Skip to main content

Applications of Small Animal PET

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 187))

Abstract

The small animal PET is an innovative preclinical imaging technique that is meant to visualise biological processes of tissues in a living organism. The most important characteristic is the very high spatial resolution that makes those tomographs suitable for imaging small animals like mice. The employment of different radiolabelled compounds allows to highlight the overexpression or nonexpression of many metabolic pathways, helping to profile in vivo the cancer from a biological point of view, to predict or measure the response to experimental therapies, to observe the metabolic modification of the cancer over time, and to test new labelled compound to be eventually used for clinical PET. Main drawback is the very high cost of the scanners and the need of a radiopharmacy, partly cyclotron based, to synthesise as many PET tracers as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apisarnthanarax S, Alauddin MM, Mourtada F, Ariga H, Raju U, Mawlawi O, Han D, Bornmann WG, Ajani JA, Milas L, Gelovani JG, Chao KS (2006) Early detection of chemoradioresponse in esophageal carcinoma by 3-deoxy-3-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res 12:4590–4597

    Article  PubMed  CAS  Google Scholar 

  • Bauwens M, De Saint-Hubert M, Devos E, Deckers N, Reutelingsperger C, Mortelmans L, Himmelreich U, Mottaghy FM, Verbruggen A (2011) Site-specific 68Ga-labeled annexin A5 as a PET imaging agent for apoptosis. Nucl Med Biol 38:381–392

    Google Scholar 

  • Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblu MG, Chen X (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    PubMed  CAS  Google Scholar 

  • Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R, Hunting DJ, Pavan RA, Zeisler SK, van Lier JE (2007) PET imaging of apoptosis with 64Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 34:247–258

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Pan L, Dimitrakopoulou-Strauss A, Schafer M, Wangler C, Wangler B, Haberkorn U, Strauss LG (2011) Comparison between 68Ga-bombesin (68Ga-BZH3) and the cRGD tetramer 68Ga-RGD4 studies in an experimental nude rat model with a neuroendocrine pancreatic tumor cell line. EJNMMI Res 1:34

    Google Scholar 

  • Cherry SR (2006) The 2006 Henry N. Wagner lecture: of mice and men (and Positrons)—advances in PET imaging technology. J Nucl Med 47:1735–1745

    PubMed  CAS  Google Scholar 

  • Dobrucki LW, Sinusas AJ (2005) Molecular imaging: a new approach to nuclear cardiology. Q J Nucl Med Mol Imaging 49:106–115

    PubMed  CAS  Google Scholar 

  • Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    PubMed  CAS  Google Scholar 

  • Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJJ, Lammertsma AA (2000) Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-d-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 27:731–743

    Article  PubMed  CAS  Google Scholar 

  • Hsueh WA, Kesner AL, Gangloff A, Pegram MD, Beryt M, Czernin J, Phelps ME, Silverman DHS (2006) Predicting chemotherapy response to paclitaxel with 18F-fluoropaclitaxel and PET. J Nucl Med 47:1995–1999

    PubMed  CAS  Google Scholar 

  • Lewisa JS, Achilefub S, Garbowc JR, Laforesta R, Welch MJ (2002) Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer 38:2173–2188

    Article  Google Scholar 

  • Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol Pharm 3:472–487

    Article  PubMed  CAS  Google Scholar 

  • Myers R, Hume S (2002) Small animal PET. Eur Neuropsychopharmacol 12:545–555

    Article  PubMed  CAS  Google Scholar 

  • Nanni C, Di Leo K, Tonelli R, Pettinato C, Rubello D, Spinelli A, Trespidi S, Ambrosini V, Castellucci P, Farsad M, Franchi R, Pession A, Fanti S (2007) FDG small animal PET permits early detection of malignant cells in a xenograft murine model. Eur J Nucl Med Mol Imaging 34:755–762

    Article  PubMed  Google Scholar 

  • Sherif HM, Saraste A, Nekolla SG, Weidl E, Reder S, Tapfer A, Rudelius M, Higuchi T, Botnar RM, Wester HJ, Schwaiger M (2012) Molecular imaging of early αvβ3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med 53:318–323

    Google Scholar 

  • Sossi V, Ruth TJ (2005) Micropet imaging: in vivo biochemistry in small animals. J Neural Transm 112:319–330

    Article  PubMed  CAS  Google Scholar 

  • Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME, Herschman H, Czernin J, Weber W (2006) Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 12:5659–5667

    Article  PubMed  CAS  Google Scholar 

  • Yaghoubi SS, Couto MA, Chen CC, Polavaram L, Cui G, Sen L, Gambhir SS (2006) Preclinical safety evaluation of 18F-FHBG: a PET reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk’s expression. J Nucl Med 47:706–715

    PubMed  CAS  Google Scholar 

  • Wang Y, Seidel J, Tsui BM, Vaquero JJ, Pomper MG (2006) Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891–1900

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Fanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nanni, C., Fanti, S. (2013). Applications of Small Animal PET. In: Schober, O., Riemann, B. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10853-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10853-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10852-5

  • Online ISBN: 978-3-642-10853-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics