Skip to main content

Landslide Monitoring and Warning Systems in Mexico

  • Chapter
  • First Online:
Landslides: Global Risk Preparedness

Abstract

Landslides are one of the major hazards in Mexico. Either triggered by earthquakes, volcanic activity or precipitation, their consequences have been quite significant. Casualties from landslides disasters have varied over the years from just a few to many thousands of people. There has been a considerable economic impact as well. However, in comparison with other hazards such as volcanoes, earthquakes, hurricanes and floods, landslides have not captured yet the full attention of civil protection authorities or even of a large group of academicians. Not surprisingly, there is a lack of a well-structured national strategy to prevent, confront, cope with and mitigate the catastrophic consequences of landslides taking place in vulnerable communities in both rural and urban areas.

In recent years, the frequency of mass movement processes has increased as a result of high-magnitude rainfall events. Therefore, in the light of changes in climatic conditions which involve an increase of precipitation in tropical and subtropical regions, the necessity of designing and establishing monitoring and warning systems for rainfall-triggered landslides in Mexico is rather urgent. This does not imply that monitoring and warning systems for landslides associated with seismicity and volcanic activity are not significant, but based on historical accounts detailed in literature and on field observations, it is clear that rainfallinduced landslides represent the largest mass-movement hazard in the Mexican territory. Accordingly, the aim of this chapter is to provide a preliminary analysis of the impact of landslides triggered by precipitation in order to set up a framework for developing integrated monitoring and warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Alcántara-Ayala, I. (2002), Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries, Geomorphology 47, 107–124.

    Article  Google Scholar 

  2. Alcántara-Ayala, I. (2004), Hazard assessment of rainfall induced landsliding in Mexico, Geomorphology 61, 19–40.

    Article  Google Scholar 

  3. Alcántara-Ayala, I. (2010). Disasters in Mexico and Central America: a little bit more than a century of natural hazards, In: Latrubesse, E. (Ed.), Natural Hazards and Human Exacerbated Disasters in Latin America, Elsevier, The Netherlands, 75–98.

    Google Scholar 

  4. Alcántara-Ayala, I., Domínguez-Morales, L. (2008) The San Juan de Grijalva Catastrophic Landslide, Chiapas, Mexico: Lessons Learnt (en línea), en Web Proceedings of The First World Landslide Forum: Tokyo, Japan, United Nations University, ICL-International Consortium on Landslides/ISDR-United Nations International Strategy for Disaster Reductions, 96–99. http://www.iclhq.org/WLFweb/parallel_sessions.pdf.

  5. Angeli MG, Pasuto A, Silvano S (2000) A critical review of landslide monitoring experiences. Engineering Geology 55, 3, 133–147.

    Article  Google Scholar 

  6. Antonello G, Casagli N, Farina P, Leva D, Nico G, Sieber AJ, Tarchi D (2004) Ground-based SAR interferometry for monitoring mass movements. Landslides 1:21–28.

    Article  Google Scholar 

  7. Baum, R. L., Godt, J. W., Harp, E. L., McKenna, J. P., & McMullen, S. R. (2005) Early warning of landslides for rail traffic between Seattle and Everett, Washington, USA. Landslide Risk Management. (Eds: Hungr, O., Fell, R., Couture, R. & Eberhardt, E.), 731–740. London: Taylor & Francis Group.

    Google Scholar 

  8. Bernard, B., van Wyk de Vries, B., Barba, D., Leyrit, L., Robin, C., Samaniego, P., (2008). The Chimborazo sector collapse and debris avalanche: deposit characteristics as evidence of emplacement mechanisms. Journal of Volcanology and Geothermal Research 176 (1), 36–43.

    Article  Google Scholar 

  9. Buma, J. and Dehn, M. (1998). A method for predicting the impact of climate change on slope stability. Environmental Geology, 35(2–3), 190–196.

    Article  Google Scholar 

  10. Buma, J. and Dehn, M. (2000). Impact of climate change on a landslide in South East France, simulated using different GCM scenarios and downscaling methods for local precipitation. Climate Research, 15, 69–81.

    Article  Google Scholar 

  11. Brantley, S.R., ed., (1990), The eruption of Redoubt Volcano, Alaska, December 14, 1989–August 31, 1990: U.S. Geological Survey Circular 1061, 33p.

    Google Scholar 

  12. Caine, N., (1980). The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler A 62, 23– 27.

    Article  Google Scholar 

  13. Cannon, S.H., Haller, K.M., Ekstrom, Ingrid., Schweig III, E.S., Devoli, Graziella, Moore, D.W., Rafferty, S.A., and Tarr, A.C., (2001), Landslide response to Hurricane Mitch rainfall in seven study areas in Nicaragua: U.S. Geological Survey Open-File Report 01-0412A, 17 p., 7 plates. http://pubs.er.usgs.gov/usgspubs/ofr/ofr01412A

  14. Carrara, A., Cardinali M. & Guzzetti F., (1992), Uncertainty in assessing landslide hazard and risk. ITC Journal,The Netherlands, 2, 172–183.

    Google Scholar 

  15. Catani, F. Casagli, N. Ermini, Righini L. G. and Menduni G., (2005), Landslide hazard and risk mapping at catchment scale in the Arno River basin, Landslides, 2, 4, 329–342.

    Article  Google Scholar 

  16. Cluff, L.S., (1971), Peru earthquake of May 31, 1970, Engineering Geology Observations: Seismological Society of America Bulletin, v. 61, no. 3, p. 511–521.

    Google Scholar 

  17. Cole, K. and Davis, G. M. (2002) Landslide warning and emergency planning systems in West Dorset, England. Instability, Planning and Management. (Eds: McInnes, R. G. & Jakeways, J.). London: Thomas Telford.

    Google Scholar 

  18. Corominas, J. (2001), Landslides and climate. In Keynote Lectures, VIII ISL, Cardiff, June 2000, ed. E. N. Bromhead, CD-ROM.

    Google Scholar 

  19. Corominas, J. and Moya, J. (1999), Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology, 30(1–2), 79–93.

    Article  Google Scholar 

  20. Crozier, M.J., (2010), Deciphering the effect of climate change on landslide activity: A review, Geomorphology 124, 3–4, 15, 260–267.

    Article  Google Scholar 

  21. Crosta, G. B. and Frattini, P. (2003), Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Sci., 3, 81–93.

    Article  Google Scholar 

  22. Cruden D.M. and Fell R., (1997), (eds.), Landslide risk assessment. Proc. Int. Workshop on Landslide Risk Assessment, Balkema, 371 p.

    Google Scholar 

  23. Dai, F.C., Lee, C.F., Ngai, Y.Y., (2002). Landslide risk assessment and mangament: an overview. Eng. Geol. 64, 65–87.

    Article  Google Scholar 

  24. Dehn, M. and Buma, J. (1999), Modelling future landslide activity based on general circulation models. Geomorphology, 30(1–2), 175–187.

    Article  Google Scholar 

  25. Dikau, R. and Schrott, L. (1999), The temporal stability and activity of landslides in Europe with respect to climatic change (TESLEC): main objectives and results. Geomorphology, 30, 1–12.

    Article  Google Scholar 

  26. Dixon, N., and Brook, E., (2007), Impact of predicted climate change on landslide reactivation: case study of Mam Tor, UK, Landslides, 4, 2, 137–147.

    Article  Google Scholar 

  27. Domínguez, L. and Mendoza, M. J., (2008), Instrumentación geotécnica de una ladera en la colonia La Aurora, municipio de Teziutlán, Puebla, Informe Técnico, CENAPRED-SEGOB, 21 pp.

    Google Scholar 

  28. Evans, S. G., Guthrie, R. H., Roberts, N. J., and Bishop, N. F., (2007), The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain: Natural Hazards Earth System. Sciences, v. 7, p. 89–101. http://www.nat-hazards-earth-syst-sci.net/7/89/2007/nhess-7-89-2007.pdf

    Google Scholar 

  29. Evans, S.G. and Alcántara-Ayala, I. (2007), Disasters resulting from landslides, snow avalanches, and geotechnical failures in North America (Canada, United States, and Mexico) 1841–2006: A first assessment. In: Landslides and Society, Eds. K. Turner, and R.L. Schuster, Association of Environmental & Engineering Geologists, 3–23.

    Google Scholar 

  30. Finlay, P., Fell, R., Maguire, P., (1997). The relationship between the probability of landslide occurrence and rainfall. Canadian Geotechnical Journal 34, 811–824.

    Google Scholar 

  31. Garland, G.G., Olivier, M.J., (1993). Predicting landslides from rainfall in a humid, sub-tropical region. Geomorphology 8, 165–173.

    Article  Google Scholar 

  32. Gates, W.L., Henderson-Sellers, A., Boer, G.J., Folland, C.K., Kitoh, A., McAvaney, B.J., Semazzi, F., Smith, N., Weaver, A.J., Zeng, Q.C., (1996), Climate models – evaluation. In: Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., Maskell, K. (eds), Climate change 1995. The science of climate change. Cambridge University Press, Cambridge, pp 229–284

    Google Scholar 

  33. Glade, T., Crozier, M., Smith, P., (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical `Antecedent Daily Rainfall Model'. Pure and Applied Geophysics 157, 1059–1079.

    Article  Google Scholar 

  34. Guffanti, M., Diefenbach, A.K., Ewert, J.W., Ramsey, D.W., Cervelli, P.F., and Schilling, S.P., (2010), Volcano-monitoring instrumentation in the United States, 2008: U.S. Geological Survey Open-File Report 2009–1165, 32-p. text plus Volcano-Monitoring Instrumentation Database, available only online at http://pubs.usgs.gov/of/2009/1165.

    Google Scholar 

  35. Guidicini, G., Iwasa, O.Y., (1977). Tentative correlation between rainfall and landslides in a humid, tropical environment. Bulletin of the International Association of Engineering Geology 16, 13–18.

    Article  Google Scholar 

  36. Hadley, K.C., LaHusen, R.G., (1993). Technical manual for Acoustic Flow Monitor. US Geol. Surv., Open-file Rep. 95–114, 26 pp.

    Google Scholar 

  37. Hansen, A., Franks, C.A.M., Kirk, P.A., Brimicombe, A.J., and Tung, Fung, (1995), Application of GIS to hazard assessment, with particular reference to landslides in Hong Kong; in Carrara, Alberto, and Guzzetti, Fausto, eds., Geographical Information Systems in Assessing Natural Hazards, Kluwer Academic Publishers, pp. 273–298.

    Google Scholar 

  38. Hennrich, K., (2000) Modelling Critical Water Contents for Slope Stability and Associated Rainfall Thresholds using Computer Simulations. In: Bromhead, E., Dixon, N. and Ibsen, M.-L. (eds.) Landslides in Research, Theory and Practice – Proceedings of the 8th International Symposium on Landslides, Cardiff/UK, Thomas Telford Ltd.

    Google Scholar 

  39. Hong, Y., Adler, R.F., (2007), Towards an early-warning system for global landslides triggered by rainfall and earthquake. Int J Remote Sens 28(16):3713–3719.

    Article  Google Scholar 

  40. Hung J.J., (2000), Chi-Chi earthquake induced landslides in Taiwan, Earthquake, Engineering and Engineering seismology 2, 25–32.

    Google Scholar 

  41. Hungr, O., Corominas, J. & Eherhardt, E. (2005). Estimating landslide motion mechanism, travel distance and velocity. Landslide Risk Management. (Eds: Hungr, O., Fell, R., Couture, R. & Eberhardt, E.), 401–409. London: Taylor & Francis Group.

    Google Scholar 

  42. IPCC, (2007), Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.

    Google Scholar 

  43. Iverson, R. M., (2000), Landslide triggering by rain infiltration. Water Resour. Res., 36(7), 1897–1910.

    Article  Google Scholar 

  44. Iverson, R.M., Major, J.J., (1986). Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization. Water Resources Research 22, 1543–1548.

    Article  Google Scholar 

  45. Iverson R.M., Reid M.E., Iverson N.R., LaHusen R.G., Logan M., Mann J.E., Brien D.L. (2000) Acute sensitivity of landslide rates to initial soil porosity. Science 290:513–516.

    Article  Google Scholar 

  46. Keefer D.K., Wartman J., Navarro Ochoa C., Rodriguez-Marek A., Wieczorek G.F., (2006), Landslides caused by the M 7.6 Tecomán, Mexico earthquake of January 21, 2003 Engineering Geology, 86 (2–3), pp. 183–197.

    Article  Google Scholar 

  47. Larsen, M.C., Simon, A., (1993). A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler Series A 75 A (1–2), 13–23.

    Article  Google Scholar 

  48. LaHusen, R. G., (1996), Detecting Debris Flows Using Ground Vibrations: U.S. Geological Survey Fact Sheet, 236-96,

    Google Scholar 

  49. http://vulcan.wr.usgs.gov/Projects/AFM/Publications/FS236-96/FS236-96.html.

  50. Magaña, V., Mendez, J. M., Morales, R. and Millán, C., (2004), Consecuencias presentes y futuras de la variabilidad y el cambio climático. In: Martínez, J. y A. Fernández Bremauntz (eds.) Cambio Climático: una visión desde México. SEMARNAT e INE, México.

    Google Scholar 

  51. Marcial, S.S., Delos Reyes, P.J., Chu, A.V., Solidum, R.U, (1993). Instrumental lahar monitoring of Mt. Pinatubo. In: C.G. Newhall, R.S. Panongbayan (Eds.), Fire and Mud: Eruption and Lahars of Mt. Pinatubo, Philippines. Univ. Washington Press, pp. 1015–1022.

    Google Scholar 

  52. Martinez, J.M., Avila, G., Agudelo, A., Schuster, R.L., Casadevall, T.J, Scott, K.M., (1995), Landslides and debris flows triggered by the 6 June 1994 Paez earthquake, southwestern Colombia. Landslide News No. 9:13–15.

    Google Scholar 

  53. Mendoza, M. J. and Noriega, I., (2000) “Deslizamientos de laderas en Teziutlán, Pue., provocados por las lluvias intensas de octubre de 1999”, Memorias del XX Congreso Nacional de Mecánica de Suelos, SMMS, Vol. 1, 49–58.

    Google Scholar 

  54. Mendoza, M. J., Domínguez, L., Noriega, I. y Guevara, E. (2001). Monitoreo de laderas con fines de evaluación y alertamiento, Guía dentro de la serie Estrategia Nacional de Mitigación del Riesgo por Inestabilidad de Laderas, Centro Nacional de Prevención de Desastres, 78 pp.

    Google Scholar 

  55. Mileti, D. y Sorensen, J. H. (1989). La eficacia de los sistemas de alarma en América Latina. En: Lima, B. y Gaviria, M. (1989). Consecuencias psicosociales de los desastres: la experiencia latinoamericana. Serie de monografías clínicas 2, E. U. A., pp 187–198.

    Google Scholar 

  56. Pareschi MT, Santacroce R, Sulpizio R and Zanchetta G (2002) Volcaniclastic debris flows in the Clanio Valley (Campania, Italy): insights for the assessment of hazard potential. Geomorphology 43:219–231.

    Article  Google Scholar 

  57. Petley, D.N. (2010) Landslide Hazards. In: Geomorphological Hazards and Disaster Prevention. Alcántara-Ayala, I. & Goudie, A. Cambridge: Cambridge University Press. 63–74.

    Chapter  Google Scholar 

  58. Pieraccini M, Casagli N, Luzi G, Tarchi D, Mecatti D, Noferini L, Atzeni C (2002) Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). Int J Remote Sens 24:1385–1391.

    Article  Google Scholar 

  59. Plafker, G., Ericksen, G.E., and Concha, J.F., (1971), Geological aspects of the May 31, 1970 Peru earthquake: Seismological Society of America Bulletin, v. 61, no. 3, p. 543–578.

    Google Scholar 

  60. Plafker, G., and Ericksen, G.E., (1978), Nevados Huascaran avalanches, Chapter 8, in Voight, Barry, ed., Rockslides and Avalanches: v. 1, Natural Phenomena, Elsevier, Amsterdam, p. 277–314.

    Google Scholar 

  61. Sassa K (2009) Report of the 2008 First World Landslide Forum on 18–21 November 2008 at UNU, Tokyo. Landslides 6(3):167–179.

    Article  Google Scholar 

  62. Scott KM, Macías JL, Naranjo JA, Rodriguez S and McGeehin JP (2001) Catastrophic debris flows transformed from landslide in volcanic terrains: mobility, hazard assessment and mitigation strategies. US Geol Surv Prof Pap. 1630, pp 1–59

    Google Scholar 

  63. Scott KM, Vallance JW, Kerle N, Macìas JL, Strauch W, Devoli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Process Landf 30: 59–79.

