Skip to main content

Criteria for a Sustainable Bioenergy Infrastructure and Lifecycle

  • Chapter
  • First Online:
Plant Biotechnology for Sustainable Production of Energy and Co-products

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 66))

Abstract

The biofuel boom has raised great expectations regarding renewable, domestic and carbon-free bioenergy sources but at the same time has led to concerns about the adverse environmental and socio-economic implications such as land-use competition, deforestation and market distortions. In this context, bioenergy systems have to demonstrate their environmental sustainability, economic viability and societal acceptability compared with fossil fuels and alternative energy sources. To address some of these concerns, it is important to optimize the entire bioenergy infrastructure, value chain and lifecycle, including feedstock production, harvesting and transportation, processing, distribution and use. Integrated assessment approaches and lifecycle analysis are scientific tools that can be used to support decision-making on the future of bioenergy. Concrete measures include development of integrated biorefineries, minimizing transportation costs and cascading use of residues and waste material. Improving the energy and carbon balance, and reducing the impact of bioenergy pathways on land, water and the biosphere are key requirements. Food security should not be threatened, favoring efficient cellulosic materials over food crops. In addition, minimum social standards need to be respected. Respective principles and criteria will be discussed, as part of global efforts to develop sustainability standards for certification of biomass products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Kaisi M (2000) Crop water use or evapotranspiration. Integrated Crop Management, Iowa State University, http://www.ipm.iastate.edu/ipm/icm/2000/5–29–2000/wateruse.html

    Google Scholar 

  • Ausubel JH (2007) Renewable and nuclear heresies. Int J Nuclear Gov Econ Ecol 1(3):229–243

    Google Scholar 

  • Babcock BA, Hayes DJ, Lawrence JD (eds) (2008) Using distillers grains in the US and international livestock and poultry industries. Midwest Agribusiness Trade Research and Information Center, Iowa State University, Ames, IA

    Google Scholar 

  • Barreto P (2008) Implications of the climate change debate on land tenure in the Brazilian Amazon. Speech text for the Conference on New Challenges for Land Policy and Administration, 14–15 February 2008, The World Bank, Washington DC

    Google Scholar 

  • Blaschek H, Ezeji T, Scheffran J (eds) (2010) Biofuels from agricultural wastes and byproducts. Blackwell, Oxford (in press)

    Google Scholar 

  • Brat I, Machalaba D (2007) Can ethanol get a ticket to ride? Wall Street Journal, 1 February, p B1

    Google Scholar 

  • Brinkman N, Wang M, Weber T, Darlington T (2005) Well-to-Wheels analysis of advanced fuel/vehicle systems: a North American study of energy use, greenhouse gas emissions, and criteria pollutant emissions. Argonne National Laboratory, Argonne, IL

    Google Scholar 

  • Brown R, Orwig E, Nemeth J, Subietta Rocha C (2007) Economic potential for ethanol expansion in Illinois. Illinois Institute for Rural Affairs at Western Illinois University, Macomb, IL

    Google Scholar 

  • Council of the European Union (2008) Presidency suggestions for a common scheme of sustainability criteria for biofuels. 9 September 2008, Brussels. Council of the European Union website, http://register.consilium.europa.eu/pdf/en/08/st12/st12157–re01ad01.en08.pdf (viewed 15 October 2008)

    Google Scholar 

  • CRS (2007) Ethanol and other biofuels–potential for US–Brazil energy cooperation. Congressional Research Service, Washington, DC

    Google Scholar 

  • Dehue B, Hamelinck C, Reece G, de Lint S, Archer R, Garcia E (2008) Sustainability reporting within the RTFO: framework report, ECOFYS. Commissioned by UK Department for Transport (January 2008)

    Google Scholar 

  • Delucchi M (2006) Lifecycle analyses of biofuels. http://www.its.ucdavis.edu/publications/2006/UCD-ITS-RR-06-08.pdf

  • Denevan WM, Woods WI (2004) Discovery and awareness of anthropogenic Amazonian Dark Earths. University of Wisconsin–Madison, Southern Illinois University, Edwardsville, IL

    Google Scholar 

  • Dohleman FG, Heaton EA, Long SP (2010) Perennial grasses as second-generation sustainable feedstocks without conflict with food production. In: Khanna M, Scheffran J, Zilberman D (eds) Handbook of bioenergy economics and policy. Springer, New York, pp 27–37

    Chapter  Google Scholar 

  • Dooley FJ, Cox M, Cox L (2008) Distillers grain handbook: a guide for Indiana producers to Using DDGS for animal feed. Department of Agricultural Economics, Purdue University, http://incorn.org/images/stories/IndianaDDGSHandbook.pdf. Accessed 15 May 2009

