Google Scholar 

  50. Sommer C (2004) The role of musk and musk compounds in the fragrance industry. In: Hutzinger O (ed) The handbook of environmental chemistry. Springer, Berlin

    Google Scholar 

  51. Liebl B, Ehrenstorfer S (1993) Nitro musks in human milk. Chemosphere 27:2253–2260

    Article  CAS  Google Scholar 

  52. Bester K (2009) Analysis of musk fragrances in environmental samples. J Chromatogr A 1216:470–480

    Article  CAS  Google Scholar 

  53. Emig M, Reinhardt A, Mersch-Sundermann V (1996) A comparative study of five nitro musk compounds for genotoxicity in the SOS chromotest and salmonella mutagenicity. Toxicol Lett 85:151–156

    Article  CAS  Google Scholar 

  54. Maekawa A, Matsushima Y, Onodera H, Shibutani M, Ogasawara H, Kodama Y et al (1990) Long-term toxicity/carcinogenicity of musk xylol in B6C3F1 mice. Food Chem Toxicol 28:581–586

    Article  CAS  Google Scholar 

  55. Mersch-Sundermann V, Schneider H, Freywald C, Jenter C, Parzefall W, Knasmüller S (2001) Musk ketone enhances benzo(a)pyrene induced mutagenicity in human derived Hep G2 cells. Mutat Res 495:89–96

    Article  CAS  Google Scholar 

  56. Parker RD, Buehler EV, Newmann EA (1986) Phototoxicity, photoallergy, and contact sensitization of nitro musk perfume raw-materials. Contact Derm 14:103–109

    Article  CAS  Google Scholar 

  57. Tas JW, Balk F, Ford RA, van de Plassche EJ (1997) Environmental risk assessment of musk ketone and musk xylene in the Netherlands in accordance with the EU-TGD. Chemosphere 35:2973–3002

    Article  CAS  Google Scholar 

  58. Dietrich DR, Kehrer JP (1999) The toxicology of musk fragrances. Toxicol Lett 111:1–4

    Article  CAS  Google Scholar 

  59. Peck AM (2006) Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices. Anal Bioanal Chem 386:907–939

    Article  CAS  Google Scholar 

  60. Hutter H, Wallner P, Moshammer H, Hartl W, Sattelberger R, Lorbeer G et al (2009) Synthetic musks in blood of healthy young adults: relationship to cosmetics use. Sci Total Environ 407:4821–4825

    Article  CAS  Google Scholar 

  61. Schlumpf M, Kypke K, Wittassek M, Angerer J, Mascher H, Mascher D et al (2010) Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: correlation of UV filters with use of cosmetics. Chemosphere 81:1171–1183

    Article  CAS  Google Scholar 

  62. Gatermann R, Hellou J, Hühnerfuss H, Rimkus G, Zitko V (1999) Polycyclic and nitro musks in the environment: a comparison between Canadian and European aquatic biota. Chemosphere 38:3431–3441

    Article  CAS  Google Scholar 

  63. Angerer J, Käfferlein HU (1997) Gas chromatographic method using electron-capture detection for the determination of musk xylene in human blood samples. Biological monitoring of the general population. J Chromatogr B 693:71–78

    Article  CAS  Google Scholar 

  64. Dietrich DR, Hitzfeld BC (2004) Bioaccumulation and ecotoxicity of synthetic musks in the aquatic environment. In: Hutzinger O (ed) The handbook of environmental chemistry. Springer, Berlin

    Google Scholar 

  65. Mottaleb MA, Usenko S, O’Donnell JG, Ramirez AJ, Brooks BW, Chambliss CK (2009) Gas chromatography–mass spectrometry screening methods for select UV filters, synthetic musks, alkylphenols, an antimicrobial agent, and an insect repellent in fish. J Chromatogr A 1216:815–823

    Article  CAS  Google Scholar 

  66. Sommer C (1993) Gas-chromatographic determination of nitro musk compounds in cosmetics and detergents. Dtsch Lebensm Rundsch 89:108–111

    CAS  Google Scholar 

  67. Wisneski H, Yates R, Havery D (1994) Determination of musk ambrette in fragrance products by capillary gas-chromatography with electron-capture detection – interlaboratory study. J AOAC Int 77:1467–1471

    CAS  Google Scholar 

  68. Wisneski H (2001) Determination of musk ambrette, musk xylol, and musk ketone in fragrance products by capillary gas chromatography with electron capture detection. J AOAC Int 84:376–381

    CAS  Google Scholar 

  69. Struppe C, Schafer B, Engewald W (1997) Nitro musks in cosmetic products – determination by headspace solid-phase microextraction and gas chromatography with atomic-emission detection. Chromatographia 45:138–144

    Article  CAS  Google Scholar 

  70. Eymann W, Roux B, Zehringer M (1999) Rapid determination of nitro musk and polycyclic musk compounds in cosmetics with gas chromatography. Mitteilungen aus Lebensmittelunterluntersuchung und Hygiene 90:318–324

    CAS  Google Scholar 

  71. Sommer C, Juhl H (2004) Analysis of macrocyclic musks in alcohol-containing cosmetics. Dtsch Lebensm Rundsch 100:224–229

    CAS  Google Scholar 

  72. Roosens L, Covaci A, Neels H (2007) Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere 69:1540–1547

    Article  CAS  Google Scholar 

  73. Qiang M, Hua B, Chao W, Wei M, Qing Z, Hai-Qing X et al (2009) Determination of musk xylene in cosmetics by solid phase extraction-isotope dilution-gas chromatography tandem mass spectrometry. Chin J Anal Chem 37:1776–1780

    Google Scholar 

  74. Martinez-Giron AB, Crego AL, Gonzalez JM, Marina ML (2010) Enantiomeric separation of chiral polycyclic musks by capillary electrophoresis: application to the analysis of cosmetic samples. J Chromatogr A 1217:1157–1165

    Article  CAS  Google Scholar 

  75. Peters RJB (2003) TNO-report R 2005/011. http://www.greenpeace.org/international/PageFiles/25880/phthalates-and-artificial-musk.pdf

  76. Api AM (2001) Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food Chem Toxicol 39:97–108

    Article  CAS  Google Scholar 

  77. Latini G (2005) Monitoring phthalate exposure in humans. Clin Chim Acta 361:20–29

    Article  CAS  Google Scholar 

  78. Swan SH (2008) Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res 108:177–184

    Article  CAS  Google Scholar 

  79. Schmid P, Schlatter C (1985) Excretion and metabolism of di(2-ethylhexyl)-phthalate in man. Xenobiotica 15:251–256

    Article  CAS  Google Scholar 

  80. Blount B, Milgram K, Silva M, Malek N, Reidy J, Needham L et al (2011) Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem 72:4127–4134

    Article  Google Scholar 

  81. Latini G, Del Vecchio A, Massaro M, Verrotti A, De Felice C (2006) Phthalate exposure and male infertility. Toxicology 226:90–98

    Article  CAS  Google Scholar 

  82. Benson R (2009) Hazard to the developing male reproductive system from cumulative exposure to phthalate esters-dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate. Regul Toxicol Pharm 53:90–101

    Article  CAS  Google Scholar 

  83. Wams TJ (1987) Diethylhexylphthalate as an environmental contaminant – A review. Sci Total Environ 66:1–16

    Article  CAS  Google Scholar 

  84. Directive 2005/84/EC of the European Parliament and of the Council of 14 December 2005 relating to restrictions on the marketing and use of certain dangerous substances and preparations (phthalates in toys and childcare articles)

    Google Scholar 

  85. http://www.epa.gov/teach/chem_summ/phthalates_summary.pdf

  86. Duty S, Singh N, Silva M, Barr D, Brock J, Ryan L et al (2003) The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 111:1164–1169

    Article  CAS  Google Scholar 

  87. Hoppin J, Ulmer R, London S (2004) Phthalate exposure and pulmonary function. Environ Health Perspect 112:571–574

    Article  CAS  Google Scholar 

  88. Godly E, Mortlock A (1973) The determination of di-n-alkyl phthalates in cosmetic preparations by gas–liquid chromatography. Analyst 98:493–501

    Article  CAS  Google Scholar 

  89. Markovic G, Agbaba D, Stakic DZ, Vladimirov S (1999) Determination of some insect repellents in cosmetic products by high-performance thin-layer chromatography. J Chromatogr A 847:365–368

    Article  CAS  Google Scholar 

  90. Koo HJ, Lee BM (2004) Estimated exposure to phthalates in cosmetics and risk assessment. J Toxicol Environ Health 67:1901–1914

    Article  CAS  Google Scholar 

  91. Chen H, Wang C, Wang X, Hao N, Liu J (2005) Determination of phthalate esters in cosmetics by gas chromatography with flame ionization detection and mass spectrometric detection. Int J Cosmet Sci 27:205–210

    Article  CAS  Google Scholar 

  92. Orsi DD, Gagliardi L, Porrà R, Berri S, Chimenti P, Granese A et al (2006) A environmentally friendly reversed-phase liquid chromatography method for phthalates determination in nail cosmetics. Anal Chim Acta 555:238–241

    Article  Google Scholar 

  93. Shen H, Jiang H, Mao H, Pan G, Zhou L, Cao Y (2007) Simultaneous determination of seven phthalates and four parabens in cosmetic products using HPLC-DAD and GC-MS methods. J Sep Sci 30:48–54

    Article  CAS  Google Scholar 

  94. http://www.ifraorg.org/en-us/analytical_methods_1

  95. Chingin K, Chen H, Gamez G, Zhu L, Zenobi R (2010) Detection of diethyl phthalate in perfumes by extractive electrospray ionization mass spectrometry. Anal Chem 81:123–129

    Article  Google Scholar 

  96. Su R, Zhao X, Li Z, Jia Q, Liu P, Jia J (2010) Poly (methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction coupled with high performance liquid chromatography for the determination of phthalate esters in cosmetics. Anal Chim Acta 676:103–108

    Article  CAS  Google Scholar 

  97. Koniecki D, Wang R, Moody RP, Zhu J (2011) Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environ Res 111:329–336

    Article  CAS  Google Scholar 

  98. http://www.consumerreports.org/cro/promos/shopping/shopsmart/winter-2007/what-you-should-know-about-chemicals-in-your-cosmetics/fragrance-testing/0701_cosmetics_fragrance.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Chisvert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chisvert, A., López-Nogueroles, M., Salvador, A. (2013). Essential Oils: Analytical Methods to Control the Quality of Perfumes. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_142

Download citation

Publish with us

Policies and ethics