Skip to main content

Myocardial Perfusion Scintigraphy with 99mTc-MIBI

  • Chapter
  • First Online:
99mTc-Sestamibi

Abstract

Tc-MIBI has photon energy of 140 keV, which is optimal for scintillation camera imaging. With a standard, symmetrical 20% photopeak, most scattered radiation is effectively eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munch G, Neverve J, Matsunari I, Schroter G, Schwaiger M (1997) Myocardial technetium-99m-tetrofosmin and technetium-99m-sestamibi kinetics in normal subjects and patients with coronary artery disease. J Nucl Med 38(3):428–432

    PubMed  CAS  Google Scholar 

  2. Beller GA, Watson DD (1991) Physiological basis of myocardial perfusion imaging with the technetium 99m agents. Semin Nucl Med 21(3):173–181

    PubMed  CAS  Google Scholar 

  3. Wackers FJ, Berman DS, Maddahi J et al (1989) Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 30(3):301–311

    PubMed  CAS  Google Scholar 

  4. Piepsz A, Hahn K, Roca I et al (1990) A radiopharmaceuticals schedule for imaging in paediatrics. Paediatric Task Group European Association Nuclear Medicine. Eur J Nucl Med 17(3–4):127–129

    PubMed  CAS  Google Scholar 

  5. Hesse B, Tagil K, Cuocolo A et al (2005) EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 32(7):855–897

    PubMed  CAS  Google Scholar 

  6. Piwnica-Worms D, Kronauge JF, Delmon L, Holman BL, Marsh JD, Jones AG (1990) Effect of metabolic inhibition on technetium-99m-MIBI kinetics in cultured chick myocardial cells. J Nucl Med 31(4):464–472

    PubMed  CAS  Google Scholar 

  7. Carvalho PA, Chiu ML, Kronauge JF et al (1992) Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. J Nucl Med 33(8):1516–1522

    PubMed  CAS  Google Scholar 

  8. Piwnica-Worms D, Chiu ML, Kronauge JF (1992) Divergent kinetics of 201Tl and 99mTc-SESTAMIBI in cultured chick ventricular myocytes during ATP depletion. Circulation 85(4):1531–1541

    PubMed  CAS  Google Scholar 

  9. Canby RC, Silber S, Pohost GM (1990) Relations of the myocardial imaging agents 99mTc-MIBI and 201 T1 to myocardial blood flow in a canine model of myocardial ischemic insult. Circulation 81(1):289–296

    PubMed  CAS  Google Scholar 

  10. Glover DK, Okada RD (1990) Myocardial kinetics of Tc-MIBI in canine myocardium after dipyridamole. Circulation 81(2):628–637

    PubMed  CAS  Google Scholar 

  11. Taillefer R (2003) Kinetics of myocardial perfusion imaging radiotracers. In: Iskandrian AE, Verani MS (eds) Nuclear cardiac imaging principles and applications, 3rd edn. Oxford University Press, Oxford, pp 57–58

    Google Scholar 

  12. Underwood SR, Anagnostopoulos C, Cerqueira M et al (2004) Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging 31(2):261–291

    PubMed  CAS  Google Scholar 

  13. Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS (1998) Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA 280(10):913–920

    PubMed  CAS  Google Scholar 

  14. Travin MI, Bergmann SR (2005) Assessment of myocardial viability. Semin Nucl Med 35(1):2–16

    PubMed  Google Scholar 

  15. Kailasnath P, Sinusas AJ (2001) Comparison of Tl-201 with Tc-99m-labeled myocardial perfusion agents: technical, physiologic, and clinical issues. J Nucl Cardiol 8(4):482–498

    PubMed  CAS  Google Scholar 

  16. Gould KL (1978) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol 41(2):267–278

    PubMed  CAS  Google Scholar 

  17. Gould KL, Westcott RJ, Albro PC, Hamilton GW (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. II. Clinical methodology and feasibility. Am J Cardiol 41(2):279–287

    PubMed  CAS  Google Scholar 

  18. Albro PC, Gould KL, Westcott RJ, Hamilton GW, Ritchie JL, Williams DL (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical trial. Am J Cardiol 42(5):751–760

    PubMed  CAS  Google Scholar 

  19. Ogilby JD, Iskandrian AS, Untereker WJ, Heo JY, Nguyen TN, Mercuro J (1992) Effect of intravenous adenosine infusion on myocardial perfusion and function - hemodynamic angiographic and scintigraphic study. Circulation 86(3):887–895

    PubMed  CAS  Google Scholar 

  20. Verani MS (1993) Pharmacologic stress myocardial perfusion imaging. Curr Probl Cardiol 18(8):481–525

    PubMed  CAS  Google Scholar 

  21. Parodi O, Marcassa C, Casucci R et al (1991) Accuracy and safety of technetium-99m hexakis 2-methoxy-2-isobutyl isonitrile (Sestamibi) myocardial scintigraphy with high dose dipyridamole test in patients with effort angina pectoris: a multicenter study. Italian Group of Nuclear Cardiology. J Am Coll Cardiol 18(6):1439–1444

    PubMed  CAS  Google Scholar 

  22. Travin MI, Katz MS, Moulton AW, Miele NJ, Sharaf BL, Johnson LL (2000) Accuracy of dipyridamole SPECT imaging in identifying individual coronary stenoses and multivessel disease in women versus men. J Nucl Cardiology 7(3):213–220

    CAS  Google Scholar 

  23. Navare SM, Mather JF, Shaw LJ, Fowler MS, Heller GV (2004) Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: a meta-analysis. J Nucl Cardiol 11(5):551–561

    PubMed  Google Scholar 

  24. Cheetham AM, Naylor V, McGhie J, Ghiotto F, Al-Housni MB, Kelion AD (2006) Is stress-only imaging practical when a 1-day stress-rest 99mTc-tetrofosmin protocol is used? Nucl Med Commun 27(2):113–117

    PubMed  Google Scholar 

  25. Taillefer R, Laflamme L, Dupras G, Picard M, Phaneuf DC, Leveille J (1988) Myocardial perfusion imaging with 99mTc-methoxy-isobutyl-isonitrile (MIBI): comparison of short and long time intervals between rest and stress injections. Preliminary results. Eur J Nucl Med 13(10):515–522

    PubMed  CAS  Google Scholar 

  26. Maddahi J, Kiat H, Van Train KF et al (1990) Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease. Am J Cardiol 66(13):55E–62E

    PubMed  CAS  Google Scholar 

  27. Kahn JK, McGhie I, Akers MS et al (1989) Quantitative rotational tomography with 201Tl and 99mTc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease. Circulation 79(6):1282–1293

    PubMed  CAS  Google Scholar 

  28. Maisey MN, Mistry R, Sowton E (1990) Planar imaging techniques used with technetium-99m sestamibi to evaluate chronic myocardial ischemia. Am J Cardiol 66(13):47E–54E

    PubMed  CAS  Google Scholar 

  29. Reyes E, Loong CY, Harbinson M et al (2006) A comparison of Tl-201, Tc-99m sestamibi, and Tc-99m tetrofosmin myocardial perfusion scintigraphy in patients with mild to moderate coronary stenosis. J Nucl Cardiol 13(4):488–494

    PubMed  Google Scholar 

  30. Kiat H, Van Train KF, Maddahi J et al (1990) Development and prospective application of quantitative 2-day stress-rest Tc-99m methoxy isobutyl isonitrile SPECT for the diagnosis of coronary artery disease. Am Heart J 120(6 Pt 1):1255–1266

    PubMed  CAS  Google Scholar 

  31. Pozzoli MM, Fioretti PM, Salustri A, Reijs AE, Roelandt JR (1991) Exercise echocardiography and technetium-99m MIBI single-photon emission computed tomography in the detection of coronary artery disease. Am J Cardiol 67(5):350–355

    PubMed  CAS  Google Scholar 

  32. Berman DS, Kiat H, Friedman JD et al (1993) Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol 22(5):1455–1464

    PubMed  CAS  Google Scholar 

  33. Solot G, Hermans J, Merlo P et al (1993) Correlation of 99Tcm-sestamibi SPECT with coronary angiography in general hospital practice. Nucl Med Commun 14(1):23–29

    PubMed  CAS  Google Scholar 

  34. Minoves M, Garcia A, Magrina J, Pavia J, Herranz R, Setoain J (1993) Evaluation of myocardial perfusion defects by means of “bull’s eye” images. Clin Cardiol 16(1):16–22

    PubMed  CAS  Google Scholar 

  35. Van Train KF, Areeda J, Garcia EV et al (1993) Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 34(9):1494–1502

    PubMed  Google Scholar 

  36. Sylven C, Hagerman I, Ylen M, Nyquist O, Nowak J (1994) Variance ECG detection of coronary artery disease–a comparison with exercise stress test and myocardial scintigraphy. Clin Cardiol 17(3):132–140