    Google Scholar 

  • EAA (2007) Frequently asked questions about electrical vehicles. Electric Auto Association, http://www.pluginamerica.com/faq.shtml

    Google Scholar 

  • Environmental Defense (2007) Potential impacts of biofuels expansion on natural resources: a case study of the Ogallala Aquifer region. http://www.environmentaldefense.org/documents/7011_Potential Impacts of Biofuels Expansion.pdf

    Google Scholar 

  • Ezzati M, Kammen DM (2001) Quantifying the effects of exposure to indoor air pollution from biomass combustion on acute respiratory infections in developing countries. Environ Health Perspect 109:5481–5488

    Article  Google Scholar 

  • Faaij A, van Wijk A, van Doorn J, Curvers A, Waldheim L, Olsson E, Daey-Ouwens C (1997) Characteristics and availability of biomass waste and residues in the Netherlands for gasification. Biomass Bioenergy 12(4): 225–240

    Article  CAS  Google Scholar 

  • FAO (2003a) World agriculture: towards 2015/2030. Food and Agriculture Organization of the United Nations, Earthscan, London

    Google Scholar 

  • FAO (2003b) Compendium of agricultural–environmental indicators 1989–91 to 2000. FAO Statistics Analysis Service, Statistics Division, Rome

    Google Scholar 

  • FAO (2008) The state of food and agriculture 2008. Biofuels: prospects, risks and opportunities. FAO, Rome

    Google Scholar 

  • FAO/PISCES (2009) Small-scale bioenergy initiatives: brief description and preliminary lessons on livelihood impacts from case studies in Asia, Latin America and Africa. Food and Agriculture Organization/Practical Action Consulting, Policy Innovation Systems for Clean Energy Security, January, http://www.fao.org/bioenergy/home/en

    Google Scholar 

  • Fargione J, Hill JK, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen D (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  PubMed  CAS  Google Scholar 

  • Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy 31:426–432

    Article  CAS  Google Scholar 

  • Fraiture C de, Giordano M, Yongsong L (2008) Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10 [Suppl 1]:67–81

    Article  Google Scholar 

  • Fritsche UR, Wiegmann K (2008) Ökobilanzierung der Umweltauswirkungen von Bioenergie-Konversionspfaden. Expertise for the WBGU Report “World in Transition: Future Bioenergy and Sustainable Land Use”. http://www.wbgu.de/wbgu_jg2008_ex04.pdf

    Google Scholar 

  • Fritsche UR, Hünecke K, Hermann A, Schulze F, Wiegmann K (2006) Sustainability standards for bioenergy. WWF Germany, Berlin, November

    Google Scholar 

  • Gallagher E (2008) Gallagher Review of the indirect effects of biofuels production. Renewable Fuels Agency, London. http://www.renewablefuelsagency.gov.uk/_db/_documents/Report_of_the_Gallagher_review.pdf

    Google Scholar 

  • GAO (2007) “Biofuels: DOE lacks a strategic approach to coordinate increasing production with infrastructure development and vehicle needs”, US Government Accountability Office, GAO-07-713, Washington, DC

    Google Scholar 

  • Goolsby DA, Battaglin WA, Aulenbach BT, Hooper RP (2000) Nitrogen flux and sources in the Mississippi River basin. Sci Total Environ 248:75–86

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Polasky S, Nelson E, Tilman D, Huod H, Ludwig L, Neumann J, Zheng H, Bonta D (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci USA 106:2077–2082

    Article  PubMed  CAS  Google Scholar 

  • ICRISAT (2007) Pro-poor biofuels outlook for Asia and Africa: ICRISAT’s perspective. Working paper, 13 March, International Crops Research Institute for the Semi-Arid Tropics, http://www.icrisat.org

    Google Scholar 

  • IPCC (2007) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

    Google Scholar 

  • IWMI (ed) (2007) Water for food. Water for life. A comprehensive assessment of water management in agriculture. International Water Management Institute, Earthscan, London

    Google Scholar 

  • Jacobson MZ (2008) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173

    Article  Google Scholar 

  • Kang S, Onal H, Ouyang Y, Scheffran J, Tursun D (2010) Optimizing the biofuels infrastructure: transportation networks and biorefinery locations in Illinois. In: Khanna M, Scheffran J, Zilberman D (Eds) Handbook of bioenergy economics and policy. Springer, New York, pp 151–173

    Chapter  Google Scholar 

  • Keeney D, Muller M (2006) Water use by ethanol plants: potential challenges, institute for agriculture and trade policy. October 2006, at http://www.waterobservatory.org

    Google Scholar 

  • Keeney D, Nanninga C (2008) Biofuel and global biodiversity. Institute for Agriculture and Trade Policy, Minneapolis, MN

    Google Scholar 

  • Khanna M, Dhungana B, Clifton-Brown J (2008) Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 32(6):482–493