    Article  Google Scholar 

  64. Schmidt, J. and Dikau, R., (2004), Modelling historical climate variability and slope stability, Geomorphology, 60(3–4), 433–447.

    Article  Google Scholar 

  65. Schuster, R.L., ed., (1991), The March 5, 1987 Ecuador earthquake-mass wasting and economic effects: National Academy of Sciences, National Research council, Committee on Natural Disasters, Natural Disaster Studies, National Academy Press, Washington, D.C., v. 5, 163 p.

    Google Scholar 

  66. Schuster RL, Nieto AS, O'Rourke TD, Crespo E, Plaza G (1996) Mass wasting triggered by the 5 March 1987 Ecuador earthquakes. Eng Geol 42:1–23.

    Article  Google Scholar 

  67. Schuster, R.L., and Highland, L.M., 2001, Socioeconomic Impacts of Landslides in the Western Hemisphere: U.S. Geological Survey Open-File Report 01-0276, 47 p. http://pubs.usgs.gov/of/2001/ofr-01-0276/

    Google Scholar 

  68. Sidle, R.C., and Ochiai, H., (2006), Landslides: Processes, Prediction, and Land Use: Water Resources Monograph 18, American Geophysical Union, American Geophysical Union, Washington, D.C., 312 p.

    Google Scholar 

  69. Siebert, L., Glicken, H., Ui, T., (1987). Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull. Volcanol. 49, 435–459.

    Article  Google Scholar 

  70. Sirangeloa, B. y Bracab, G. (2004). Identification of hazard conditions for mudflow occurrence by hydrological model. Application of FLaIR model to Sarno warning system. Engineering Geology, 73, 267–276.

    Article  Google Scholar 

  71. Trenberth, K.E., (1996) Coupled climate system modelling. In: Giambelluca TW, Henderson-Sellers A. (eds), Climate change. Developing southern hemisphere perspectives, Wiley, Chichester, pp 63–88.

    Google Scholar 

  72. UN ISDR, (2006), Global Survey of Early Warning Systems: An assessment of capacities, gaps and opportunities toward building a comprehensive global early warning system for all natural hazards (www.ewc3.org).

  73. Vallance, J.V., Siebert, L., Rose, W.I., Girón, J.R., Banks, N.G., (1995). Edifice collapse and related hazard in Guatemala. J. Volcanol. Geotherm. Res. 66, 337–355.

    Article  Google Scholar 

  74. van Westen C.J. (1994)GIS in landslide hazard zonation: A review with examples from the Colombian Andes. In: Price M.F. & Heywood D.I. (eds.), Taylor and Francis, London, 135–165.

    Google Scholar 

  75. van Westen C.J, Seijmonsbergen A.C. & Mantovani F. (1999) Comparing landslide hazard maps. Natural Hazards, 20:2–3, 137–158.

    Google Scholar 

  76. Voight, B., Janda, R.J., Glicken, H., and Douglass, P.M., (1983), Nature and mechanisms of the Mount St. Helens rockslide avalanche of 18 May, 1980: Geotechnique, Thomas Telford, London, v. 33, no. 3, p. 243–273.

    Article  Google Scholar 

  77. Wieczorek, G.F., Larsen, M.C., Eaton, L.S., Morgan, B.A. and Blair, J. L. (2001) Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation: U.S. Geological Survey Open-File Report 01-0144, report with 3 plates. http://pubs.usgs.gov/of/2001/ofr-01-0144/

  78. Zanchetta G, Sulpizio R, Pareschi MT, Leoni M, Santacroce R (2004) Characteristic of May 5–6, 1998 volcaniclastic debris-flows in the Sarno areas (Campania, southern Italy): relationships to structural damage and hazard zonation. J Volcanol Geotherm Res 133:377–393.

    Article  Google Scholar 

  79. Zonghu, L., Hong, Y., Wang, J., Fukuoka, H., Sassa, K., Karnawati, D., Fathani, F., (2010), Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets, Landslides, 7, 317–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Alcántara-Ayala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alcántara-Ayala, I., Garnica, R. (2013). Landslide Monitoring and Warning Systems in Mexico. In: Sassa, K., Rouhban, B., Briceño, S., McSaveney, M., He, B. (eds) Landslides: Global Risk Preparedness. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22087-6_21

Download citation

Publish with us

Policies and ethics