    PubMed  CAS  Google Scholar 

  37. Van Train KF, Garcia EV, Maddahi J et al (1994) Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 35(4):609–618

    PubMed  Google Scholar 

  38. Palmas W, Friedman JD, Diamond GA, Silber H, Kiat H, Berman DS (1995) Incremental value of simultaneous assessment of myocardial function and perfusion with technetium-99m sestamibi for prediction of extent of coronary artery disease. J Am Coll Cardiol 25(5):1024–1031

    PubMed  CAS  Google Scholar 

  39. Rubello D, Zanco P, Candelpergher G et al (1995) Usefulness of 99mTc-MIBI stress myocardial SPECT bull’s-eye quantification in coronary artery disease. Q J Nucl Med 39(2):111–115

    PubMed  CAS  Google Scholar 

  40. Hambye AS, Van Den Branden F, Vandevivere J (1996) Diagnostic value of Tc-99m sestamibi gated SPECT to assess viability in a patient after acute myocardial infarction. Clin Nucl Med 21(1):19–23

    PubMed  CAS  Google Scholar 

  41. Yao Z, Liu XJ, Shi R et al (1997) A comparison of 99mTc-MIBI myocardial SPET with electron beam computed tomography in the assessment of coronary artery disease. Eur J Nucl Med 24(9):1115–1120

    PubMed  CAS  Google Scholar 

  42. Heiba SI, Hayat NJ, Salman HS et al (1997) Technetium-99m-MIBI myocardial SPECT: supine versus right lateral imaging and comparison with coronary arteriography. J Nucl Med 38(10):1510–1514

    PubMed  CAS  Google Scholar 

  43. Candell-Riera J, Santana-Boado C, Castell-Conesa J et al (1997) Simultaneous dipyridamole/maximal subjective exercise with 99mTc-MIBI SPECT: improved diagnostic yield in coronary artery disease. J Am Coll Cardiol 29(3):531–536

    PubMed  CAS  Google Scholar 

  44. Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F (1997) Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 29(1):69–77

    PubMed  CAS  Google Scholar 

  45. Budoff MJ, Gillespie R, Georgiou D et al (1998) Comparison of exercise electron beam computed tomography and sestamibi in the evaluation of coronary artery disease. Am J Cardiol 81(6):682–687

    PubMed  CAS  Google Scholar 

  46. Santana-Boado C, Candell-Riera J, Castell-Conesa J et al (1998) Diagnostic accuracy of technetium-99m-MIBI myocardial SPECT in women and men. J Nucl Med 39(5):751–755

    PubMed  CAS  Google Scholar 

  47. Acampa W, Cuocolo A, Sullo P et al (1998) Direct comparison of technetium 99m-sestamibi and technetium 99m-tetrofosmin cardiac single photon emission computed tomography in patients with coronary artery disease. J Nucl Cardiol 5(3):265–274

    PubMed  CAS  Google Scholar 

  48. San Roman JA, Vilacosta I, Castillo JA et al (1998) Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 80(4):370–376

    PubMed  CAS  Google Scholar 

  49. Olszowska M, Kostkiewicz M, Tracz W, Przewlocki T (2003) Assessment of myocardial perfusion in patients with coronary artery disease. Comparison of myocardial contrast echocardiography and 99mTc MIBI single photon emission computed tomography. Int J Cardiol 90(1):49–55

    PubMed  Google Scholar 

  50. Marwick T, Willemart B, D’Hondt AM et al (1993) Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion. Comparison of dobutamine and adenosine using echocardiography and 99mTc-MIBI single photon emission computed tomography. Circulation 87(2):345–354

    PubMed  CAS  Google Scholar 

  51. Amanullah AM, Kiat H, Friedman JD, Berman DS (1996) Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: diagnostic efficacy in detection of coronary artery disease. J Am Coll Cardiol 27(4):803–809

    PubMed  CAS  Google Scholar 

  52. Miller DD, Younis LT, Chaitman BR, Stratmann H (1997) Diagnostic accuracy of dipyridamole technetium 99m-labeled sestamibi myocardial tomography for detection of coronary artery disease. J Nucl Cardiol 4(1 Pt 1):18–24

    PubMed  CAS  Google Scholar 

  53. Schillaci O, Moroni C, Scopinaro F et al (1997) Technetium-99m sestamibi myocardial tomography based on dipyridamole echocardiography testing in hypertensive patients with chest pain. Eur J Nucl Med 24(7):774–778

    PubMed  CAS  Google Scholar 

  54. Soman P, Khattar R, Senior R, Lahiri A (1997) Inotropic stress with arbutamine is superior to vasodilator stress with dipyridamole for the detection of reversible ischemia with Tc-99m sestamibi single-photon emission computed tomography. J Nucl Cardiol 4(5):364–371