    Article  Google Scholar 

  • Khanna M, Önal H, Chen X, Huang H (2010) Meeting biofuels targets: implications for land use, greenhouse gas emissions, and nitrogen use in Illinois. In: Khanna M, Scheffran J, Zilberman D (eds) Handbook of bioenergy economics and policy. Springer, New York, pp 289–208

    Chapter  Google Scholar 

  • Kim S, Dale BE (2004) Cumulative energy and global warming impact from the production of biomass for biobased products. J Ind Ecol 7:147–162

    Article  Google Scholar 

  • Kim Y, Mosier NS, Hendrickson R, Ezeji T, Blaschek H, Dien B, Cotta M, Dale B, Ladisch MR (2008) Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresour Technol 99:5165–5176

    Article  PubMed  CAS  Google Scholar 

  • Knappe F, Böß A, Fehrenbach H, Giegrich J, Vogt R, Dehoust G, Fritsche U, Schüler D, Wiegmann K (2007) Stoffstrommanagement von Biomasseabfällen mit dem Ziel der Optimierung der Verwertung organischer Abfälle. Im Auftrag des Umweltbundesamtes. UBA Texte 04/07. Institute for Energy and Environmental Research (IFEU), Heidelberg

    Google Scholar 

  • Ladanei S, Vinterbäck J (2009) Global potential of sustainable biomass for energy. Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Ladisch M, Dale B (eds) (2008) Cellulose conversion in dry grind plants. Bioresour Technol 99:5155–5260

    Article  PubMed  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Article  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  PubMed  CAS  Google Scholar 

  • Mackinnon L (2010) EU Commission rejects binding sustainability criteria for biomass, BIOMASS INTEL 2/26/10, http://www.biomassintel.com/eu-commission-rejects-binding-sustainability-criteria-biomass, accessed 14 March 2010

    Google Scholar 

  • Marris E (2006) Black is the new green. Nature 442:624–626

    Article  PubMed  CAS  Google Scholar 

  • Mathews JA (2007) Viewpoint biofuels: what a biopact between North and South could achieve. Energy Policy 35:3550–3570

    Article  Google Scholar 

  • Mueller S, Plevin R (2008) Global warming intensity of corn ethanol. BioCycle 49:50–53

    Google Scholar 

  • National Commission on Energy Policy (2004) Ending the energy stalemate: a bipartisan strategy to meet America’s energy challenges. National Commission on Energy Policy, Washington, DC

    Google Scholar 

  • NRC (2007) Water implications of biofuels production in the United States. National Research Council, National Academies, http://www.nationalacademies.org/morenews/20071010.html

  • NRC (2009) Liquid transportation fuels from coal and biomass: technological status, costs, and environmental impacts. National Research Council, National Academy Press, Washington DC

    Google Scholar 

  • NREL (2007) A national laboratory market and technology assessment of the 30x30 scenario. National Renewable Energy Laboratory Technical Report /TP-510-40942, January

    Google Scholar 

  • OECD (2008) Economic assessment of biofuel support policies. Organisation for Economic Co-operation and Development Directorate for Trade and Agriculture, Paris

    Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL (2005) Biomass as feedstock for bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Department of Energy / Department of Agriculture, Washington, DC

    Book  Google Scholar 

  • Pimentel D (2003) Ethanol fuels: energy balance, economics and environmental impacts are negative. Nat Resour Res 12:127–134

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–328

    Article  Google Scholar 

  • RFA (2010) Industry Statistics. Renewable Fuel Association, http://www.ethanolrfa.org/industry/locations

  • Rosillo-Calle F, Walter A (2006) Global market for bioethanol: historical trends and future prospects. Energy Sustain Dev 10:18–30

    Article  Google Scholar 

  • Runge CF, Senauer B (2007) How biofuels could starve the poor. Foreign Affairs (May/June):41–53

    Google Scholar 

  • Scheffran J (2009) Biofuel Conflicts and human security: toward a sustainable bioenergy life cycle and infrastructure. Swords Ploughshares XVII(Summer):4–10

    Google Scholar 

  • Scheffran J (2010a) The global demand for biofuels: technologies, markets and policies. In: Vertes A, Blaschek HP, Yukawa H, Qureshi N (eds) Biomass to biofuels: strategies for global industries. Wiley, New York, pp 27–54

    Chapter  Google Scholar 

  • Scheffran J (2010b) Bioenergy between sustainability and development: land use, food security and lifecycle analysis. In: Amann E, Baer W, Coes D (eds) Energy, biofuels and development: comparing Brazil and the United States. Routledge, Oxford (in press)

    Google Scholar 

  • Scheffran J, Bendor T (2009) Bioenergy and land use: a spatial-agent dynamic model of energy crop production in Illinois. Int J Environ Pollut 39:4–27

    Article  CAS  Google Scholar 

  • Scheffran J, Battaglini A, Weber M (2004) Energie aus Biomasse und Bioabfällen—Brennstoff der Zukunft? In: Johnke B, Scheffran J, Soyez K (eds) Abfall, Energie und Klima. Schmidt, Berlin, pp 160–185

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Sheehan J, Aden A, Paustian K, Killian K, Bremer J, Walsh M, Nelson R (2004) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7:117–146

    Article  Google Scholar 

  • Singh V, Johnston D, Naidu K, Rausch KD, Belyea RL, Tumbleson ME (2004) Effect of modified dry grind corn processes on fermentation characteristics and DDGS composition. In: Proceedings of the Corn Utilization and Technology Conference, 7–9 June 2004, Indianapolis, IN

    Google Scholar 

  • Smeets E, Junginger M, Faaij A, Walter A, Dolzan P, Turkenburg W (2008) The sustainability of Brazilian ethanol—an assessment of the possibilities of certified production. Biomass Bioenergy 32:781–813

    Article  Google Scholar 

  • Smith T, Miller K, Lindenberg J (2009) Sustainable biofuel standards and certification. Swords Ploughshares XVII(Summer):26–31

    Google Scholar 

  • Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economies, and energy policy. Biomass Bioenergy 31(6):416–425

    Article  Google Scholar 

  • Sylvester-Bradley R (2008) Critique of Searchinger (2008) & related papers assessing indirect effects of biofuels on land-use change. A study commissioned by AEA Technology as part of the Gallagher Biofuels Review, Version 3.2, 12-6-2008

    Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson J, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 17:270–271

    Article  Google Scholar 

  • Tyner WE (2009) The integration of energy and agricultural markets. Presented at the 27th International Association of Agricultural Economists Conference, Beijing, China, August 16–22, http://ageconsearch.umn.edu/bitstream/53214/2/Tyner 20IAAE 20paper 202009-3.pdf

    Google Scholar 

  • UN (2007) Sustainable bioenergy: a framework for decision makers. United Nations, New York

    Google Scholar 

  • UN (2008) High level task force on the global food crisis: elements of a comprehensive framework for action. United Nations, New York, Draft, 3 June 2008

    Google Scholar 

  • US EPA (2007) Renewable fuel standard implementation. http://www.epa.gov/OTAQ/renewablefuels/index.htm Accessed 15 May 2009

  • Varghese S (2007) Biofuels and global water challenges. Institute for Agriculture and Trade Policy, Minneapolis, MN

    Google Scholar 

  • Vidal J (2006) Cost of water shortage: civil unrest, mass migration and economic collapse. Guardian, August 2006. http://www.iwmi cgiar.org/press/coverage/pdf/guardianUnlimited.pdf

  • von Braun J, Pachauri RK (2006) The promises and challenges of biofuels for the poor in developing countries. Annual Report 2005–2006. International Food Policy Research Institute, Washington DC

    Google Scholar 

  • Wallace R, Ibsen K, McAloon A, Yee W (2005) Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulogic feedstocks, revised January edn. NREL/TP-510-37092 USDA/USDOE/NREL

    Book  Google Scholar 

  • Wang M (2004) Fuel-cycle analysis of conventional and alternative fuel vehicles. In: Cleveland CJ (ed) Encyclopedia of energy, vol 2. Elsevier, New York

    Google Scholar 

  • WBGU (2009) Future bioenergy and sustainable land use. German Advisory Council on Global Change, London: Earthscan. http://www.wbgu.de/wbgu_jg2008_engl.html

    Google Scholar 

  • WDPA (2008) World database on protected areas. UNEP-WCMC website. http://www.wdpa.org

  • Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A (1999) Lignocellulosic biomass to ethanol—process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hyrolysis—current and futuristic scenarios. Report No. TP-580-26157, National Renewable Energy Laboratory, Golden, CO

    Book  Google Scholar 

  • Worldwatch (2007) Biofuels for transportation, global potential and implications for sustainable agriculture and energy in the 21st century. Worldwatch Institute, Washington DC

    Google Scholar 

  • Wright M, Brown RC (2007) Establishing the optimal sizes of different kinds of biorefineries. Biofuels Bioprod Biorefining 1(3):191–200

    Article  CAS  Google Scholar 

  • Xinhua (2007) China to produce liquid bio-fuel with non-food crops. http://news.xinhuanet.com/english/2007-09/04/content_6662806.htm

Download references

Acknowledgements

This work was supported in part by the German Science Foundation (DFG) through the Cluster of Excellence ’CliSAP’ (EXC177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Scheffran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheffran, J. (2010). Criteria for a Sustainable Bioenergy Infrastructure and Lifecycle. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_16

Download citation

Publish with us

Policies and ethics