Skip to main content

Nanomaterials in Civil Engineering

  • Chapter
Springer Handbook of Nanomaterials

Part of the book series: Springer Handbooks ((SHB))

Abstract

Manufactured nanomaterials (MNMs) with unique physical and chemical properties have attracted a great deal of attention as key materials to underpin future scientific and technological advancements. Applications of MNMs can also provide breakthroughs in the construction industry by reinforcing mechanical properties, decreasing vulnerability to chemical corrosion and accidental damage, and providing supplementary functions such as anti-biofouling and hydrophilicity. With the enhancement of material performance and functionality, use of MNMs enables (partial) nonutility generation, low carbon emission, and self-assessment of structural health to increase the sustainability of buildings and infrastructures. On the other hand, recent research into the safety of MNMs has raised concerns about their adverse biological and environmental effects. There is a high probability that MNMs used in construction will have hazardous effects on human and ecological receptors, considering that MNMs incorporated into construction materials would be released via multiple exposure routes during their entire lifecycle (manufacturing, construction, demolition, and recycling/disposal). Consequently, to responsibly utilize the potential benefits of nanotechnology in construction, multidisciplinary efforts are required to develop proactive strategies to mitigate the environmental release of MNMs and guidelines to manage their environmental risks throughout construction-related activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CNT:

carbon nanotube

DNA:

deoxyribonucleic acid

EPS:

extracellular polymeric substance

HAZ:

heat-affected zone

ITO:

indium tin oxide

LBL:

layer-by-layer

LED:

light-emitting diode

MEMS:

microelectromechanical system

MNM:

manufactured nanomaterials

MWNT:

multiwalled nanotubes

NEMS:

nanoelectromechanical system

NM:

noble metal

NP:

nanoparticle

PCB:

polychlorinated biphenyl

QD:

quantum dot

RNA:

ribonucleic acid

ROS:

reactive oxygen species

SWNT:

single-walled nanotube

UV:

ultraviolet

rebar:

reinforcement bar

References

  1. S.J. Tans, A.R.M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)

    Article  CAS  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann: Environmental applications of semiconductor photocatalysis, Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  3. M.C. Daniel, D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  4. W.C.W. Chan, D.J. Maxwell, X.H. Gao, R.E. Bailey, M.Y. Han, S.M. Nie: Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol. 13, 40–46 (2002)

    Article  CAS  Google Scholar 

  5. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4, 366–377 (2005)

    Article  CAS  Google Scholar 

  6. Y.S. de Ibarra, J.J. Gaitero, E. Erkizia, I. Campillo: Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions, Phys. Status Solidi (a) 203, 1076–1081 (2006)

    Article  CAS  Google Scholar 

  7. N. Guskos, G. Zolnierkiewicz, J. Typek, J. Blyszko, W. Kiernozycki, U. Narkiewicz: Ferromagnetic resonance and compressive strength study of cement mortars containing carbon encapsulated nickel and iron nanoparticles, Rev. Adv. Mater. Sci. 23, 113–117 (2010)

    CAS  Google Scholar 

  8. S. Mann: Nanotechnology and construction, Nanoforum Report (2006) pp. 1–55

    Google Scholar 

  9. T. Sato, J.J. Beaudoin: The effect of nanosized CaCO_3 addition on the hydration of cement paste containing high volumes of fly ash, 12th Int. Congr. Chem. Cem., Montreal (2007) pp. 1–12

    Google Scholar 

  10. Z. Ge, Z. Gao: Applications of nanotechnology and nanomaterials in construction, 1st Int. Conf. Constr. Dev. Ctries., Karachi (2008) pp. 235–240

    Google Scholar 

  11. K. Adachi, M. Miratsu, T. Asahi: Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters, J. Mater. Res. 25, 510–521 (2010)

    Article  CAS  Google Scholar 

  12. A. Kumar, P.K. Vemula, P.M. Ajayan, G. John: Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil, Nat. Mater. 7, 236–241 (2008)

    Article  CAS  Google Scholar 

  13. E.J. Wolfrum, J. Huang, D.M. Blake, P.C. Maness, Z. Huang, J. Fiest, W.A. Jacoby: Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces, Environ. Sci. Technol. 36, 3412–3419 (2002)

    Article  CAS  Google Scholar 

  14. M. Gleiche, H. Hoffschulz, S. Lenhert: Nanotechnology in consumer products, Nanoforum Report (2006) pp. 1–30

    Google Scholar 

  15. P.V. Kamat: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, J. Phys. Chem. C 112, 18737–18753 (2008)

    CAS  Google Scholar 

  16. V.S. Saji, J. Thomas: Nanomaterials for corrosion control, Curr. Sci. 92, 51–55 (2007)

    CAS  Google Scholar 

  17. G.X. Shen, Y.C. Chen, L. Lin, C.J. Lin, D. Scantlebury: Study on a hydrophobic nano-TiO_2 coating and its properties for corrosion protection of metals, Electrochim. Acta 50, 5083–5089 (2005)

    Article  CAS  Google Scholar 

  18. G.B. Song, H.C. Gu, Y.L. Mo: Smart aggregates: Multifunctional sensors for concrete structures – A tutorial and a review, Smart Mater. Struct. 17, 1–17 (2008)

    Google Scholar 

  19. W. Zhang, J. Suhr, N. Koratkar: Carbon nanotube/polycarbonate composites as multifunctional strain sensors, J. Nanosci. Nanotechnol. 6, 960–964 (2006)

    Article  CAS  Google Scholar 

  20. P. van Broekhuizen, F. van Broekhuizen, R. Cornelissen, L. Reijnders: Use of nanomaterials in the European construction industry and some occupational health aspects thereof, J. Nanopart. Res. 13, 447–462 (2011)

    Article  CAS  Google Scholar 

  21. J. Lee, S. Mahendra, P.J.J. Alvarez: Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations, ACS Nano 4, 3580–3590 (2010)

    Article  CAS  Google Scholar 

  22. J. Lee, S. Mahendra, P.J.J. Alvarez: Potential Environmental Impacts of Nanomaterials Used in the Construction Industry (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  23. H. Li, M.H. Zhang, J.P. Ou: Abrasion resistance of concrete containing nanoparticles for pavement, Wear 260, 1262–1266 (2006)

    Article  CAS  Google Scholar 

  24. L. Raki, J. Beaudoin, R. Alizadeh, J. Makar, T. Sato: Cement and concrete nanoscience and nanotechnology, Materials 3, 918–942 (2010)

    Article  CAS  Google Scholar 

  25. K. Sobolev, M.F. Gutierrez: How nanotechnology can change the concrete world, Am. Ceram. Soc. Bull. 84, 16–19 (2005)

    CAS  Google Scholar 

  26. H. Irie, K. Sunada, K. Hashimoto: Recent developments in TiO_2 photocatalysis: Novel applications to interior ecology materials and energy saving systems, Electrochemistry 72, 807–812 (2004)

    CAS  Google Scholar 

  27. J.M. Makar, J.J. Beaudoin: Carbon nanotubes and their application in the construction industry, 1st Int. Symp. Nanotechnol. Constr., Paisley (2003) pp. 331–341

    Google Scholar 

  28. R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes – The route toward applications, Science 297, 787–792 (2002)

    Article  CAS  Google Scholar 

  29. M. Moniruzzaman, K.I. Winey: Polymer nanocomposites containing carbon nanotubes, Macromolecules 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  30. P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J.D. Xu, H. Nandivada, B.G. Pumplin, J. Lahann, A. Ramamoorthy, N.A. Kotov: Ultrastrong and stiff layered polymer nanocomposites, Science 318, 80–83 (2007)

    Article  CAS  Google Scholar 

  31. G. Elvin: Nanotechnology for green building, Green Technol. Forum (2007) pp. 1–96

    Google Scholar 

  32. H. Takeda, K. Adachi: Near infrared absorption of tungsten oxide nanoparticle dispersions, J. Am. Ceram. Soc. 90, 4059–4061 (2007)

    CAS  Google Scholar 

  33. T. Morimoto, H. Tomonaga, A. Mitani: Ultraviolet ray absorbing coatings on glass for automobiles, Thin Solid Films 351, 61–65 (1999)

    Article  CAS  Google Scholar 

  34. B. Mahltig, H. Bottcher, K. Rauch, U. Dieckmann, R. Nitsche, T. Fritz: Optimized UV protecting coatings by combination of organic and inorganic UV absorbers, Thin Solid Films 485, 108–114 (2005)

    Article  CAS  Google Scholar 

  35. T. He, J.N. Yao: Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates, Prog. Mater. Sci. 51, 810–879 (2006)

    Article  CAS  Google Scholar 

  36. T. He, Y. Ma, Y.A. Cao, P. Jiang, X.T. Zhang, W.S. Yang, J.N. Yao: Enhancement effect of gold nanoparticles on the UV-light photochromism of molybdenum trioxide thin films, Langmuir 17, 8024–8027 (2001)

    Article  CAS  Google Scholar 

  37. Y. Paz, Z. Luo, L. Rabenberg, A. Heller: Photooxidative self-cleaning transparent titanium-dioxide films on glass, J. Mater. Res. 10, 2842–2848 (1995)

    Article  CAS  Google Scholar 

  38. M. Drajewicz, J. Wasylak: Properties of glass surface with nanoparticles aluminum compounds refined, Adv. Mater. Res. 39/40, 567–570 (2008)

    Article  Google Scholar 

  39. Y.H. Lv, H. Liu, Z. Wang, L.J. Hao, J. Liu, Y.M. Wang, G.J. Du, D. Liu, J. Zhan, J.Y. Wang: Antibiotic glass slide coated with silver nanoparticles and its antimicrobial capabilities, Polym. Adv. Technol. 19, 1455–1460 (2008)

    CAS  Google Scholar 

  40. J. Niskanen, J. Shan, H. Tenhu, H. Jiang, E. Kauppinen, V. Barranco, F. Pico, K. Yliniemi, K. Kontturi: Synthesis of copolymer-stabilized silver nanoparticles for coating materials, Colloid Polym. Sci. 288, 543–553 (2010)

    Article  CAS  Google Scholar 

  41. V. Sambhy, M.M. MacBride, B.R. Peterson, A. Sen: Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials, J. Am. Chem. Soc. 128, 9798–9808 (2006)

    Article  CAS  Google Scholar 

  42. K. Page, R.G. Palgrave, I.P. Parkin, M. Wilson, S.L.P. Savin, A.V. Chadwick: Titania and silver-titania composite films on glass-potent antimicrobial coatings, J. Mater. Chem. 17, 95–104 (2007)

    Article  CAS  Google Scholar 

  43. X.M. Shi, T.A. Nguyen, Z.Y. Suo, Y.J. Liu, R. Avci: Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating, Surf. Coat. Technol. 204, 237–245 (2009)

    Article  CAS  Google Scholar 

  44. Z.Y. Wang, E.H. Han, F.C. Liu, W. Ke: Fire and corrosion resistances of intumescent nanocoating containing nano-SiO_2 in salt spray condition, J. Mater. Sci. Technol. 26, 75–81 (2010)

    Article  Google Scholar 

  45. Z.Y. Wang, E.H. Han, F.C. Liu, L. Ke: Thermal behavior of nano-TiO_2 in fire-resistant coating, J. Mater. Sci. Technol. 23, 547–550 (2007)

    Article  CAS  Google Scholar 

  46. P. Brown, K. Takechi, P.V. Kamat: Single-walled carbon nanotube scaffolds for dye-sensitized solar cells, J. Phys. Chem. C 112, 4776–4782 (2008)

    Article  CAS  Google Scholar 

  47. P.V. Kamat, M. Haria, S. Hotchandani: C_60 cluster as an electron shuttle in a Ru(II)-polypyridyl sensitizer-based photochemical solar cell, J. Phys. Chem. B 108, 5166–5170 (2004)

    Article  CAS  Google Scholar 

  48. J.L. Zhao, J.A. Bardecker, A.M. Munro, M.S. Liu, Y.H. Niu, I.K. Ding, J.D. Luo, B.Q. Chen, A.K.Y. Jen, D.S. Ginger: Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer, Nano Lett. 6, 463–467 (2006)

    Article  CAS  Google Scholar 

  49. H.S. Chen, S.J.J. Wang, C.J. Lo, J.Y. Chi: White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes, Appl. Phys. Lett. 86, 131905–131907 (2005)

    Article  CAS  Google Scholar 

  50. K.J. Loh, J. Kim, J.P. Lynch, N.W.S. Kam, N.A. Kotov: Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing, Smart Mater. Struct. 16, 429–438 (2007)

    Article  CAS  Google Scholar 

  51. J. E. Kloeppel: Mimicking biological systems, composite material heals itself, http://www.news.uiuc.edu/scitips/01/0214selfheal.html

  52. A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala: Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Adv. Cem. Res. 20, 65–73 (2008)

    Article  CAS  Google Scholar 

  53. J.M. Makar, G.W. Chan: Growth of cement hydration products on single walled carbon nanotubes, J. Am. Ceram. Soc. 92, 1303–1310 (2009)

    Article  CAS  Google Scholar 

  54. T. Muromachi, T. Tsujino, K. Kamitani, K. Maeda: Application of functional coatings by sol-gel method, J. Sol-Gel Sci. Technol. 40, 267–272 (2006)

    Article  CAS  Google Scholar 

  55. S.S. Kanu, R. Binions: Thin films for solar control applications, Proc. R. Soc. A 466, 19–44 (2010)

    Article  CAS  Google Scholar 

  56. Z.G. Zhao, Z.F. Liu, M. Miyauchi: Tailored remote photochromic coloration of in situ synthesized CdS quantum dot loaded WO_3 films, Adv. Funct. Mater. 20, 4162–4167 (2010)

    Article  CAS  Google Scholar 

  57. G. Walters, I.P. Parkin: The incorporation of noble metal nanoparticles into host matrix thin films: Synthesis, characterisation and applications, J. Mater. Chem. 19, 574–590 (2009)

    Article  CAS  Google Scholar 

  58. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima: Multicolour photochromism of TiO_2 films loaded with silver nanoparticles, Nat. Mater. 2, 29–31 (2003)

    Article  CAS  Google Scholar 

  59. M. Saeli, C. Piccirillo, I.P. Parkin, I. Ridley, R. Binions: Nanocomposite thermochromic thin films and their application in energy-efficient glazing, Sol. Energy Mater. Sol. Cells 94, 141–151 (2010)

    Article  CAS  Google Scholar 

  60. R. Arutjunjan, T. Markova, I. Halopenen, I. Maksimov, A. Tutunnikov, O. Yanush: Smart thermochromic glazing for energy saving window applications, Proc. SPIE 5946, 94618 (2005)

    Google Scholar 

  61. Q.H. Mu, Y.G. Li, H.Z. Wang, Q.H. Zhang: Self-organized TiO_2 nanorod arrays on glass substrate for self-cleaning antireflection coatings, J. Colloid Interface Sci. 365, 308–313 (2012)

    Article  CAS  Google Scholar 

  62. X.D. Wang, J. Shen: Sol-gel derived durable antireflective coating for solar glass, J. Sol-Gel Sci. Technol. 53, 322–327 (2010)

    Article  CAS  Google Scholar 

  63. A. Mills, S. LeHunte: An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A 108, 1–35 (1997)

    Article  CAS  Google Scholar 

  64. X.T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima: Self-cleaning particle coating with antireflection properties, Chem. Mater. 17, 696–700 (2005)

    Article  CAS  Google Scholar 

  65. M. Takeuchi, K. Sakamoto, G. Martra, S. Coluccia, M. Anpo: Mechanism of photoinduced superhydrophilicity on the TiO_2 photocatalyst surface, J. Phys. Chem. B 109, 15422–15428 (2005)

    Article  CAS  Google Scholar 

  66. A.I. Kontos, A.G. Kontos, D.S. Tsoukleris, G.D. Vlachos, P. Falaras: Superhydrophilicity and photocatalytic property of nanocrystalline titania sol-gel films, Thin Solid Films 515, 7370–7375 (2007)

    Article  CAS  Google Scholar 

  67. M. Miyauchi: Visible light induced super-hydrophilicity on single crystalline TiO_2 nanoparticles and WO_3 layered thin films, J. Mater. Chem. 18, 1858–1864 (2008)

    Article  CAS  Google Scholar 

  68. K.S. Guan, B.J. Lu, Y.S. Yin: Enhanced effect and mechanism of SiO_2 addition in super-hydrophilic property of TiO_2 films, Surf. Coat. Technol. 173, 219–223 (2003)

    Article  CAS  Google Scholar 

  69. S.A. Ruffolo, M.F. Russa, M. Malagodi, C.O. Rossi, A.M. Palermo, G.M. Crisci: ZnO and ZnTiO3 nanopowders for antimicrobial stone coating, Appl. Phys. A 100, 829–834 (2010)

    Article  CAS  Google Scholar 

  70. E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson, M.O. Riehle: Superhydrophobicity and superhydrophilicity of regular nanopatterns, Nano Lett. 5, 2097–2103 (2005)

    Article  CAS  Google Scholar 

  71. H. Park, K.Y. Kim, W. Choi: Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode, J. Phys. Chem. B 106, 4775–4781 (2002)

    Article  CAS  Google Scholar 

  72. M. Saafi, P. Romine: Nano- and microtechnology, Concr. Int. 27, 28–34 (2005)

    CAS  Google Scholar 

  73. M. Saafi, P. Romine: Preliminary evaluation of MEMS devices for early age concrete property monitoring, Cem. Concr. Res. 35, 2158–2164 (2005)

    Article  CAS  Google Scholar 

  74. Y.F. Zhang: Piezoelectric paint sensor for real-time structural health monitoring, Smart Mater. Struct. 5765, 1095–1103 (2005)

    CAS  Google Scholar 

  75. M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas: Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol. 40, 4336–4345 (2006)

    Article  CAS  Google Scholar 

  76. N. Solovitch, J. Labille, J. Rose, P. Chaurand, D. Borschneck, M.R. Wiesner, J.Y. Bottero: Concurrent aggregation and deposition of TiO_2 nanoparticles in a sandy porous media, Environ. Sci. Technol. 44, 4897–4902 (2010)

    Article  CAS  Google Scholar 

  77. A.R. Petosa, D.P. Jaisi, I.R. Quevedo, M. Elimelech, N. Tufenkji: Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions, Environ. Sci. Technol. 44, 6532–6549 (2010)

    Article  CAS  Google Scholar 

  78. B. Nowack, T.D. Bucheli: Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut. 150, 5–22 (2007)

    Article  CAS  Google Scholar 

  79. R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt, M. Boller: Synthetic TiO_2 nanoparticle emission from exterior facades into the aquatic environment, Environ. Pollut. 156, 233–239 (2008)

    Article  CAS  Google Scholar 

  80. K.A.D. Guzman, M.P. Finnegan, J.F. Banfield: Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol. 40, 7688–7693 (2006)

    Article  CAS  Google Scholar 

  81. B.J.R. Thio, D.X. Zhou, A.A. Keller: Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, J. Hazard. Mater. 189, 556–563 (2011)

    Article  CAS  Google Scholar 

  82. J. Fang, X.Q. Shan, B. Wen, J.M. Lin, G. Owens: Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environ. Pollut. 157, 1101–1109 (2009)

    Article  CAS  Google Scholar 

  83. D.R. Johnson, M.M. Methner, A.J. Kennedy, J.A. Steevens: Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies, Environ. Health Perspect. 118, 49–54 (2010)

    CAS  Google Scholar 

  84. DuPont: DuPont Nanomaterial risk assessment worksheet – DuPont light stabilizer (2007) pp. 1–52

    Google Scholar 

  85. DuPont: DuPont crystar 6920 PET poly-(ethylene terephthalate) resin with sepiolite clay, Pangel S-9 as an encapsulated nanodispersed filler (2008) pp. 1–35

    Google Scholar 

  86. G.R. Aiken, H. Hsu-Kim, J.N. Ryan: Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids, Environ. Sci. Technol. 45, 3196–3201 (2011)

    Article  CAS  Google Scholar 

  87. S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem. 27, 1825–1851 (2008)

    Article  CAS  Google Scholar 

  88. X.S. Zhu, L. Zhu, Z.H. Duan, R.Q. Qi, Y. Li, Y.P. Lang: Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage, J. Environ. Sci. Health A 43, 278–284 (2008)

    Article  CAS  Google Scholar 

  89. Q.W. Zhang, Y. Kusaka, K. Sato, K. Nakakuki, N. Kohyama, K. Donaldson: Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: Role of free radicals, J. Toxicol. Environ. Health A 53, 423–438 (1998)

    Article  CAS  Google Scholar 

  90. L.L. Zhang, R. Bai, B. Li, C. Ge, J.F. Du, Y. Liu, L. Le Guyader, Y.L. Zhao, Y.C. Wu, S.D. He, Y.M. Ma, C.Y. Chen: Rutile TiO_2 particles exert size and surface coating dependent retention and lesions on the murine brain, Toxicol. Lett. 207, 78–81 (2011)

    Google Scholar 

  91. Y.G. Wang, W.G. Aker, H.M. Hwang, C.G. Yedjou, H.T. Yu, P.B. Tchounwou: A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells, Sci. Total Environ. 409, 4753–4762 (2011)

    Article  CAS  Google Scholar 

  92. R. Tedja, C. Marquis, M. Lim, R. Amal: Biological impacts of TiO_2 on human lung cell lines A549 and H1299: Particle size distribution effects, J. Nanopart. Res. 13, 3801–3813 (2011)

    Article  CAS  Google Scholar 

  93. C.M. Sayes, R. Wahi, P.A. Kurian, Y.P. Liu, J.L. West, K.D. Ausman, D.B. Warheit, V.L. Colvin: Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells, Toxicol. Sci. 92, 174–185 (2006)

    Article  CAS  Google Scholar 

  94. J.F. Reeves, S.J. Davies, N.J.F. Dodd, A.N. Jha: Hydroxyl radicals are associated with titanium dioxide (TiO_2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells, Mutat. Res. 640, 113–122 (2008)

    Article  CAS  Google Scholar 

  95. S. Park, Y.K. Lee, M. Jung, K.H. Kim, N. Chung, E.K. Ahn, Y. Lim, K.H. Lee: Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells, Inhal. Toxicol. 19, 59–65 (2007)

    Article  CAS  Google Scholar 

  96. G. Oberdorster, R.M. Gelein, J. Ferin, B. Weiss: Association of particulate air-pollution and acute mortality – Involvement of ultrafine particles, Inhal. Toxicol. 7, 111–124 (1995)

    Article  CAS  Google Scholar 

  97. H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Moller: Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes, Chem. Res. Toxicol. 21, 1726–1732 (2008)

    Article  CAS  Google Scholar 

  98. R.D. Handy, T.B. Henry, T.M. Scown, B.D. Johnston, C.R. Tyler: Manufactured nanoparticles: Their uptake and effects on fish – A mechanistic analysis, Ecotoxicology 17, 396–409 (2008)

    Article  CAS  Google Scholar 

  99. T.C. Long, N. Saleh, R.D. Tilton, G.V. Lowry, B. Veronesi: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity, Environ. Sci. Technol. 40, 4346–4352 (2006)

    Article  CAS  Google Scholar 

  100. A. Nel, T. Xia, L. Madler, N. Li: Toxic potential of materials at the nanolevel, Science 311, 622–627 (2006)

    Article  CAS  Google Scholar 

  101. Y. Zhang, W. Yu, X. Jiang, K. Lv, S. Sun, F. Zhang: Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine MC3T3-E1 preosteoblasts, J. Mater. Sci. 22, 1933–1945 (2011)

    Article  CAS  Google Scholar 

  102. A. Rincon, C. Pulgarin: Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO_2-implications in solar water disinfection, Appl. Catal. B 51, 283–302 (2004)

    Article  CAS  Google Scholar 

  103. A. Rincon, C. Pulgarin: Bactericidal action of illuminated TiO_2 on pure Escherichia coli and natural bacterial consortia: Post-irradiation events in the dark and assessment of the effective disinfection time, Appl. Catal. B 49, 99–112 (2004)

    Article  CAS  Google Scholar 

  104. N.B. Hartmann, F. Von der Kammer, T. Hofmann, M. Baalousha, S. Ottofuelling, A. Baun: Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability, Toxicology 269, 190–197 (2010)

    Article  CAS  Google Scholar 

  105. W. Fan, M. Cui, H. Liu, C. Wang, Z. Shi, C. Tan, X. Yang: Nano-TiO_2 enhances the toxicity of copper in natural water to Daphnia magna, Environ. Pollut. 159, 729–734 (2011)

    Article  CAS  Google Scholar 

  106. X. Zhang, H. Sun, Z. Zhang, Q. Niu, Y. Chen, J.C. Crittenden: Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles, Chemosphere 67, 160–166 (2007)

    Article  CAS  Google Scholar 

  107. W.W. Yu, E. Chang, J.C. Falkner, J.Y. Zhang, A.M. Al-Somali, C.M. Sayes, J. Johns, R. Drezek, V.L. Colvin: Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers, J. Am. Chem. Soc. 129, 2871–2879 (2007)

    Article  CAS  Google Scholar 

  108. S. Zuin, C. Micheletti, A. Critto, G. Pojana, H. Johnston, V. Stone, L. Tran, A. Marcomini: Weight of evidence approach for the relative hazard ranking of nanomaterials, Nanotoxicology 5, 445–458 (2011)

    Article  CAS  Google Scholar 

  109. A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, K. Yamamoto: On the cyto-toxicity caused by quantum dots, Microbiol. Immunol. 48, 669–675 (2004)

    CAS  Google Scholar 

  110. Z.S. Lu, C.M. Li, H.F. Bao, Y. Qiao, Y.H. Toh, X. Yang: Mechanism of antimicrobial activity of CdTe quantum dots, Langmuir 24, 5445–5452 (2008)

    Article  CAS  Google Scholar 

  111. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A.M. Javier, H.E. Gaub, S. Stolzle, N. Fertig, W.J. Parak: Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett. 5, 331–338 (2005)

    Article  CAS  Google Scholar 

  112. R. Hardman: A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors, Environ. Health Perspect. 114, 165–172 (2006)

    Article  Google Scholar 

  113. A.M. Derfus, W.C.W. Chan, S.N. Bhatia: Probing the cytotoxicity of semiconductor quantum dots, Nano Lett. 4, 11–18 (2004)

    Article  CAS  Google Scholar 

  114. K.E. Cha, H. Myung: Cytotoxic effects of nanoparticles assessed in vitro and in vivo, J. Microbiol. Biotechnol. 17, 1573–1578 (2007)

    CAS  Google Scholar 

  115. J.A. Kloepfer, R.E. Mielke, J.L. Nadeau: Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms, Appl. Environ. Microbiol. 71, 2548–2557 (2005)

    Article  CAS  Google Scholar 

  116. S. Mahendra, H.G. Zhu, V.L. Colvin, P.J. Alvarez: Quantum dot weathering results in microbial toxicity, Environ. Sci. Technol. 42, 9424–9430 (2008)

    Article  CAS  Google Scholar 

  117. J.P. Ryman-Rasmussen, J.E. Riviere, N.A. Monteiro-Riviere: Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes, J. Investig. Dermatol. 127, 143–153 (2007)

    Article  CAS  Google Scholar 

  118. E. Chang, N. Thekkek, W.W. Yu, V.L. Colvin, R. Drezek: Evaluation of quantum dot cytotoxicity based on intracellular uptake, Small 2, 1412–1417 (2006)

    Article  CAS  Google Scholar 

  119. P. Lin, J.-W. Chen, L.W. Chang, J.-P. Wu, L. Redding, H. Chang, T.-K. Yeh, C.-S. Yang, M.-H. Tsai, H.-J. Wang, Y.-C. Kuo, R.S.H. Yang: Computational and ultrastructural toxicology of a nanoparticle, quantum dot 705, in mice, Environ. Sci. Technol. 42, 6264–6270 (2008)

    Article  CAS  Google Scholar 

  120. J.X. Wang, X.Z. Zhang, Y.S. Chen, M. Sommerfeld, Q. Hu: Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii, Chemosphere 73, 1121–1128 (2008)

    Article  CAS  Google Scholar 

  121. A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y.F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, K. Yamamoto: Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification, Nano Lett. 4, 2163–2169 (2004)

    Article  CAS  Google Scholar 

  122. S. Gosso, D. Gavello, C.N.G. Giachello, C. Franchino, E. Carbone, V. Carabelli: The effect of CdSe-ZnS quantum dots on calcium currents and catecholamine secretion in mouse chromaffin cells, Biomaterials 32, 9040–9050 (2011)

    Article  CAS  Google Scholar 

  123. J. Lovric, S.J. Cho, F.M. Winnik, D. Maysinger: Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chem. Biol. 12, 1227–1234 (2005)

    Article  CAS  Google Scholar 

  124. R.F. Domingos, D.F. Simon, C. Hauser, K.J. Wilkinson: Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii – Nanoparticles or the free ions?, Environ. Sci. Technol. 45, 7664–7669 (2011)

    Article  CAS  Google Scholar 

  125. C.W. Lam, J.T. James, R. McCluskey, S. Arepalli, R.L. Hunter: A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Crit. Rev. Toxicol. 36, 189–217 (2006)

    Article  CAS  Google Scholar 

  126. W. Wei, A. Sethuraman, C. Jin, N.A. Monteiro-Riviere, R.J. Narayan: Biological properties of carbon nanotubes, J. Nanosci. Nanotechnol. 7, 1284–1297 (2007)

    Article  CAS  Google Scholar 

  127. G. Jia, H.F. Wang, L. Yan, X. Wang, R.J. Pei, T. Yan, Y.L. Zhao, X.B. Guo: Cytotoxicity of carbon nanomaterials: Single wall nanotube, multi wall nanotube, and fullerene, Environ. Sci. Technol. 39, 1378–1383 (2005)

    Article  CAS  Google Scholar 

  128. L.H. Ding, J. Stilwell, T.T. Zhang, O. Elboudwarej, H.J. Jiang, J.P. Selegue, P.A. Cooke, J.W. Gray, F.Q.F. Chen: Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast, Nano Lett. 5, 2448–2464 (2005)

    Article  CAS  Google Scholar 

  129. T. Thurnherr, C. Brandenberger, K. Fischer, L. Diener, P. Manser, X. Maeder-Althaus, J.P. Kaiser, H.F. Krug, B. Rothen-Rutishauser, P. Wick: A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro, Toxicol. Lett. 200, 176–186 (2011)

    Article  CAS  Google Scholar 

  130. T. Oyabu, T. Myojo, Y. Morimoto, A. Ogami, M. Hirohashi, M. Yamamoto, M. Todoroki, Y. Mizuguchi, M. Hashiba, B.W. Lee, M. Shimada, W.N. Wang, K. Uchida, S. Endoh, N. Kobayashi, K. Yamamoto, K. Fujita, K. Mizuno, M. Inada, T. Nakazato, J. Nakanishi, I. Tanaka: Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure, Inhal. Toxicol. 23, 784–791 (2011)

    Article  CAS  Google Scholar 

  131. A.K. Patlolla, A. Berry, P.B. Tchounwou: Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multiwalled carbon nanotubes, Mol. Cell. Biochem. 358, 189–199 (2011)

    Article  CAS  Google Scholar 

  132. L.A. Luongo, X.Q. Zhang: Toxicity of carbon nanotubes to the activated sludge process, J. Hazard. Mater. 178, 356–362 (2010)

    Article  CAS  Google Scholar 

  133. S. Kang, M.S. Mauter, M. Elimelech: Microbial cytotoxicity of carbon-based nanomaterials: Implications for river water and wastewater effluent, Environ. Sci. Technol. 43, 2648–2653 (2009)

    Article  CAS  Google Scholar 

  134. S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech: Single-walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir 23, 8670–8673 (2007)

    Article  CAS  Google Scholar 

  135. S. Kang, M.S. Mauter, M. Elimelech: Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity, Environ. Sci. Technol. 42, 7528–7534 (2008)

    Article  CAS  Google Scholar 

  136. S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech: Antibacterial effects of carbon nanotubes: Size does matter, Langmuir 24, 6409–6413 (2008)

    Article  CAS  Google Scholar 

  137. S.R. Chae, M. Therezien, J.F. Budarz, L. Wessel, S.H. Lin, Y. Xiao, M.R. Wiesner: Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size, J. Nanopart. Res. 13, 5121–5127 (2011)

    Article  CAS  Google Scholar 

  138. J.D. Fortner, D.Y. Lyon, C.M. Sayes, A.M. Boyd, J.C. Falkner, E.M. Hotze, L.B. Alemany, Y.J. Tao, W. Guo, K.D. Ausman, V.L. Colvin, J.B. Hughes: C_60 in water: Nanocrystal formation and microbial response, Environ. Sci. Technol. 39, 4307–4316 (2005)

    Article  CAS  Google Scholar 

  139. W.A. Scrivens, J.M. Tour, K.E. Creek, L. Pirisi: Synthesis of 14C-labeled C_60, its suspension in water, and its uptake by human keratinocytes, J. Am. Chem. Soc. 116, 4517–4518 (1994)

    Article  CAS  Google Scholar 

  140. C.M. Sayes, A.A. Marchione, K.L. Reed, D.B. Warheit: Comparative pulmonary toxicity assessments of C_60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles, Nano Lett. 7, 2399–2406 (2007)

    Article  CAS  Google Scholar 

  141. C.M. Sayes, A.M. Gobin, K.D. Ausman, J. Mendeza, J.L. West, V.L. Colvin: Nano-C_60 cytotoxicity is due to lipid peroxidation, Biomaterials 26, 7587–7595 (2005)

    Article  CAS  Google Scholar 

  142. C.M. Sayes, J.D. Fortner, W. Guo, D. Lyon, A.M. Boyd, K.C. Ausman, Y.J. Tao, B. Sitharaman, L.J. Wilson, J.B. Hughes, J.L. West, V.L. Colvin: The differential cytotoxicity of water-soluble fullerenes, Nano Lett. 4, 1881–1887 (2004)

    Article  CAS  Google Scholar 

  143. S.P. Rozhkov, A.S. Goryunov, G.A. Sukhanova, A.G. Borisova, N.N. Rozhkova, G.V. Andrievsky: Protein interaction with hydrated C_60 fullerene in aqueous solutions, Biochem. Biophys. Res. Commun. 303, 562–566 (2003)

    Article  CAS  Google Scholar 

  144. E.J. Park, H. Kim, Y. Kim, J. Yi, K. Choi, K. Park: Carbon fullerenes (C_60s) can induce inflammatory responses in the lung of mice, Toxicol. Appl. Pharmacol. 244, 226–233 (2010)

    Article  CAS  Google Scholar 

  145. D.Y. Lyon, J.D. Fortner, C.M. Sayes, V.L. Colvin, J.B. Hughes: Bacterial cell association and antimicrobial activity of a C_60 water suspension, Environ. Toxicol. Chem. 24, 2757–2762 (2005)

    Article  CAS  Google Scholar 

  146. D.Y. Lyon, L. Brunet, G.W. Hinkal, M.R. Wiesner, P.J.J. Alvarez: Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage, Nano Lett. 8, 1539–1543 (2008)

    Article  CAS  Google Scholar 

  147. D.Y. Lyon, P.J. Alvarez: How a fullerene water suspension kills bacteria: Exploring three possible mechanisms, Chem. Res. Toxicol. 20, 1991–1991 (2007)

    Google Scholar 

  148. M. Kovochich, B. Espinasse, M. Auffan, E.M. Hotze, L. Wessel, T. Xia, A.E. Nel, M.R. Wiesner: Comparative toxicity of C_60 aggregates toward mammalian cells: Role of tetrahydrofuran (THF) decomposition, Environ. Sci. Technol. 43, 6378–6384 (2009)

    Article  CAS  Google Scholar 

  149. S. Kato, H. Aoshima, Y. Saitoh, N. Miwa: Biological safety of lipofullerene composed of squalane and fullerene-C_60 upon mutagenesis, photocytotoxicity, and permeability into the human skin tissue, Basic Clin. Pharmacol. Toxicol. 104, 483–487 (2009)

    Article  CAS  Google Scholar 

  150. S. Kato, H. Aoshima, Y. Saitoh, N. Miwa: Biological safety of liposome-fullerene consisting of hydrogenated lecithin, glycine soja sterols, and fullerene-C_60 upon photocytotoxicity and bacterial reverse mutagenicity, Toxicol. Ind. Health 25, 197–203 (2009)

    Article  CAS  Google Scholar 

  151. A. Isakovic, Z. Markovic, B. Todorovic-Markovic, N. Nikolic, S. Vranjes-Djuric, M. Mirkovic, M. Dramicanin, L. Harhaji, N. Raicevic, Z. Nikolic, V. Trajkovic: Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene, Toxicol. Sci. 91, 173–183 (2006)

    Article  CAS  Google Scholar 

  152. R. Bullard-Dillard, K.E. Creek, W.A. Scrivens, J.M. Tour: Tissue sites of uptake of 14C-labeled C_60, Bioorg. Chem. 24, 376–385 (1996)

    Article  CAS  Google Scholar 

  153. N. Shinohara, M. Gamo, J. Nakanishi: Fullerene C_60: Inhalation hazard assessment and derivation of a period-limited acceptable exposure level, Toxicol. Sci. 123, 576–589 (2011)

    Article  CAS  Google Scholar 

  154. L.K. Adams, D.Y. Lyon, P.J.J. Alvarez: Comparative eco-toxicity of nanoscale TiO_2, SiO_2, and ZnO water suspensions, Water Res. 40, 3527–3532 (2006)

    Article  CAS  Google Scholar 

  155. D.Y. Lyon, L.K. Adams, J.C. Falkner, P.J.J. Alvarez: Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size, Environ. Sci. Technol. 40, 4360–4366 (2006)

    Article  CAS  Google Scholar 

  156. J. Fang, D.Y. Lyon, M.R. Wiesner, J. Dong, P.J.J. Alvarez: Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior, Environ. Sci. Technol. 41, 2636–2642 (2007)

    Article  CAS  Google Scholar 

  157. E. Oberdörster: Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ. Health Perspect. 112, 1058–1062 (2004)

    Article  CAS  Google Scholar 

  158. N. Tsao, T. Luh, C. Chou, T. Chang, J. Wu, C. Liu, H. Lei: In vitro action of carboxyfullerene, J. Antimicrob. Chemother. 49, 641–649 (2002)

    Article  CAS  Google Scholar 

  159. J.P. Kamat, T.P.A. Devasagayam, K.I. Priyadarsini, H. Mohan: Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications, Toxicology 155, 55–61 (2000)

    Article  CAS  Google Scholar 

  160. C. Blaise, F. Gagne, J.F. Ferard, P. Eullaffroy: Ecotoxicity of selected nanomaterials to aquatic organisms, Environ. Toxicol. Chem. 23, 591–598 (2008)

    CAS  Google Scholar 

  161. V. Aruoja, H.C. Dubourguier, K. Kasemets, A. Kahru: Toxicity of nanoparticles of CuO, ZnO and TiO_2 to microalgae Pseudokirchneriella subcapitata, Sci. Total Environ. 407, 1461–1468 (2009)

    Article  CAS  Google Scholar 

  162. K. Kasemets, A. Ivask, H.C. Dubourguier, A. Kahru: Toxicity of nanoparticles of ZnO, CuO and TiO_2 to yeast Saccharomyces cerevisiae, Toxicol. in Vitro 23, 1116–1122 (2009)

    Article  CAS  Google Scholar 

  163. K. Fujiwara, H. Suematsu, E. Kiyomiya, M. Aoki, M. Sato, N. Moritoki: Size-dependent toxicity of silica nanoparticles to Chlorella kessleri, J. Environ. Sci. Health A 43, 1167–1173 (2008)

    Article  CAS  Google Scholar 

  164. C. Wei, Y. Zhang, J. Guo, B. Han, X. Yang, J. Yuan: Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus, J. Environ. Sci. 22, 155–160 (2010)

    CAS  Google Scholar 

  165. W. Jiang, H. Mashayekhi, B. Xing: Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environ. Pollut. 157, 1619–1625 (2009)

    Article  CAS  Google Scholar 

  166. M. Lucarelli, A.M. Gatti, G. Savarino, P. Quattroni, L. Martinelli, E. Monari, D. Boraschi: Innate defence functions of macrophages can be biased by nanosized ceramic and metallic particles, Eur. Cytokine Netw. 15, 339–346 (2004)

    CAS  Google Scholar 

  167. Y. Li, L. Sun, M.H. Jin, Z.J. Du, X.M. Liu, C.X. Guo, Y.B. Li, P.L. Huang, Z.W. Sun: Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells, Toxicol. in Vitro 25, 1343–1352 (2011)

    Article  CAS  Google Scholar 

  168. D. Dutta, S.K. Sundaram, J.G. Teeguarden, B.J. Riley, L.S. Fifield, J.M. Jacobs, S.R. Addleman, G.A. Kaysen, B.M. Moudgil, T.J. Weber: Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials, Toxicol. Sci. 100, 303–315 (2007)

    Article  CAS  Google Scholar 

  169. H.-S. Choi, Y.-J. Kim, M. Song, M.-K. Song, J.-C. Ryu: Genotoxicity of nanosilica in mammalian cell lines, Toxicol. Environ. Health Sci. 3, 7–13 (2011)

    Article  Google Scholar 

  170. G. Attik, R. Brown, P. Jackson, O. Creutzenberg, I. Aboukhamis, B.H. Rihn: Internalization, cytotoxicity, apoptosis, and tumor necrosis factor-alpha expression in rat alveolar macrophages exposed to various dusts occurring in the ceramics industry, Inhal. Toxicol. 20, 1101–1112 (2008)

    Article  CAS  Google Scholar 

  171. Z. Chen, H.A. Meng, G.M. Xing, C.Y. Chen, Y.L. Zhao, G.A. Jia, T.C. Wang, H. Yuan, C. Ye, F. Zhao, Z.F. Chai, C.F. Zhu, X.H. Fang, B.C. Ma, L.J. Wan: Acute toxicological effects of copper nanoparticles in vivo, Toxicol. Lett. 163, 109–120 (2006)

    Article  CAS  Google Scholar 

  172. M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru: Toxicity of nanosized and bulk ZnO, CuO and TiO_2 to bacteria Vibrio fischeri and crustaceans, Daphnia magna and Thamnocephalus platyurus, Chemosphere 71, 1308–1316 (2008)

    Article  CAS  Google Scholar 

  173. B.H. Yang, Q.J. Wang, R.H. Lei, C.Q. Wu, C. Shi, Q.X. Wang, Y. Yuan, Y. Wang, Y.W. Luo, Z.H. Hu, H.Z. Ma, M.Y. Liao: Systems toxicology used in nanotoxicology: Mechanistic insights into the hepatotoxicity of nanocopper particles from toxicogenomics, J. Nanosci. Nanotechnol. 10, 8527–8537 (2010)

    Article  CAS  Google Scholar 

  174. H. Meng, Z. Chen, G.M. Xing, H. Yuan, C.Y. Chen, F. Zhao, C.C. Zhang, Y.L. Zhao: Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nanocopper particles, Toxicol. Lett. 175, 102–110 (2007)

    Article  CAS  Google Scholar 

  175. M. Midander, P. Cronholm, H.L. Karlsson, K. Elihn, L. Moller, C. Leygraf, I.O. Wallinder: Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: A cross-disciplinary study, Small 5, 389–399 (2009)

    Article  CAS  Google Scholar 

  176. Z.Y. Wang, K. Zhang, J. Zhao, X.Y. Liu, B.S. Xing: Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles, Chemosphere 79, 86–92 (2010)

    Article  CAS  Google Scholar 

  177. A.T. Bauer, E.A. Strozyk, C. Gorzelanny, C. Westerhausen, A. Desch, M.F. Schneider, S.W. Schneider: Cytotoxicity of silica nanoparticles through exocytosis of von Willebrand factor and necrotic cell death in primary human endothelial cells, Biomaterials 32, 8385–8393 (2011)

    Article  CAS  Google Scholar 

  178. W.S. Lin, Y.W. Huang, X.D. Zhou, Y.F. Ma: Toxicity of cerium oxide nanoparticles in human lung cancer cells, Int. J. Toxicol. 25, 451–457 (2006)

    Article  CAS  Google Scholar 

  179. IARC: Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 68 (International Agency for Research on Cancer World Health Organization, Lyon 1997) p. 41

    Google Scholar 

  180. N. Kumar, V. Shah, V.K. Walker: Perturbation of an arctic soil microbial community by metal nanoparticles, J. Hazard. Mater. 190, 816–822 (2011)

    Article  CAS  Google Scholar 

  181. V. Rabolli, L.C.J. Thomassen, F. Uwambayinema, J.A. Martens, D. Lison: The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation, Toxicol. Lett. 206, 197–203 (2011)

    Article  CAS  Google Scholar 

  182. V. Rabolli, L.C.J. Thomassen, C. Princen, D. Napierska, L. Gonzalez, M. Kirsch-Volders, P.H. Hoet, F. Huaux, C.E.A. Kirschhock, J.A. Martens, D. Lison: Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types, Nanotoxicology 4, 307–318 (2010)

    Article  CAS  Google Scholar 

  183. K. Van Hoecke, K.A.C. De Schamphelaere, P. Van der Meeren, S. Lcucas, C.R. Janssen: Ecotoxicity of silica nanoparticles to the green alga pseudokirchneriella subcapitata: Importance of surface area, Environ. Toxicol. Chem. 27, 1948–1957 (2008)

    Article  Google Scholar 

  184. W.M. Lee, Y.J. An, H. Yoon, H.S. Kweon: Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles, Environ. Toxicol. Chem. 27, 1915–1921 (2008)

    Article  CAS  Google Scholar 

  185. M.E. Letelier, A.M. Lepe, M. Faundez, J. Salazar, R. Marin, P. Aracena, H. Speisky: Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity, Chem. Biol. Interact. 151, 71–82 (2005)

    Article  CAS  Google Scholar 

  186. P.J.J. Alvarez, V. Colvin, J. Lead, V. Stone: Research priorities to advance eco-responsible nanotechnology, ACS Nano 3, 1616–1619 (2009)

    Article  CAS  Google Scholar 

  187. S. Ghosh, A.K. Sood, N. Kumar: Carbon nanotube flow sensors, Science 299, 1042–1044 (2003)

    Article  CAS  Google Scholar 

  188. Z.L. Wang, J. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312, 242–246 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaesang Lee , Seunghak Lee , Eunhyea Chung , Vincent C. Reyes or Shaily Mahendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Lee, J., Lee, S., Chung, E., Reyes, V.C., Mahendra, S. (2013). Nanomaterials in Civil Engineering. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_29

Download citation

Publish with us

Policies and ethics