    PubMed  CAS  Google Scholar 

  55. Amanullah AM, Berman DS, Kiat H, Friedman JD (1997) Usefulness of hemodynamic changes during adenosine infusion in predicting the diagnostic accuracy of adenosine technetium-99m sestamibi single-photon emission computed tomography (SPECT). Am J Cardiol 79(10):1319–1322

    PubMed  CAS  Google Scholar 

  56. Ogilby JD, Kegel JG, Heo J, Iskandrian AE (1998) Correlation between hemodynamic changes and tomographic sestamibi imaging during dipyridamole-induced coronary hyperemia. J Am Coll Cardiol 31(1):75–82

    PubMed  CAS  Google Scholar 

  57. Jamil G, Ahlberg AW, Elliott MD et al (1999) Impact of limited treadmill exercise on adenosine Tc-99m sestamibi single-photon emission computed tomographic myocardial perfusion imaging in coronary artery disease. Am J Cardiol 84(4):400–403

    PubMed  CAS  Google Scholar 

  58. Smart SC, Bhatia A, Hellman R et al (2000) Dobutamine-atropine stress echocardiography and dipyridamole sestamibi scintigraphy for the detection of coronary artery disease: limitations and concordance. J Am Coll Cardiol 36(4):1265–1273

    PubMed  CAS  Google Scholar 

  59. Onbasili OA, Erdogan S, Tekten T, Ceyhan C, Yurekli Y (2004) Dipyridamole stress echocardiography and ultrasonic myocardial tissue characterization in predicting myocardial ischemia, in comparison with dipyridamole stress Tc-99m MIBI SPECT myocardial imaging. Jpn Heart J 45(6):937–948

    PubMed  Google Scholar 

  60. Fan ZJ, Chen LB, Li F, Chen HY, Shen ZJ, Zhang SY (2006) The application of adenosine stress myocardial perfusion tomographic imaging in detecting coronary artery disease. Zhonghua Nei Ke Za Zhi 45(2):112–115

    PubMed  Google Scholar 

  61. Gunalp B, Dokumaci B, Uyan C et al (1993) Value of dobutamine technetium-99m-sestamibi SPECT and echocardiography in the detection of coronary artery disease compared with coronary angiography. J Nucl Med 34(6):889–894

    PubMed  CAS  Google Scholar 

  62. Forster T, McNeill AJ, Salustri A et al (1993) Simultaneous dobutamine stress echocardiography and technetium-99m isonitrile single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 21(7):1591–1596

    PubMed  CAS  Google Scholar 

  63. Marwick T, D’Hondt AM, Baudhuin T et al (1993) Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy, or both? J Am Coll Cardiol 22(1):159–167

    PubMed  CAS  Google Scholar 

  64. Mairesse GH, Marwick TH, Vanoverschelde JL et al (1994) How accurate is dobutamine stress electrocardiography for detection of coronary artery disease? Comparison with two-dimensional echocardiography and technetium-99m methoxyl isobutyl isonitrile (mibi) perfusion scintigraphy. J Am Coll Cardiol 24(4):920–927

    PubMed  CAS  Google Scholar 

  65. Marwick TH, D’Hondt AM, Mairesse GH et al (1994) Comparative ability of dobutamine and exercise stress in inducing myocardial ischaemia in active patients. Br Heart J 72(1):31–38

    PubMed  CAS  Google Scholar 

  66. Senior R, Sridhara BS, Anagnostou E, Handler C, Raftery EB, Lahiri A (1994) Synergistic value of simultaneous stress dobutamine sestamibi single-photon-emission computerized tomography and echocardiography in the detection of coronary artery disease. Am Heart J 128(4):713–718

    PubMed  CAS  Google Scholar 

  67. Di Bello V, Bellina CR, Gori E et al (1996) Incremental diagnostic value of dobutamine stress echocardiography and dobutamine scintigraphy (technetium 99m-labeled sestamibi single-photon emission computed tomography) for assessment of presence and extent of coronary artery disease. J Nucl Cardiol 3(3):212–220

    PubMed  Google Scholar 

  68. Iftikhar I, Koutelou M, Mahmarian JJ, Verani MS (1996) Simultaneous perfusion tomography and radionuclide angiography during dobutamine stress. J Nucl Med 37(8):1306–1310

    PubMed  CAS  Google Scholar 

  69. Kisacik HL, Ozdemir K, Altinyay E et al (1996) Comparison of exercise stress testing with simultaneous dobutamine stress echocardiography and technetium-99m isonitrile single-photon emission computerized tomography for diagnosis of coronary artery disease. Eur Heart J 17(1):113–119

    PubMed  CAS  Google Scholar 

  70. Slavich GA, Guerra UP, Morocutti G et al (1996) Feasibility of simultaneous Tc99m sestamibi and 2D-echo cardiac imaging during dobutamine pharmacologic stress. Preliminary results in a female population. Int J Card Imaging 12(2):113–118

    PubMed  CAS  Google Scholar 

  71. Elhendy A, Geleijnse ML, van Domburg RT et al (1998) Comparison of dobutamine stress echocardiography and technetium-99m sestamibi single-photon emission tomography for the diagnosis of coronary artery disease in hypertensive patients with and without left ventricular hypertrophy. Eur J Nucl Med 25(1):69–78

    PubMed  CAS  Google Scholar 

  72. Schwaiger M, Schricke U (2000) Hibernating and stunned myocardium. Pathophysiological consideration. In: Iskandrian AE, Van der Wall EE (eds) Myocardial viability, 2nd edn., pp 1–20

    Google Scholar 

  73. Udelson JE, Coleman PS, Metherall J et al (1994) Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201Tl and 99mTc-sestamibi. Circulation 89(6):2552–2561

    PubMed  CAS  Google Scholar 

  74. Kauffman GJ, Boyne TS, Watson DD, Smith WH, Beller GA (1996) Comparison of rest thallium-201 imaging and rest technetium-99m sestamibi imaging for assessment of myocardial viability in patients with coronary artery disease and severe left ventricular dysfunction. J Am Coll Cardiol 27(7):1592–1597

    PubMed  CAS  Google Scholar 

  75. Medrano R, Lowry RW, Young JB et al (1996) Assessment of myocardial viability with 99mTc sestamibi in patients undergoing cardiac transplantation. A scintigraphic/pathological study. Circulation 94(5):1010–1017

    PubMed  CAS  Google Scholar 

  76. Maes AF, Borgers M, Flameng W et al (1997) Assessment of myocardial viability in chronic coronary artery disease using technetium-99m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol 29(1):62–68

    PubMed  CAS  Google Scholar 

  77. Dilsizian V, Arrighi JA, Diodati JG et al (1994) Myocardial viability in patients with chronic coronary artery disease. Comparison of 99mTc-sestamibi with thallium reinjection and [18F]fluorodeoxyglucose. Circulation 89(2):578–587

    PubMed  CAS  Google Scholar 

  78. Altehoefer C, Kaiser HJ, Dorr R et al (1992) Fluorine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in 99mTc-MIBI SPET: a comparative study in patients with coronary artery disease. Eur J Nucl Med 19(5):334–342

    PubMed  CAS  Google Scholar 

  79. Siebelink HM, Blanksma PK, Crijns HJ et al (2001) No difference in cardiac event-free survival between positron emission tomography-guided and single-photon emission computed tomography-guided patient management: a prospective, randomized comparison of patients with suspicion of jeopardized myocardium. J Am Coll Cardiol 37(1):81–88

    PubMed  CAS  Google Scholar 

  80. Barrington SF, Chambers J, Hallett WA, O’Doherty MJ, Roxburgh JC, Nunan TO (2004) Comparison of sestamibi, thallium, echocardiography and PET for the detection of hibernating myocardium. Eur J Nucl Med Mol Imaging 31(3):355–361

    PubMed  CAS  Google Scholar 

  81. Bisi G, Sciagra R, Santoro GM, Fazzini PF (1994) Rest technetium-99m sestamibi tomography in combination with short-term administration of nitrates: feasibility and reliability for prediction of postrevascularization outcome of asynergic territories. J Am Coll Cardiol 24(5):1282–1289

    PubMed  CAS  Google Scholar 

  82. Sciagra R, Bisi G, Santoro GM et al (1997) Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol 30(2):384–391

    PubMed  CAS  Google Scholar 

  83. Germano G, Erel J, Lewin H, Kavanagh PB, Berman DS (1997) Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 30(5):1360–1367

    PubMed  CAS  Google Scholar 

  84. Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA (1997) Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 30(7):1687–1692

    PubMed  CAS  Google Scholar 

  85. Klocke FJ, Baird MG, Lorell BH et al (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 42(7):1318–1333

    PubMed  Google Scholar 

  86. Gibbons RJ, Abrams J, Chatterjee K et al (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina–summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 107(1):149–158

    PubMed  Google Scholar 

  87. Yusuf S, Zucker D, Peduzzi P et al (1994) Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the coronary artery bypass graft surgery trialists collaboration. Lancet 344(8922):563–570

    PubMed  CAS  Google Scholar 

  88. The Bypass Angioplasty Revascularization Investigation (BARI) Investigators (1996) Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med 335(4):217–225

    Google Scholar 

  89. Leslie WD, Tully SA, Yogendran MS, Ward LM, Nour KA, Metge CJ (2005) Prognostic value of lung sestamibi uptake in myocardial perfusion imaging of patients with known or suspected coronary artery disease. J Am Coll Cardiol 45(10):1676–1682

    PubMed  CAS  Google Scholar 

  90. Sharir T, Germano G, Kang X et al (2001) Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 42(6):831–837

    PubMed  CAS  Google Scholar 

  91. Gibbons RJ, Hodge DO, Berman DS et al (1999) Long-term outcome of patients with intermediate-risk exercise electrocardiograms who do not have myocardial perfusion defects on radionuclide imaging. Circulation 100(21):2140–2145

    PubMed  CAS  Google Scholar 

  92. Hachamovitch R, Berman DS, Shaw LJ et al (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97(6):535–543

    PubMed  CAS  Google Scholar 

  93. Germano G, Kavanagh PB, Waechter P et al (2000) A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J Nucl Med 41(4):712–719

    PubMed  CAS  Google Scholar 

  94. Sharir T, Germano G, Waechter PB et al (2000) A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. J Nucl Med 41(4):720–727

    PubMed  CAS  Google Scholar 

  95. Kirac S, Wackers FJ, Liu YH (2000) Validation of the Yale circumferential quantification method using 201Tl and 99mTc: a phantom study. J Nucl Med 41(8):1436–1441

    PubMed  CAS  Google Scholar 

  96. Liu YH, Sinusas AJ, DeMan P, Zaret BL, Wackers FJ (1999) Quantification of SPECT myocardial perfusion images: methodology and validation of the Yale-CQ method. J Nucl Cardiol 6(2):190–204

    PubMed  CAS  Google Scholar 

  97. Faber TL, Cooke CD, Folks RD et al (1999) Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 40(4):650–659

    PubMed  CAS  Google Scholar 

  98. Germano G, Kiat H, Kavanagh PB et al (1995) Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 36(11):2138–2147

    PubMed  CAS  Google Scholar 

  99. Berman DS, Kang X, Van Train KF et al (1998) Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 32(7):1987–1995

    PubMed  CAS  Google Scholar 

  100. Germano G (2006) Quantitative analysis in myocardial SPECT imaging. In: Zaidi H (ed) Quantitative analysis in nuclear medicine imaging. Springer, New York, pp 471–493

    Google Scholar 

  101. Kakhki VR, Sadeghi R, Zakavi SR (2007) Assessment of transient left ventricular dilation ratio via 2-day dipyridamole Tc-99m sestamibi nongated myocardial perfusion imaging. J Nucl Cardiol 14(4):529–536

    PubMed  Google Scholar 

  102. Bacher-Stier C, Sharir T, Kavanagh PB et al (2000) Postexercise lung uptake of 99mTc-sestamibi determined by a new automatic technique: validation and application in detection of severe and extensive coronary artery disease and reduced left ventricular function. J Nucl Med 41(7):1190–1197

    PubMed  CAS  Google Scholar 

  103. Hachamovitch R, Hayes S, Friedman JD et al (2003) Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol 41(8):1329–1340

    PubMed  Google Scholar 

  104. Elhendy A, Schinkel A, Bax JJ, van Domburg RT, Poldermans D (2003) Long-term prognosis after a normal exercise stress Tc-99m sestamibi SPECT study. J Nucl Cardiol 10(3):261–266

    PubMed  Google Scholar 

  105. Gibson PB, Demus D, Noto R, Hudson W, Johnson LL (2002) Low event rate for stress-only perfusion imaging in patients evaluated for chest pain. J Am Coll Cardiol 39(6):999–1004

    PubMed  Google Scholar 

  106. Soman P, Parsons A, Lahiri N, Lahiri A (1999) The prognostic value of a normal Tc-99m sestamibi SPECT study in suspected coronary artery disease. J Nucl Cardiol 6(3):252–256

    PubMed  CAS  Google Scholar 

  107. Alkeylani A, Miller DD, Shaw LJ et al (1998) Influence of race on the prediction of cardiac events with stress technetium-99m sestamibi tomographic imaging in patients with stable angina pectoris. Am J Cardiol 81(3):293–297

    PubMed  CAS  Google Scholar 

  108. Boyne TS, Koplan BA, Parsons WJ, Smith WH, Watson DD, Beller GA (1997) Predicting adverse outcome with exercise SPECT technetium-99m sestamibi imaging in patients with suspected or known coronary artery disease. Am J Cardiol 79(3):270–274

    PubMed  CAS  Google Scholar 

  109. Geleijnse ML, Elhendy A, van Domburg RT et al (1996) Prognostic value of dobutamine-atropine stress technetium-99m sestamibi perfusion scintigraphy in patients with chest pain. J Am Coll Cardiol 28(2):447–454

    PubMed  CAS  Google Scholar 

  110. Berman DS, Hachamovitch R, Kiat H et al (1995) Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 26(3):639–647

    PubMed  CAS  Google Scholar 

  111. Brown KA, Altland E, Rowen M (1994) Prognostic value of normal technetium-99m-sestamibi cardiac imaging. J Nucl Med 35(4):554–557

    PubMed  CAS  Google Scholar 

  112. Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 32(1):57–62

    PubMed  CAS  Google Scholar 

  113. Delcour KS, Khaja A, Chockalingam A, Kuppuswamy S, Dresser T (2009) Outcomes in patients with abnormal myocardial perfusion imaging and normal coronary angiogram. Angiology 60(3):318–321

    PubMed  Google Scholar 

  114. Alqaisi F, Albadarin F, Jaffery Z et al (2008) Prognostic predictors and outcomes in patients with abnormal myocardial perfusion imaging and angiographically insignificant coronary artery disease. J Nucl Cardiol 15(6):754–761

    PubMed  Google Scholar 

  115. Bilodeau L, Theroux P, Gregoire J, Gagnon D, Arsenault A (1991) Technetium-99m sestamibi tomography in patients with spontaneous chest pain: correlations with clinical, electrocardiographic and angiographic findings. J Am Coll Cardiol 18(7):1684–1691

    PubMed  CAS  Google Scholar 

  116. Varetto T, Cantalupi D, Altieri A, Orlandi C (1993) Emergency room technetium-99m sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiograms. J Am Coll Cardiol 22(7):1804–1808

    PubMed  CAS  Google Scholar 

  117. Hilton TC, Fulmer H, Abuan T, Thompson RC, Stowers SA (1996) Ninety-day follow-up of patients in the emergency department with chest pain who undergo initial single-photon emission computed tomographic perfusion scintigraphy with technetium 99m-labeled sestamibi. J Nucl Cardiol 3(4):308–311

    PubMed  CAS  Google Scholar 

  118. Kontos MC, Schmidt KL, Nicholson CS, Ornato JP, Jesse RL, Tatum JL (1999) Myocardial perfusion imaging with technetium-99m sestamibi in patients with cocaine-associated chest pain. Ann Emerg Med 33(6):639–645

    PubMed  CAS  Google Scholar 

  119. Wackers FJ, Brown KA, Heller GV et al (2002) American Society of Nuclear Cardiology position statement on radionuclide imaging in patients with suspected acute ischemic syndromes in the emergency department or chest pain center. J Nucl Cardiol 9(2):246–250

    PubMed  Google Scholar 

  120. Abbott BG, Jain D (2003) Impact of myocardial perfusion imaging on clinical management and the utilization of hospital resources in suspected acute coronary syndromes. Nucl Med Commun 24(10):1061–1069

    PubMed  CAS  Google Scholar 

  121. Abbott BG, Wackers FJ (1998) Emergency department chest pain units and the role of radionuclide imaging. J Nucl Cardiol 5(1):73–79

    PubMed  CAS  Google Scholar 

  122. Abbott BG, Jain D (2000) Nuclear cardiology in the evaluation of acute chest pain in the emergency department. Echocardiography 17(6 Pt 1):597–604

    PubMed  CAS  Google Scholar 

  123. Gibbons RJ, Verani MS, Behrenbeck T et al (1989) Feasibility of tomographic 99mTc-hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation 80(5):1277–1286

    PubMed  CAS  Google Scholar 

  124. Christian TF, Behrenbeck T, Pellikka PA, Huber KC, Chesebro JH, Gibbons RJ (1990) Mismatch of left ventricular function and infarct size demonstrated by technetium-99m isonitrile imaging after reperfusion therapy for acute myocardial infarction: identification of myocardial stunning and hyperkinesia. J Am Coll Cardiol 16(7):1632–1638

    PubMed  CAS  Google Scholar 

  125. Kristensen J, Mortensen UM, Nielsen SS et al (2004) Myocardial perfusion imaging with 99mTc sestamibi early after reperfusion reliably reflects infarct size reduction by ischaemic preconditioning in an experimental porcine model. Nucl Med Commun 25(5):495–500

    PubMed  Google Scholar 

  126. Rizzello V, Poldermans D, Bax JJ (2005) Assessment of myocardial viability in chronic ischemic heart disease: current status. Q J Nucl Med Mol Imaging 49(1):81–96

    PubMed  CAS  Google Scholar 

  127. Williams KA, Borer JS, Supino P (2003) Radionuclide angiography. In: Iskandrian AE, Verani MS, eds. Nuclear cardiac imaging principles & applications. 3 ed, p 323

    Google Scholar 

  128. Boucher CA, Wackers FJ, Zaret BL, Mena IG (1992) Technetium-99m sestamibi myocardial imaging at rest for assessment of myocardial infarction and first-pass ejection fraction. Multicenter Cardiolite Study Group. Am J Cardiol 69(1):22–27

    PubMed  CAS  Google Scholar 

  129. Iskandrian AE, Germano G, VanDecker W et al (1998) Validation of left ventricular volume measurements by gated SPECT 99mTc-labeled sestamibi imaging. J Nucl Cardiol 5(6):574–578

    PubMed  CAS  Google Scholar 

  130. Sharir T, Kang X, Germano G et al (2006) Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol 13(4):495–506

    PubMed  Google Scholar 

  131. Jones RH, Borges-Neto S, Potts JM (1990) Simultaneous measurement of myocardial perfusion and ventricular function during exercise from a single injection of technetium-99m sestamibi in coronary artery disease. Am J Cardiol 66(13):68E–71E

    PubMed  CAS  Google Scholar 

  132. Williams KA, Taillon LA, Draho JM, Foisy MF (1993) First-pass radionuclide angiographic studies of left ventricular function with technetium-99m-teboroxime, technetium-99m-sestamibi and technetium-99m-DTPA. J Nucl Med 34(3):394–399

    PubMed  CAS  Google Scholar 

  133. Borges-Neto S, Coleman RE, Potts JM, Jones RH (1991) Combined exercise radionuclide angiocardiography and single photon emission computed tomography perfusion studies for assessment of coronary artery disease. Semin Nucl Med 21(3):223–229

    PubMed  CAS  Google Scholar 

  134. Lee KL, Pryor DB, Pieper KS et al (1990) Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease. A comparison with clinical and catheterization variables. Circulation 82(5):1705–1717

    PubMed  CAS  Google Scholar 

  135. Sharir T, Germano G, Kavanagh PB et al (1999) Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 100(10):1035–1042

    PubMed  CAS  Google Scholar 

  136. Acampa W, Caprio MG, Nicolai E et al (2010) Assessment of poststress left ventricular ejection fraction by gated SPECT: comparison with equilibrium radionuclide angiocardiography. Eur J Nucl Med Mol Imaging 37(2):349–356

    PubMed  Google Scholar 

  137. DePuey EG, Rozanski A (1995) Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 36(6):952–955

    PubMed  CAS  Google Scholar 

  138. Johnson LL, Verdesca SA, Aude WY et al (1997) Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol 30(7):1641–1648

    PubMed  CAS  Google Scholar 

  139. Ben-Haim S, Gips S, Merdler A, Front A, Tamir A (2004) Myocardial stunning demonstrated with rest and post-stress measurements of left ventricular function using dual-isotope gated myocardial perfusion SPECT. Nucl Med Commun 25(7):657–663

    PubMed  Google Scholar 

  140. Tanaka H, Chikamori T, Hida S et al (2005) Comparison of post-exercise and post-vasodilator stress myocardial stunning as assessed by electrocardiogram-gated single-photon emission computed tomography. Circ J 69(11):1338–1345

    PubMed  Google Scholar 

  141. Sobic-Saranovic DP, Pavlovic SV, Jovanovic IV et al (2010) Evaluation of myocardial perfusion and function by gated single-photon emission computed tomography technetium-99m methoxyisobutylisonitrile in children and adolescents with severe congenital heart disease. Nucl Med Commun 31(1):12–21

    PubMed  CAS  Google Scholar 

  142. Kiratli PO, Tuncel M, Ozkutlu S, Caglar M (2008) Gated myocardial perfusion scintigraphy in children with myocarditis: Can it be considered as an indicator of clinical outcome? Nucl Med Commun 29(10):907–914

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjat Ahmadzadehfar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahmadzadehfar, H., Sabet, A. (2012). Myocardial Perfusion Scintigraphy with 99mTc-MIBI. In: Bucerius, J., Ahmadzadehfar, H., Biersack, HJ. (eds) 99mTc-Sestamibi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04233-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04233-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04232-4

  • Online ISBN: 978-3-642-04233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics