Skip to main content

Anatomy and Physiology

  • Chapter
  • First Online:
Syringomyelia
  • 1731 Accesses

Abstract

Syringomyelia is a disorder of the cerebrospinal fluid, and an understanding of the production, elimination and dynamics of CSF and water within the nervous system is paramount to understanding the pathophysiology of this complex condition. This chapter details the circulation, drainage and interrelationships of cerebrospinal fluid and interstitial fluid, from the level of the choroid plexus to the arachnoid villi, lymphatics and blood–brain barrier. Disorders of drainage of cerebrospinal fluid and interstitial fluid are discussed, including syringomyelia, meningitis, subarachnoid haemorrhage, cerebral amyloid angiopathy and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Alcolado JC, Moore IE, Weller RO (1986) Calcification in the human choroid plexus, meningiomas and pineal gland. Neuropathol Appl Neurobiol 12:235–250

    Article  CAS  PubMed  Google Scholar 

  • Alcolado R, Weller RO, Parrish EP et al (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    Article  CAS  PubMed  Google Scholar 

  • Ambarki K, Baledent O, Kongolo G et al (2007) A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng 54:483–491

    Article  PubMed  Google Scholar 

  • Ameli PA, Madan M, Chigurupati S et al (2012) Effect of acetazolamide on aquaporin-1 and fluid flow in cultured choroid plexus. Acta Neurochir Suppl 113:59–64

    Article  PubMed  Google Scholar 

  • Baggenstos MA, Butman JA, Oldfield EH et al (2007) Role of edema in peritumoral cyst formation. Neurosurg Focus 22:E9

    PubMed  Google Scholar 

  • Battal B, Kocaoglu M, Bulakbasi N et al (2011) Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol 84:758–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bergsneider M (2001) Evolving concepts of cerebrospinal fluid. Neurosurg Clin N Am 36:631–638

    Google Scholar 

  • Bertram L, Tanzi RE (2011) Genetics of Alzheimer’s disease. In: Dickson DW, Weller RO (eds) Neurodegeneration: the molecular pathology of dementia and movement disorders. Wiley-Blackwell, Chichester, pp 51–61

    Chapter  Google Scholar 

  • Biffi A, Greenberg SM (2011) Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 7:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown E, Gray F (2008) Bacterial infections. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology. Hodder Arnold, London, pp 1391–1445

    Google Scholar 

  • Carare RO, Bernardes-Silva M, Newman TA et al (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries. Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144

    Article  CAS  PubMed  Google Scholar 

  • Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO (2013) Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathology and applied neurobiology 39(6):593–611. doi:10.1111/nan.12042

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    Article  CAS  PubMed  Google Scholar 

  • Davson H, Welch K, Segal MB (1987) Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13

    Article  PubMed  Google Scholar 

  • Duyckaerts C, Dickson DW (2011) Neuropathology of Alzheimer’s disease and its variants. In: Dickson DW, Weller RO (eds) Neurodegeneration: the molecular pathology of dementia and movement disorders. Wiley-Blackwell, Chichester, pp 62–91

    Chapter  Google Scholar 

  • Ellison D, Love S, Chimelli L et al (2004) Neuropathology: a reference text of CNS pathology, 2nd edn. Mosby, Edinburgh

    Google Scholar 

  • Falci SP, Indeck C, Lammertse DP (2009) Posttraumatic spinal cord tethering and syringomyelia: surgical treatment and long-term outcome. J Neurosurg Spine 11:445–460

    Article  PubMed  Google Scholar 

  • Fernandez AA, Guerrero AI, Martinez MI et al (2009) Malformations of the craniocervical junction (Chiari type I and syringomyelia: classification, diagnosis and treatment). BMC Musculoskelet Disord 10(Suppl 1):S1

    Article  PubMed  Google Scholar 

  • Ferrer I, Kaste M, Kalimo H (2008) Vascular diseases. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology. Hodder Arnold, London, pp 121–240

    Google Scholar 

  • Galarza M, López-Guerrero AL, Martínez-Lage JF (2010) Posterior fossa arachnoid cysts and cerebellar tonsillar descent: short review. Neurosurg Rev 33:305–314

    Article  PubMed  Google Scholar 

  • Goel A (2001) Is syringomyelia pathology or a natural protective phenomenon? J Postgrad Med 47:87–88

    CAS  PubMed  Google Scholar 

  • Harding BN, Copp AJ (2008) Malformations. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology. Hodder Arnold, London, pp 335–479

    Google Scholar 

  • Heiss JD, Patronas N, DeVroom HL et al (1999) Elucidating the pathophysiology of syringomyelia. J Neurosurg Pediatr 91:553–562

    Article  CAS  Google Scholar 

  • Hutchings M, Weller RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325

    Article  CAS  PubMed  Google Scholar 

  • Johanson CE, Duncan JA 3rd, Klinge PM et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnston M, Zakharov A, Papaiconomou C et al (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Kida S, Weller RO (1993) Morphological basis for fluid transport through an around ependymal, arachnoidal and glial cells. In: Raimondi AJ (ed) Intracranial cyst lesions. Springer, New York, pp 37–52

    Chapter  Google Scholar 

  • Kida S, Yamashima T, Kubota T et al (1988) A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435

    Article  CAS  PubMed  Google Scholar 

  • Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi I, Houkin K (2010) Pathogenesis of syringomyelia associated with Chiari type 1 malformation: review of evidences and proposal of a new hypothesis. Neurosurg Rev 33:271–284

    Article  PubMed  Google Scholar 

  • Lue LF, Kuo YM, Roher AE et al (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marmarou A (2007) A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 22:E1

    Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW et al (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  CAS  PubMed  Google Scholar 

  • Nag S, Kapadia A, Stewart DJ (2011) Review: molecular pathogenesis of blood–brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol 37:3–23

    Article  CAS  PubMed  Google Scholar 

  • Nicholas DS, Weller RO (1988) The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69:276–282

    Article  CAS  PubMed  Google Scholar 

  • Preston SD, Steart PV, Wilkinson A et al (2003) Capillary and arterial amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29:106–117

    Article  CAS  PubMed  Google Scholar 

  • Rennels ML, Gregory TF, Blaumanis OR et al (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63

    Article  CAS  PubMed  Google Scholar 

  • Revesz T, Holton JL, Lashley T et al (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roher AE, Kuo Y-M, Esh C et al (2003) Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med 9:112–122

    PubMed Central  PubMed  Google Scholar 

  • Schley D, Carare-Nnadi R, Please CP et al (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol 238:962–974

    Article  CAS  PubMed  Google Scholar 

  • Sekula RFJ, Arnone GD, Crocker C et al (2011) The pathogenesis of Chiari I malformation and syringomyelia. Neurol Res 33:232–239

    Article  PubMed  Google Scholar 

  • Shinkai Y, Yoshimura M, Ito Y et al (1995) Amyloid beta-proteins 1–40 and 1-42(43) in the soluble fraction of extra- and intracranial blood vessels. Ann Neurol 38:421–428

    Article  CAS  PubMed  Google Scholar 

  • Syková E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340

    Article  PubMed Central  PubMed  Google Scholar 

  • Szentistvanyi I, Patlak CS, Ellis RA et al (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844

    CAS  PubMed  Google Scholar 

  • Tripathi BJ, Tripathi RC (1974) Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239:195–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Upton ML, Weller RO (1985) The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63:867–875

    Article  CAS  PubMed  Google Scholar 

  • Weller RO (1995) Fluid compartments and fluid balance in the central nervous system. In: Williams PL (ed) Gray’s anatomy. Churchill Livingstone, Edinburgh, pp 1202–1224

    Google Scholar 

  • Weller RO (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 57:885–894

    Article  CAS  PubMed  Google Scholar 

  • Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89:22–34

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Shulman K (1972) Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J Neurosurg 36:255–265

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92:819–828

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Massey A, Newman TA et al (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weller RO, Subash M, Preston SD et al (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Boche D, Nicoll JA (2009a) Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol 118:87–102

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Djuanda E, Yow HY et al (2009b) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Preston SD, Subash M et al (2009c) Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res Ther 1(2):6

    Article  PubMed Central  PubMed  Google Scholar 

  • Weller RO, Galea I, Carare RO et al (2010) Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17:295–306

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Love S, Nicoll JAR (2011) Elimination of Aβ from the brain, its failure in Alzheimer’s disease and implications for therapy. In: Dickson DW, Weller RO (eds) Neurodegeneration: the molecular pathology of dementia and movement disorders. Wiley-Blackwell, Chichester, pp 97–101

    Chapter  Google Scholar 

  • Wetjen NM, Heiss JD, Oldfield EH (2008) Time course of syringomyelia resolution following decompression of Chiari malformation type I. J Neurosurg Pediatr 1:118–123

    Article  PubMed  Google Scholar 

  • Williams B, Weller RO (1973) Syringomyelia produced by intramedullary fluid injection in dogs. J Neurol Neurosurg Psychiatry 36:467–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119:75–88

    Article  PubMed  Google Scholar 

  • Yool AJ (2007) Aquaporins: multiple roles in the central nervous system. Neuroscientist 13:470–485

    Article  CAS  PubMed  Google Scholar 

  • Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Weller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weller, R. (2014). Anatomy and Physiology. In: Flint, G., Rusbridge, C. (eds) Syringomyelia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13706-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13706-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72484-1

  • Online ISBN: 978-3-642-13706-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics