Skip to main content

Electro-Elastic Continuum Models for Electrostrictive Elastomers

  • Chapter
  • First Online:
Advances in Elastomers I

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 11))

  • 3052 Accesses

Abstract

A continuum finite-deformation model is described for the study of the isothermal electro-elastic deformations of electrostrictive elastomers. The model comprises general balance equations of motion, electrostatics and electro-mechanical energy, along with phenomenological invariant-based constitutive relations. The model is presented in both Eulerian (spatial) and Lagrangian (material) description. Specialization of the considered model is also presented for “Dielectric Elastomers”, which are a specific class of electrostrictive elastomers having dielectric properties independent of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhenyi, M., Scheinbeim, J.I., Lee, J.W., Newman, B.A.: High field electrostrictive response of polymers. J. Polym. Sci. Part B: Polym. Phys. 32(16), 2721–2731 (1994)

    Article  Google Scholar 

  2. Zhang, Q.M., Su, J., Kim, C.H., Ting, R., Capps, R.: An experimental investigation of electromechanical responses in a polyurethane elastomer. J. Appl. Phys. 81(6), 2770–2776 (1997)

    Article  CAS  Google Scholar 

  3. Guillot, F.M., Balizer, E.: Electrostrictive effect in polyurethanes. J. Appl. Polym. Sci. 89(2), 399–404 (2003)

    Article  CAS  Google Scholar 

  4. Zhang, Q.M., Bharti, V., Zhao, X.: Giant electrostriction and Relaxor Ferroelectric behavior in electron-irradiated Poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372), 2101–2104 (1998)

    Article  CAS  Google Scholar 

  5. Bauer, F., Fousson, E., Zhang, Q.M.: Recent advances in highly electrostrictive P(VDF–TrFE–CFE) terpolymers. IEEE Trans. Dielectr. Electr. Insul. 13(5), 1149–1154 (2006)

    CAS  Google Scholar 

  6. Su, J., Ounaies, Z., Harrison, J.S., Bar-Cohen, Y., Leary, S.: Electromechanically active polymer blends for actuation. Proc. Smart Struct. Mater. 2000: Electroact. Polym. Actuators Devices (EAPAD) 3987, 65–72 (2000)

    Article  CAS  Google Scholar 

  7. Pelrine, R., Kornbluh, R., Joseph, J.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A 64, 77–85 (1998)

    Article  CAS  Google Scholar 

  8. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100 %. Science 287(5454), 836–839 (2000)

    Article  CAS  Google Scholar 

  9. Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R.: Actuation response of Polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14, 787–793 (2003)

    Article  CAS  Google Scholar 

  10. Mathew, G., Rhee, J.M., Nah, C., Leo, D.J.: Effects of silicone rubber on properties of dielectric acrylate elastomer actuator. Polym. Eng. Sci. 46(10), 1455–1460 (2006)

    Article  CAS  Google Scholar 

  11. Ludeelerd, P., Niamlang, S., Kunaruksapong, R., Sirivat, A.: Effect of elastomer matrix type on electromechanical response of conductive polypyrrole/elastomer blends. J. Phys. Chem. Solids 71, 1243–1250 (2010)

    Article  CAS  Google Scholar 

  12. Lehmann, W., Skupin, H., Tolksdorf, C., Gebhard, E., Zentel, R., Krüger, P., Lösche, M., Kremer, F.: Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410, 447–450 (2001)

    Article  CAS  Google Scholar 

  13. Ha, S.M., Yuan, W., Pei, Q., Pelrine, R., Stanford, S.: Interpenetrating networks of elastomers exhibiting 300 % electrically-induced area strain. Smart Mater. Struct. 16, S280–S287 (2007)

    Article  CAS  Google Scholar 

  14. Shankar, R., Ghosh, T.K., Spontak, R.J.: Electromechanical response of nanostructured polymer systems with no mechanical pre-strain. Macromol. Rapid Commun. 28, 1142–1147 (2007)

    Article  CAS  Google Scholar 

  15. Zhang, H., During, L., Kovacs, G., Yuan, W., Niua, X., Pei, Q.: Interpenetrating polymer networks based on acrylic elastomers and plasticizers with improved actuation temperature range. Polym. Int. 59, 384–390 (2010)

    Article  CAS  Google Scholar 

  16. Liu, B., Shaw, M.T.: Electrorehology of filled silicone elastomers. J. Rheol. 45(6), 641–657 (2001)

    Article  CAS  Google Scholar 

  17. Carpi, F., De Rossi, D.: Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans. Dielectr. Electr. Insul. 12(4), 835–843 (2005)

    Article  CAS  Google Scholar 

  18. Puvanatvattana, T., Chotpattananont, D., Hiamtup, P., Niamlang, S., Sirivat, A., Jamieson, A.M.: Eletric field induced stress moduli in polythiophene/polyisoprene elastomer blends. React. Funct. Polym. 66, 1575–1588 (2006)

    Article  CAS  Google Scholar 

  19. Kunanuruksapong, R., Sirivat, A.: Poly(p-phenylene) and acrylic elastomer blends for electroactive application. Mater. Sci. Eng. A 454–455, 454–460 (2007)

    Google Scholar 

  20. Yuse, K., Guyomar, D., Kanda, M., Seveyrat, L., Guiffard, B.: Development of large-strain and low-powered electro-active polymers (EAPs) using conductive fillers. Sens. Actuators A 165, 147–154 (2011)

    Article  CAS  Google Scholar 

  21. Madden, J.D.W., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A., Hunter, I.W.: Artificial muscle technology: physical principles and naval prospects. IEEE J. Oceanic Eng. 29(3), 706–728 (2004)

    Article  Google Scholar 

  22. Nalwa, H.S.: Ferroelectric Polymers: Chemistry: Physics, and Applications, ISBN: 0824794680, CRC Press, New York, (1995)

    Google Scholar 

  23. Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential and Challenges, vol. PM136, ISBN: 0-8194-5297-1. SPIE Press, Washington, (2004)

    Google Scholar 

  24. Kim, K.J., Tadokoro, S.: Electroactive Polymers for Robotic Applications Artificial Muscles and Sensors, ISBN13: 9781846283710, Springer, Berlin, (2007)

    Google Scholar 

  25. Carpi, F., De Rossi,D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P.: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology, ISBN13: 9780080474885, Elsevier, Oxford, (2008)

    Google Scholar 

  26. O’Halloran, A., O’Malley, F., McHugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101 (2008)

    Article  Google Scholar 

  27. Dubowsky, S., Hafez, M., Lichter, M., Weiss, P., Wingert, A.: Dielectric elastomer actuated systems and methods. US Patent No. 7411331 (2008)

    Google Scholar 

  28. Vertechy, R., Berselli, G., Parenti Castelli, V., Vassura, G.: Optimal design of lozenge-shaped dielectric elastomer linear actuators: mathematical procedure and experimental validation. J. Intell. Mater. Syst. Struct. 21, 503–515 (2010)

    Article  Google Scholar 

  29. Maxwell, J.C.: A treatise on Electricity and Magnetism, ISBN13: 9781108014045, Dover Publications Inc., New York, (1891)

    Google Scholar 

  30. Larmor, J.: A dynamical theory of the electric and luminiferous medium. Part III, Relat. Mater. Media Phylosophical Trans. Roy. Soc. London: A 190, 205–493 (1897)

    Article  Google Scholar 

  31. Einstein, A., Laub, J.: Uber die Elektromagnmetischen Felde auf Ruhende Korpen Ausgeubten Ponderomotorishen Krafte. Ann. Phys. 331(8), 541–550 (1908)

    Article  Google Scholar 

  32. Minkowski, H.: Die Glundgleichungen fur die elektromagnetischen Vorgange in bewegten Korper. Math. Ann. 68(4), 472–525 (1909)

    Article  Google Scholar 

  33. Lorentz, H.A., The Theory of Electrons and Its Application to the Phenomena of Light and Radiat Heat, 2nd edn. ISBN13: 9780486495583, Dover Publications Inc., New York, (1916)

    Google Scholar 

  34. Livens, G.H.: The Theory of Electricity, 2nd edn. ISBN 13: 9781178439892, Cambridge University Press, London, (1926)

    Google Scholar 

  35. Stratton, J.A.: Electromagnetic Theory, ISBN13: 9780070621503, McGraw-Hill Book Co., New York, (1941)

    Google Scholar 

  36. Smith-White, W.B.: On the mechanical forces in dielectrics. Philos. Mag. Ser. 7 40(303), 466–479 (1949)

    Google Scholar 

  37. Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism, 2nd edn. ISBN13: 9780486439242, Dover Publication Inc., New York, (1955)

    Google Scholar 

  38. Toupin, R.A.: The elastic dielectrics. J. Rational Mech. Anal. 5, 849–915 (1956)

    Google Scholar 

  39. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media, ISBN13: 9780750626347, Addison-Wesley, New York, (1960)

    Google Scholar 

  40. Fano, R.M., Chu, L.J., Adler, R.B.: Electromagnetic Fields, Energy, and Forces, ISBN13: 9780262561709, Wiley, New York, (1960)

    Google Scholar 

  41. Toupin, R.A.: A dynamical theory of elastic dielectrics. Int. J. Eng. Sci. 1, 101–126 (1963). Pergamon Press, NY

    Article  Google Scholar 

  42. Becker, R.: Electromagnetic Fields and Interactions. English edition: Sauter, F. (Electromagnetic theory and relativity, Vol. 1. (Trans: Knudson, A.W.) ISBN13: 9780216874169, Blackie, London, (1964)

    Google Scholar 

  43. Chu, L.J., Haus, H.A., Penfield, P.: The force density in polarizable and magnetizable fluids. Proc. IEEE 54(7), 920–935 (1966)

    Article  Google Scholar 

  44. Grindlay, J.: Elastic dielectric. Phys. Rev. 143(2), 637–645 (1966)

    Article  Google Scholar 

  45. Penfield, P., Haus, H.A.: Electrodynamics of moving media, ISBN13: 9780262160193. The MIT Press, Cambridge (1967)

    Google Scholar 

  46. Lax, M., Nelson, D.F.: Linear and nonlinear electrodynamics in elastic anisotropic dielectrics. Phys. Rev. B 4, 3694–3731 (1971)

    Article  Google Scholar 

  47. De Groot, S.R., Suttorp, L.G.: Foundation of Electrodynamics, ISBN13: 9780720402483, North-Holland Publication Co., Amsterdam, (1972)

    Google Scholar 

  48. Van de Ven, A.A.F.: Interaction of electromagnetic and elastic fields in solids. Ph.D. Thesis, Technical University of Eindhoven, The Netherlands, (1975)

    Google Scholar 

  49. Pao, Y.H., Hutter, K.: Electrodynamics for moving elastic solids and viscous fluids. Proc. IEEE 63(7), 1011–1021 (1975)

    Article  Google Scholar 

  50. Robinson, F.N.H.: Electromagnetic stress and momentum in matter. Phys. Rep. 16(6), 313–354 (1975)

    Article  Google Scholar 

  51. Tiersten, H.F., Tsai, C.F.: On the interaction of the electromagnetic field with heat conducting deformable insulator. J. Math. Phys. 13(3), 361–378 (1972)

    Article  Google Scholar 

  52. Pao, Y.H.: Electromagnetic Forces in Deformable Media, Mechanics Today, vol. 4. Pergamon Press Inc, New York (1978)

    Google Scholar 

  53. Hutter, K., Van de Ven, A.A.F.: Field matter interactions in thermoelastic solids. Lecture Notes in Physics, Vol. 710, ISBN: 9783540372394, Springer, Berlin, (1978)

    Google Scholar 

  54. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I: Foundations and solid media, ISBN: 0387969365, Springer, Berlin, (1990)

    Google Scholar 

  55. Green, A.E., Naghdi, P.M.: A unified procedure for construction of theories of deformable media. II. Generalized Continua. Proc. Roy. Soc. London A 448(1934), 357–377 (1995)

    Article  Google Scholar 

  56. Yang, J.S., Batra, R.C.: Mixed variational principles in non-linear electroelasticity. Int. J. Non-Linear Mech. 30(5), 719–725 (1995)

    Article  Google Scholar 

  57. Rajagopal, K.R., Wineman, A.: A constitutive equation for non-linear electro-active solids. Acta. Mech. 135(3–4), 219–228 (1999)

    Article  Google Scholar 

  58. Kovetz, A.: Electromagnetic Theory, ISBN13: 9780198506034, Oxford University Press, Oxford, (2000)

    Google Scholar 

  59. Bobbio, S.: Electrodynamics of Materials: Forces, Stresses, and Energies in Solids and Fluids, ISBN13: 9780121082604, Academic, San Diego, (2000)

    Google Scholar 

  60. Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)

    Article  Google Scholar 

  61. McMeeking, R.M., Landis, C.M.: Electrostatic forces and stored energy for deformable dielectric materials. J. Appl. Mech. 72, 581–590 (2005)

    Article  Google Scholar 

  62. Bustamante, R., Ogden, R.W.: Universal relations for nonlinear electroelastic solids. Acta Mech. 182, 125–140 (2006)

    Article  Google Scholar 

  63. Ericksen, J.L.: Theory of elastic dielectric revisited. Arch. Ration. Mech. Anal. 183(2), 299–313 (2007)

    Article  Google Scholar 

  64. Ericksen, J.L.: On formulating and assessing continuum theories of electromagnetic fields in elastic materials. J. Elast. 87(2–3), 95–108 (2007)

    Article  Google Scholar 

  65. Suo, Z., Zhao, X., Greene, W.H.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 56(2), 467–486 (2008)

    Article  CAS  Google Scholar 

  66. Bustamante, R., Dorfmann, A., Ogden, R.W.: Nonlinear electroelastostatics: a variational framework. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 60(1), 154–177 (2009)

    Article  Google Scholar 

  67. Trimarco, C.: On the lagrangian electrostatics of elastic solids. Acta Mech. 204(3–4), 193–201 (2009)

    Article  Google Scholar 

  68. Cade, R.: On mechanical action in dielectrics. Proc. Phys. Soc.: Section A 64, 665 (1951)

    Article  Google Scholar 

  69. Smith-White, W.B.: Reply to on mechanical action in dielectrics. Proc. Phys. Soc.: Section A 65, 289 (1952)

    Article  Google Scholar 

  70. Cade, R.: On mechanical action in dielectrics. Proc. Phys. Soc.: Section A 65, 287 (1952)

    Article  Google Scholar 

  71. Hakim, S.S.: Mechanical forces in dielectrics. Proc. IEEE: Part C: Monographs 109(15), 158–161 (1962)

    Article  Google Scholar 

  72. Vertechy, R., Frisoli, A., Bergamasco, M., Carpi, F., Frediani, G., De Rossi, D., Modeling and experimental validation of buckling dielectric elastomer actuators. Smart. Mater. Struct. ISSN 0964-1726, 21(9), 94005 (2012). doi: 10.1088/0964-1726/21/9/094005

  73. Vertechy, R., Berselli, G., Parenti Castelli, V., Bergamasco, M., Continuum thermo-electro-mechanical model for electrostrictive elastomers. J Intell. Mater. Syst. Struct. 24(6), 761–778 (2013). doi: 10.1177/1045389X12455855

  74. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd revised edition, ISBN13: 9780201408409, Westview Press, Cambridge, (1978)

    Google Scholar 

  75. Eringen, A.C.: Mechanics of Continua, ISBN13: 9780882756639, Krieger Publication Co., New York, (1980)

    Google Scholar 

  76. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua II: Fluids and complex media, ISBN: 0387970053, Springer, Berlin, (1990)

    Google Scholar 

  77. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992)

    Book  Google Scholar 

  78. Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1, pp. 239–353. Academic, New York (1971)

    Google Scholar 

  79. Wang, C.C.: On representation for isotropic functions I & II. Arch. Ration. Mech. Anal. 33, 249–287 (1969)

    Article  Google Scholar 

  80. Smith, G.F.: On a fundamental error in two papers of C.C. Wang ‘on representation for isotropic functions I & II’. Arch. Ration. Mech. Anal. 36, 161–165 (1970)

    Article  Google Scholar 

  81. Wang, C.C.: A new representation theorem for isotropic functions I & II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  Google Scholar 

  82. Smith, G.F.: On isotropic functions of symmetric tensors. Int. J. Eng. Sci. 19, 899–916 (1971)

    Article  Google Scholar 

  83. Yeoh, O.H.: Characterization of elastic properties of carbon-black filled rubber vulcanizates. Rubber Chem. Technol. 63, 792–805 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Rocco Vertechy acknowledges the financial support from the EC, in the framework of the project PolyWEC - New mechanisms and concepts for exploiting electroactive Polymers for Wave Energy Conversion (FP7–ENERGY.2012.10.2.1, grant: 309139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vertechy .

Editor information

Editors and Affiliations

Appendices

Appendix A. Mathematical Operators

This appendix defines the mathematical operators that have been employed throughout this chapter.

Consider the 3 × 1 vectors, a and b, and the 3 × 3 matrices, A and B,

$$ {\varvec{a}} = \left[ {a_{i} } \right] = \left[ {\begin{array}{*{20}c} {a_{1} } \\ {a_{2} } \\ {a_{3} } \\ \end{array} } \right],\,{\varvec b} = \left[ {b_{i} } \right] = \left[ {\begin{array}{*{20}c} {b_{1} } \\ {b_{2} } \\ {b_{3} } \\ \end{array} } \right],\,{\mathbf {A}} = \left[ {A_{ij} } \right] = \left[ {\begin{array}{*{20}c} {A_{11} } & {A_{12} } & {A_{13} } \\ {A_{21} } & {A_{22} } & {A_{23} } \\ {A_{31} } & {A_{32} } & {A_{33} } \\ \end{array} } \right],\,{\mathbf{B}} = \left[ {B_{ij} } \right] = \left[{\begin{array}{*{20}c} {B_{11} } & {B_{12} } & {B_{13} } \\{B_{21} } & {B_{22} } & {B_{23} } \\ {B_{31} } & {B_{32}} & {B_{33} } \\ \end{array} } \right]$$
(179)

The scalar product of vectors a and b, yielding a scalar quantity, is defined as

$$ \varvec{a} \cdot \varvec{b} = \sum\limits_{l = 1}^{3} {a_{l} b_{l} } . $$
(180)

The tensor product (or the dyad) of vectors a and b, yielding a 3 × 3 matrix, is defined as

$$ \varvec{a} \otimes \varvec{b} = \left[ {\left( {\varvec{a} \otimes \varvec{b}} \right)_{ij} } \right] = \left[ {a_{i} b_{j} } \right] . $$
(181)

The product between a matrix A and a vector b, yielding a 3 × 1 vector, is defined as

$$ {\mathbf{A}}\varvec{b} = \left[ {\left( {{\mathbf{A}}\varvec{b}} \right)_{i} } \right] = \left[ {\sum\limits_{l = 1}^{3} {a_{il} b_{l} } } \right] . $$
(182)

The scalar product between a matrix A and a vector b, yielding a 3 × 1 vector, is defined as

$$ {\mathbf{A}} \cdot \varvec{b} = \left[ {\left( {{\mathbf{A}} \cdot \varvec{b}} \right)_{i} } \right] = \left[ {\sum\limits_{l = 1}^{3} {a_{li} b_{l} } } \right] . $$
(183)

Note that Eqs. (182) and (183) differ in the matrix index used for the summation.

The product between matrices A and B, yielding a 3 × 3 matrix, is defined as

$$ {\mathbf{AB}} = \left[ {\left( {{\mathbf{AB}}} \right)_{ij} } \right] = \left[ {\sum\limits_{l = 1}^{3} {A_{il} B_{lj} } } \right] . $$
(184)

The double contraction between matrices A and B, yielding a scalar, is defined as

$$ {\mathbf{A}}:{\mathbf{B}} = \sum\limits_{m = 1}^{3} {\sum\limits_{l = 1}^{3} {A_{lm} B_{lm} } } .$$
(185)

Given a third-order tensor \( {{\mathcal{A}}} = \left[ {\mathcal{A}_{ijk} } \right] \), the double contraction of \( {{\mathcal{A}}} \) and a matrix \( {\mathbf{B}} \), yielding a 3 × 1 vector, is defined as

$$ \mathbf{{\mathcal A}}:{\mathbf{B}} = \left[ {\left( {{\mathbf { {\mathcal A}}}:{{\mathbf B}}} \right)_{i} } \right] = \sum\limits_{l = 1}^{3} {\sum\limits_{m = 1}^{3} {{\mathcal A}_{ilm} B_{lm} } } .$$
(186)

Given the spatial position coordinate \( \varvec{x} = \left[ {\begin{array}{*{20}c} {x_{1} } & {x_{2} } & {x_{3} } \\ \end{array} } \right]^{T} \), the spatial gradient (grad) of a scalar quantity \( \phi = \phi \left( {x,t} \right) \), t being the time variable, is defined as

$$ {\text{grad}}\phi = \left[ {\left( {{\text{grad}}\phi } \right)_{i} } \right] = \left[ {{{\partial \phi } \mathord{\left/ {\vphantom {{\partial \phi } {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right]; $$
(187)

whereas the spatial gradient (grad), divergence (div) and rotation (rot) of a vector \( \varvec{a} = \varvec{a}\left( {\varvec{x},t} \right) \), yielding 3 × 3 matrix, a scalar and a 3 × 1 vector respectively, are defined as

$$ {\text{grad}}\varvec{a} = \left[ {\left( {{\text{grad}}\varvec{a}} \right)_{ij} } \right] = \left[ {{{\partial a_{i} } \mathord{\left/ {\vphantom {{\partial a_{i} } {\partial x_{j} }}} \right. \kern-0pt} {\partial x_{j} }}} \right] ,$$
(188)
$$ {\text{div}}\varvec{a} = \sum\limits_{l = 1}^{3} {{{\partial a_{l} } \mathord{\left/ {\vphantom {{\partial a_{l} } {\partial x_{l} }}} \right. \kern-0pt} {\partial x_{l} }}}, $$
(189)
$$ {\text{rot}}\varvec{a} = \left[ {\left( {{\text{rot}}\varvec{a}} \right)_{i} } \right] = \left[ {\sum\limits_{l = 1}^{3} {\sum\limits_{m = 1}^{3} {{{\varepsilon_{ilm} \partial a_{m} } \mathord{\left/ {\vphantom {{\varepsilon_{ilm} \partial a_{m} } {\partial x_{l} }}} \right. \kern-0pt} {\partial x_{l} }}} } } \right], $$
(190)

where \( \varepsilon_{ijk} \) is the permutation symbol such that

$$ \varepsilon_{ijk} = \left\{ {\begin{array}{*{20}l} { \, 1 ,\;{\text{ for}}\;{\text{even}}\;{\text{permutation}}\;{\text{of}}\;\left( {i,j,k} \right) ,\; ( {\text{i}} . {\text{e}} .\; 1 2 3 ,\; 2 3 1 ,\; 3 1 2 )} \hfill \\ { - 1 ,\;{\text{for}}\;{\text{odd}}\;{\text{permutation}}\;{\text{of}}\;\left( {i,j,k} \right) ,\; ( {\text{i}} . {\text{e}} .\; 1 3 2 ,\; 2 1 3 ,\; 3 2 1 )} \hfill \\ { 0 ,\;{\text{if}}\;{\text{there}}\;{\text{is}}\;{\text{a}}\;{\text{repeated}}\;{\text{index }}} \hfill \\ \end{array} } \right. .$$
(191)

Besides, the spatial divergence (div) of a matrix \( {\mathbf{A}} = {\mathbf{A}}\left( {\varvec{x},t} \right) \) is defined as

$$ {\text{div}}{\mathbf{A}} = \left[ {\left( {{\text{div}}{\mathbf{A}}} \right)_{i} } \right] = \sum\limits_{l = 1}^{3} {{{\partial A_{li} } \mathord{\left/ {\vphantom {{\partial A_{li} } {\partial x_{l} }}} \right. \kern-0pt} {\partial x_{l} }}}. $$
(192)

Given the material position coordinate \( \varvec{X} = \left[ {\begin{array}{*{20}c} {X_{1} } & {X_{2} } & {X_{3} } \\ \end{array} } \right]^{T} \), the material gradient (Grad) of a scalar quantity \( \phi = \phi \left( {\varvec{X},t} \right) \) is defined as

$$ {\text{Grad}}\phi = \left[ {\left( {{\text{Grad}}\phi } \right)_{i} } \right] = \left[ {{{\partial \phi } \mathord{\left/ {\vphantom {{\partial \phi } {\partial X_{i} }}} \right. \kern-0pt} {\partial X_{i} }}} \right] ; $$
(193)

whereas the material gradient (Grad), divergence (Div) and rotation (Rot) of a vector \( \varvec{a} = \varvec{a}\left( {\varvec{X},t} \right) \) are respectively defined as

$$ {\text{Grad}}\varvec{a} = \left[ {\left( {{\text{Grad}}\varvec{a}} \right)_{ij} } \right] = \left[ {{{\partial a_{i} } \mathord{\left/ {\vphantom {{\partial a_{i} } {\partial X_{j} }}} \right. \kern-0pt} {\partial X_{j} }}} \right] , $$
(194)
$$ {\text{Div}}\varvec{a} = \sum\limits_{l = 1}^{3} {{{\partial a_{l} } \mathord{\left/ {\vphantom {{\partial a_{l} } {\partial X_{l} }}} \right. \kern-0pt} {\partial X_{l} }}} , $$
(195)
$$ {\text{Rot}}\varvec{a} = \left[ {\left( {{\text{Rot}}\varvec{a}} \right)_{i} } \right] = \left[ {\sum\limits_{l = 1}^{3} {\sum\limits_{m = 1}^{3} {{{\varepsilon_{ilm} \partial a_{m} } \mathord{\left/ {\vphantom {{\varepsilon_{ilm} \partial a_{m} } {\partial X_{l} }}} \right. \kern-0pt} {\partial X_{l} }}} } } \right] . $$
(196)

Besides, the material divergence (Div) of a matrix \( {\mathbf{A}} = {\mathbf{A}}\left( {\varvec{X},t} \right) \) is defined as

$$ {\text{Div}}{\mathbf{A}} = \left[ {\left( {{\text{div}}{\mathbf{A}}} \right)_{i} } \right] = \sum\limits_{l = 1}^{3} {{{\partial A_{li} } \mathord{\left/ {\vphantom {{\partial A_{li} } {\partial X_{l} }}} \right. \kern-0pt} {\partial X_{l} }}} . $$
(197)

With regard to the divergence of the products between vector \( \varvec{a} \) and either matrix \( {\mathbf{A}} \) or scalar \( \phi \)

$$ {\text{div}}\left( {{\mathbf{A}}\varvec{a}} \right) = {\text{div}}{\mathbf{A}} \cdot \varvec{a} + {\mathbf{A}}^{T} :{\text{grad}}\varvec{a}, $$
(198)
$$ {\text{div}}\left( {\phi \varvec{a}} \right) = \phi {\text{div}}\varvec{a} + {\text{grad}}\phi \cdot \varvec{a}, $$
(199)
$$ {\text{Div}}\left( {{\mathbf{A}}\varvec{a}} \right) = {\text{Div}}{\mathbf{A}} \cdot \varvec{a} + {\mathbf{A}}^{T} :{\text{Grad}}\varvec{a} , $$
(200)
$$ {\text{Div}}\left( {\phi \varvec{a}} \right) = \phi {\text{Div}}\varvec{a} + {\text{Grad}}\phi \cdot \varvec{a}. $$
(201)

Appendix B. Fundamental Mathematical Theorems

This appendix summarizes the fundamental mathematical theorems that have been employed throughout this chapter.

For any open surface \( S\left( t \right) \) with bounding closed curve \( L\left( t \right) \), the Stokes’ theorem states

$$ \int\limits_{S\left( t \right)} {{\text{rot}}\varvec{a} \cdot \varvec{n}{\text{ds}}} = \int\limits_{L\left( t \right)} {\varvec{a} \cdot {\text{d}}\varvec{x}} . $$
(202)

where ds is the infinitesimal surface belonging to \( S\left( t \right) \) and with unit normal n, whereas \( \text{d}\varvec{x} \) is the infinitesimal line element belonging to \( L\left( t \right) . \)

For any volume \( V\left( t \right) \) with bounding closed surface \( \partial V\left( t \right) \), the Gauss’ divergence theorem states

$$ \int\limits_{V\left( t \right)} {{\text{div}}\varvec{a}} {\text{dv}} = \int\limits_{\partial V} {\varvec{a} \cdot \varvec{n}{\text{ds}}} , $$
(203)
$$ \int\limits_{V\left( t \right)} {{\text{div}}{\mathbf{A}}} {\text{dv}} = \int\limits_{\partial V} {{\mathbf{A}} \cdot \varvec{n}{\text{ds}}} , $$
(204)

where dv is the infinitesimal volume belonging to \( V\left( t \right) \), whereas ds is the infinitesimal surface belonging to \( \partial V\left( t \right) \) and with unit normal n. In the presence of a discontinuity surface \( \gamma \left( t \right) \), within volume \( V\left( t \right) \), across which some vector a and tensor A admit non-continuous values, the Gauss’ divergence theorem states

$$ \int\limits_{V\left( t \right) - \gamma \left( t \right)} {{\text{div}}\varvec{a}{\text{dv}}} + \int\limits_{\partial \gamma \left( t \right)} { \left[\kern-0.15em\left[ \user2{a} \right]\kern-0.15em\right] \cdot \varvec{n}{\text{ds}}} = \int\limits_{\partial V - \gamma \left( t \right)} {\varvec{a} \cdot \varvec{n}{\text{ds}}} , $$
(205)
$$ \int\limits_{V\left( t \right) - \gamma \left( t \right)} {{\text{div}}{\mathbf{A}}} {\text{dv}} + \int\limits_{\gamma \left( t \right)} { \left[\kern-0.15em\left[ \user2{A} \right]\kern-0.15em\right] \cdot \varvec{n}{\text{ds}}} = \int\limits_{\partial V - \gamma \left( t \right)} {{\mathbf{A}} \cdot \varvec{n}{\text{ds}}} , $$
(206)

where \( \left[\kern-0.15em\left[ \user2{a} \right]\kern-0.15em\right] \equiv \varvec{a}^{ + } - \varvec{a}^{ - } \) and \( \left[\left[ {\mathbf{A}} \right]\right] \equiv {\mathbf{A}}^{ + } - {\mathbf{A}}^{ - } \) indicate the jumps of vector a and matrix A from the positive (+) side to the negative (−) side of the discontinuity.

For any given scalar quantity ϕ (x,t), the Reynolds’ transport theorem states

$$ \frac{\text{d}}{{{\text{d}}t}}\int\limits_{V \left( t \right)} \phi {\text{d}}v = \int\limits_{V \left( t \right)} {\left[ {\dot{\phi } + \phi {\text{div}}\user2{v}} \right]{\text{dv}}} = \int\limits_{V \left( t \right)} {\left[ {\frac{\partial \phi }{\partial t} + {\text{div}}\left( {\phi \user2{v}} \right)} \right]{\text{dv}}} . $$
(207)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vertechy, R., Berselli, G., Castelli, V.P., Bergamasco, M. (2013). Electro-Elastic Continuum Models for Electrostrictive Elastomers. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers I. Advanced Structured Materials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20925-3_14

Download citation

Publish with us

Policies and ethics