Skip to main content

Abstract

The body’s motor activity responding to internal and external demands is only possible under controlled internal conditions maintaining an optimal environment for the function of the component cells, tissues, and organs. The associated mechanisms include the control of the fluid matrix of the body; gas exchange with the environment; ingestion and digestion of nutrients; transport of gases, nutrients, and other substances throughout the body; excretion of substances; body temperature; reproduction; and defense of body tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbas EA, Calabrese RL (1987) Slow oscillations of ­membrane potential in interneurons that control heartbeat in the medicinal leech. J Neurosci 7:3953–3960

    Google Scholar 

  2. Bahr, Bartel B, Blumberg H, Jänig W (1986) Functional characterization of preganglionic neurons projecting in the lumbar splanchnic nerves: neurons regulating motility. J Auton Nerv Syst 15:109–130

    Google Scholar 

  3. Barna J, Csoknya M, Lazar Z, Bartho L, Hamori J, Elekes K (2001) Distribution and action of some putative neurotransmitters in the stomatogastric nervous system of the earthworm, Eisenia fetida (Oligochaeta, Annelida). J Neurocytol 30:313–325

    Article  PubMed  CAS  Google Scholar 

  4. Boczeck-Funcke A, Häbler HJ, Jänig W, Michaelis M (1992) Respiratory modulation of the activity in sympathetic neurones supplying muscle, skin and pelvic organs in the cat. J Physiol 449:333–361

    Google Scholar 

  5. Burnstock G (ed) (1992–2003) The autonomic nervous ­system, vol 1–13. Harwood Acad Publ, Chur; Vols 14–15, Taylor and Francis, London

    Google Scholar 

  6. Campbell GD, Edwards FR, Hirst GDS, O’Shea JE (1989) Effects of vagal stimulation and applied acetylcholine on pacemaker potentials in the guinea-pig heart. J Physiol 415:57–68.

    Google Scholar 

  7. Chase R (2002) Behavior and its neural control in gastropod molluscs. Oxford Univ Press, Oxford/New York

    Google Scholar 

  8. Choate JK, Klemm M, Hirst GDS (1993) Sympathetic and parasympathetic neuromuscular junctions in the guinea-pig sino-atrial node. J Auton Nerv Syst 44:1–15

    Google Scholar 

  9. Cooke IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136

    Article  PubMed  Google Scholar 

  10. Copenhaver PF (2007) How to innervate a simple gut: familiar themes and unique aspects in the formation of the insect enteric nervous system. Dev Dyn 236:1841–1864

    Article  PubMed  CAS  Google Scholar 

  11. Edwards FR, Hirst GD, Klemm MF, Steele PA (1995) Different types of ganglion cell in the cardiac plexus of guinea-pigs. J Physiol 486:453–471

    PubMed  CAS  Google Scholar 

  12. Furness JB (2006) The enteric nervous system. Blackwell Science, Oxford

    Google Scholar 

  13. Garcia-Arrarás JE, Rojas-Soto M, Jiménez LB, Diaz-Miranda L (2001) The enteric nervous system of echinoderms: unexpected complexity revealed by neurochemical analysis. J Exp Biol 204:865–873

    PubMed  Google Scholar 

  14. Gibbins IL (2004) Peripheral autonomic pathways. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam/San Diego/London, pp 134–189

    Chapter  Google Scholar 

  15. Grewe W, Jänig W, Kümmel H (1995) Effects of hypothalamic thermal stimuli on sympathetic neurones innervating skin and skeletal muscle of the cat hindlimb. J Physiol 448:139–152

    Google Scholar 

  16. Hill RB (ed) (1987) Cardiovascular control in mollusca (multiauthor review). Experientia 43:953–997

    Google Scholar 

  17. Hill RB (ed) (1992) Control of circulation in invertebrates. Experientia 48:797–858 [Multiauthor review]

    Google Scholar 

  18. Hirst GDS, Choate JK, Cousins HM, Edwards FR, Klemm MF (1996) Transmission by post-ganglionic axons of the autonomic nervous system: the importance of the specialized neuroeffector junction. Neuroscience 73:7–23

    Article  PubMed  CAS  Google Scholar 

  19. Holmgren S, Olsson C (eds) (2011) Comparative physiology of the autonomic nervous system. Auton Neurosci 165:1–148

    Google Scholar 

  20. Hooper SL, DiCaprio RA (2004) Crustacean motor pattern generator networks. Neurosignals 13:50–69

    Article  PubMed  CAS  Google Scholar 

  21. Ito S, Kurokawa M (2007) Coordinated peripheral neuronal activities among the different regions of the digestive tract in Aplysia. Zoolog Sci 24:714–722

    Article  PubMed  Google Scholar 

  22. Jänig W (1985) Organization of the lumbar sympathetic outflow to skeletal muscle and skin of the cat hindlimb and tail. Rev Physiol Biochem Pharmacol 102:119–213

    Article  PubMed  Google Scholar 

  23. Jänig W (2006) The integrative action of the autonomic nervous system. Neurobiology of homeostasis. Cambridge Univ Press, Cambridge/New York

    Book  Google Scholar 

  24. Jänig W (2009) Autonomic nervous system and pain. In: Basbaum AI, Bushnell MC (eds) Science of pain. Academic, San Diego, pp 193–225

    Google Scholar 

  25. Jänig W (2010) Vegetatives Nervensystem. In: Schmidt RF, Lang F, Heckmann M (eds) Physiologie des Menschen, 31st edn. Springer Medizin, Berlin Heidelberg New York, pp 403–434

    Chapter  Google Scholar 

  26. Jänig W, Levine JD (2013) Autonomic-endocrine-immune responses in acute and chronic pain. In: McMahon SB, Koltzenburg M, Tracey I, Turk D (eds) Wall and Melzack’s textbook of pain, 6th ed. Elsevier Churchill Livingstone, Amsterdam/Edinburgh

    Google Scholar 

  27. Jänig W, McLachlan EM (1987) Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev 67:1332–1404

    PubMed  Google Scholar 

  28. Kandel ER (1976) Cellular basis of behavior. Freeman, San Francisco

    Google Scholar 

  29. Kandel ER (1979) Behavioral biology of Aplysia. Freeman, San Francisco

    Google Scholar 

  30. Klemm M, Hirst GDS, Campbell G (1992) Structure of autonomic neuromuscular junctions in the sinus venosus of the toad. J Auton Nerv Syst 39:139–150

    Google Scholar 

  31. Koester J, Koch UT (1987) Neural control of the circulatory system of Aplysia. Experientia 43:972–980

    Article  PubMed  CAS  Google Scholar 

  32. Koester J, Mayeri E, Liebeswar G, Kandel ER (1994) Neural control of circulation in Aplysia. II. Interneurons. J Neurophysiol 37:476–496

    Google Scholar 

  33. Koizumi O (2007) Nerve ring of the hypostome in hydra: is it an origin of the central nervous system of bilaterian animals? Brain Behav Evol 69:151–159

    Article  PubMed  Google Scholar 

  34. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  35. Kuntz A (1940) The structural organization of the inferior mesenteric ganglia. J Comp Neurol 72:371–382

    Google Scholar 

  36. Lamb DG, Calabrese RL (2011) Neural circuits controlling behavior and autonomic functions in medicinal leeches. Neural Syst & Circ 1:13

    Article  Google Scholar 

  37. Langley JN (1921) The autonomic nervous system. Part I. W Heffer, Cambridge

    Google Scholar 

  38. Llewellyn-Smith IJ, Verbene AJM (eds) (2011) Central regulation of autonomic functions. Oxford Univ Press, New York

    Google Scholar 

  39. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  PubMed  CAS  Google Scholar 

  40. Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    PubMed  CAS  Google Scholar 

  41. Mathias CJ, Bannister R (eds) (2013) Autonomic failure, 5th edn. Oxford Univ Press, New York

    Google Scholar 

  42. Mayeri E, Koester J, Kupfermann I, Liebeswar G, Kandel ER (1974) J Neurophysiol 37:458–475

    Google Scholar 

  43. McLachlan EM (ed) (1995) Autonomic ganglia. In: Burnstock G (ed) The autonomic nervous system, vol 6. Harwood Academic Publ, Luxembourg

    Google Scholar 

  44. Miller TA (1997) Control of circulation in insects. Gen Pharmacol 29:23–38

    Article  PubMed  CAS  Google Scholar 

  45. Mustafa AK, Gadalla MM, Snyder SH (2009) Signaling by gasotransmitters. Sci Signal 2:re2

    Article  PubMed  Google Scholar 

  46. Nicholls JG, Martin AR, Fuchs PA, Brown DA, Diamond ME, Weisblat DA (2012) From neuron to brain, 5th edn. Sinauer, Sunderland

    Google Scholar 

  47. Nilsson S (1983) Autonomic nerve function in the vertebrates. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  48. Nilsson S (2009) Nervous control of fish swimbladders. Acta Histochem 111:176–184

    Article  PubMed  Google Scholar 

  49. Nilsson S, Holmgren S (eds) (1994) Comparative physiology and evolution of the autonomic nervous system. In: Burnstock G (ed) The autonomic nervous system, vol 4. Harwood Acad Publ, Chur/Switzerland

    Google Scholar 

  50. Nusbaum MP, Beenhakker MP (2002) A small-systems approach to motor pattern generation. Nature 417:343–350

    Article  PubMed  CAS  Google Scholar 

  51. Okamoto T, Kurokawa M (2010) The role of the peripheral enteric nervous system in the control of gut motility in the snail Lymnaea stagnalis. Zoolog Sci 27:602–610

    Article  PubMed  Google Scholar 

  52. Randall DJ, Burrgren W, French K (2001) Eckert animal physiology, 5th edn. Palgrave Macmillan, New York

    Google Scholar 

  53. Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR (eds) (2012) Primer on the autonomic nervous system, 3rd edn. Academic Press/Elsevier, Boston/Amsterdam

    Google Scholar 

  54. Schmidt RF, Lang F, Heckmann M (eds) (2010) Physiologie des Menschen, 31st edn. Springer Medizin, Berlin Heidelberg New York

    Google Scholar 

  55. Selverston AI (2010) Invertebrate central pattern generator circuits. Philos Trans R Soc Lond B Biol Sci 365:2329–2345

    Article  PubMed  Google Scholar 

  56. Shimizu H, Koizumi O, Fujisawa T (2004) Three digestive movements in Hydra regulated by the diffuse nerve net in the body column. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:623–630

    PubMed  Google Scholar 

  57. Skelton M, Alevizos A, Koester J (1992) Control of the cardiovascular system of Aplysia by identified neurons. Experientia 48:809–817

    Article  PubMed  CAS  Google Scholar 

  58. Squire LR, Bloom FE, Spitzer NC, du Lac S, Ghosh A, Berg D (eds) (2008) Fundamental Neuroscience, 3rd edn. Academic Press, San Diego

    Google Scholar 

  59. Undem B, Weinreich D (eds) (2005) Advance in vagal afferent neurobiology. CRC Press, Boca Raton

    Google Scholar 

  60. Ward SM, Sanders KM, Hirst GD (2004) Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil 16(Suppl 1):112–117

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfrid Jänig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jänig, W. (2013). The Autonomic Nervous System. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_10

Download citation

Publish with us

Policies and ethics