Skip to main content

Composite Long Rod Insulators

  • Chapter
Silicone Composite Insulators

Part of the book series: Power Systems ((POWSYS))

Abstract

Composite long rod insulators are primarily used in suspension strings in straight-line supports and as tension strings in anchor towers and dead-end towers. They are also used in the jumpers or portals of outdoor substations. In some cases, composite long rods are used in the guys of wooden poles, and more rarely in the guys of steel towers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

CIGRE:

Conseil International des Grands Réseaux Électriques (International Council on Large Electric Systems)

DLL:

Damage limit load

FE mesh:

Finite element mesh

FEM:

Finite element method

FE model:

Finite element model

FRP:

Fibre reinforced plastic

IEC:

International Electrotechnical Commission

IEEE:

Institute of Electrical and Electronics Engineers

IREQ:

Institut de Recherche d’Hydro-Québec (Québec-Hydro’s Research Institute)

LVDT:

Linear variable differential transformer

RML:

Routine mechanical load

SML:

Specified mechanical load

UHV:

Ultra-high voltage

δ :

Half length of the linear region for the shear stress

ΔR :

Radius reduction of the FRP rod during crimping

ϑ :

Coordinate in circumferential direction of the FRP rod

k :

Danger factor

µ :

Coefficient of friction between metal and FRP

v LT :

Poisson number “axial-transverse” to the FRP rod

v TT :

Poisson number “transverse–transverse” to the FRP rod

σ ϑϑ :

Circumferential stress in the FRP rod

σ M :

Standard deviation

\( \sigma _{{shear}}^{{{\text{max}}}} \) :

Shear strength of the FRP rod

σ rr :

Radial stress in the FRP rod

σ z :

Tensile stress in the cross-section of the end fitting

σ zul :

Tensile strength of the end fitting

σ zz :

Axial stress in the FRP rod

τ :

Critical shear stress in the end fitting

τ f :

Shear stress in the FRP rod

τ max :

Shear strength in the FRP rod

τrz (z, R):

Shear stress at the surface (r = R) of the FRP rod

τ zul :

Max. permissible shear stress of the end fitting

b :

Wall thickness of the end fitting

d :

Diameter of the FRP rod

dz :

Length of the differential beam element

D o :

Outer diameter of the end fitting

Di :

Inner diameter of the end fitting

D k :

Ball size (ball diameter)

DS :

Stiffness of the fibre

e :

Location of critical shear of the end fitting

E :

Modulus of elasticity (Young’s modulus) of the fibre

E L :

Modulus of elasticity (Young’s modulus) in axial direction of the FRP rod

E T :

Modulus of elasticity (Young’s modulus) in transverse direction of the FRP rod

F :

Cross-section of fibre

F max :

Failing load in tension of the insulator

F N :

Pressure load between metal and FRP

F z :

Tensile load in the FRP rod

G TT :

Shear modulus “transverse–transverse” of the FRP rod

G LT :

Shear modulus “axial-transverse” of the FRP rod

L, L cr , L p :

Crimp length of the end fitting

M 96 :

Average 96 h failing load

M av :

Average failing load of the assembled core

p :

Contact pressure on the FRP rod

r :

Radial coordinate for the FRP rod

R :

Radius of the FRP rod before crimping

S :

Contact (interface) surface between FRP rod and end fitting

x, y, z :

Geometry parameters of the end fitting

x cr :

Critical crimp length

x max :

Limit crimp length

z :

Axial coordinate of the FRP rod

References

  1. Prenleloup A (2008) Analyse de l’état de contrainte et de l’endommagement d’assemblages sertis en matériau mixte métal-composite sollicités en traction ou en flexion. PhD Thesis No. 4005. Lausanne Ecole polytechnique fédérale de Lausanne

    Google Scholar 

  2. De Tourreil C, Roberge R, Bourdon P (1985) Long-term mechanical properties of high voltage composite insulators. IEEE Trans Power Apparatus Syst PAS- 104(10):2918–2921

    Article  Google Scholar 

  3. De Tourreil C (1990) Response of composite insulators to dynamic mechanical loads. IEEE Trans Power Delivery 5(1):379–383

    Article  Google Scholar 

  4. Lumb C, Papailiou KO (1997) Unterschätzte Dauerkraft der Verbundisolatoren, SEV/VSE Bulletin 7/97

    Google Scholar 

  5. Paris L, Pargamin L, Dumora D, Parraud R (1994) Rating of composite suspension insulators related to the long-term mechanical strength of rods. IEEE Trans Power Delivery 9(4):2055–2063

    Article  Google Scholar 

  6. De Tourreil C (1994) Discussion to [5]. IEEE Trans Power Delivery 9(4):2062

    Google Scholar 

  7. Ammann M, Papailiou KO, Ansorge S, Schmuck F (2008) Zur Bewertung von Verbundisola- toren und deren relevanten Interfacebereichen nach Freilufteinsatz. ETG Fachtagung Grenz- flächen in elektrischen Isoliersystemen (ETG FB-112), Sept

    Google Scholar 

  8. CIGRE Technical Brochure 251 (2004) The mechanical behaviour of conductors and fittings (CD + Brochure). Paris

    Google Scholar 

  9. Wankowicz J, Bielecki J, Struzewska E (2006) Damage limit of composite long rod insulators subjected to cyclic loads, paper B2-308. CIGRE Session, Paris

    Google Scholar 

  10. Papailiou KO (1997) On the bending stiffness of transmission line conductors. IEEE Trans Power Delivery 12(4):1576–1588

    Article  Google Scholar 

  11. De Weck P, Ammann M, Papailiou KO (1990) Two years vibration measurements and their evaluation for an optical ground wire (OPGW) installed on a 400 kV transmission line, paper 22-203. CIGRE Session, Paris

    Google Scholar 

  12. Yoshida S (2006) Fatigue characteristics on composite long rod and line post insulators. Discussion contribution SC B2, CIGRE Session, Paris

    Google Scholar 

  13. Fan J, Liang X, Yin Y, Wang C, Chen L (2000) Application of acoustic emission technology on structure design and quality control of composite insulators. In: Proceedings of the IEEE 6th international conference on properties and applications of dielectric materials, Xi’an, China

    Google Scholar 

  14. Preneleloup A, Gmür T, Papailiou KO, Botis J (2006) Acoustic emission study and strength analysis of crimped steel-composite joints under traction. Compos Struct 74(2006):370–378

    Google Scholar 

  15. Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw Hill, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Papailiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papailiou, K., Schmuck, F. (2013). Composite Long Rod Insulators. In: Silicone Composite Insulators. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15320-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15320-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15319-8

  • Online ISBN: 978-3-642-15320-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics