Skip to main content

Lung, Thyroid, Renal Cancer, Myeloma and Neuroendocrine Cancers: Role of Planar, SPECT and PET in Imaging Bone Metastases

  • Chapter
  • First Online:
Radionuclide and Hybrid Bone Imaging

Abstract

This chapter will consider the role of planar scintigraphy, SPECT and PET in the imaging of skeletal metastatic disease from a miscellaneous group of malignancies, including lung, thyroid and renal carcinomas; multiple myeloma; and neuroendocrine tumours, and will examine how recent technical advances may enhance their effectiveness in this field. Bone scintigraphy using technetium-labelled diphosphonates has for many years been the mainstay of functional imaging of bony metastases, but this technique is of limited value in evaluating myeloma and aggressive osteolytic metastases and also carries the drawback of relatively poor specificity. Single photon emission computed tomography (SPECT), being a tomographic imaging technique, produces three-dimensional images of tracer distribution from multiplanar images. Its application to bone scintigrams in selected cases can greatly improve accurate anatomical localisation and sensitivity in detection of foci of tracer uptake. SPECT can equally be applied to scintigrams using radiotracers which are specific for particular groups of tumours, including somatostatin analogues for neuroendocrine tumours. The advent of combined SPECT/CT systems in recent years has further enhanced the accuracy of SPECT in all these malignancies. Positron emission tomography (PET) detects pairs of gamma rays emitted indirectly by a positron-emitting radiotracer to achieve a higher spatial resolution than single photon imaging. This high resolution and the ability to cover the entire body in a single scan have made it a highly effective technique for the evaluation of skeletal metastatic disease, and it is now a routine combination with CT as PET/CT can provide combined functional and anatomical imaging data in unprecedented clarity and detail. 18F-FDG PET/CT now forms part of routine staging for many carcinomas, such as non-small cell lung carcinomas, and may obviate the need for routine staging scintigraphy in these patients. As uptake of the commonest PET radiotracer, 18F-FDG is dependent on the increased cellular metabolism of most tumours; it may enable earlier detection of metastatic foci than bone scintigraphy, which relies on detecting osteoblastic activity which may be difficult to visualise in the case of small metastases. Another significant advantage of 18F-FDG PET is that it can detect the soft tissue components of metastases. This is particularly important in aggressive osteolytic metastases, where invasion of adjacent connective tissue and muscle is frequent. The effectiveness of 18F-FDG PET is limited in slow-growing tumour types, but 18F-sodium fluoride, a bone radiotracer which can detect very early osteoblastic changes, already shows promise in this area. Bony metastases from many neuroendocrine tumours can be detected with a high degree of specificity by PET using somatostatin analogues. Other novel and often highly specific radiotracers are under evaluation which will further enhance its diagnostic capability. The true potential of PET in this group of malignancies is gradually unfolding; although studied series of patients remain generally small to date, a more detailed evaluation of its role will require the accrual of considerably more data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams S, Baum R, Rink T et al (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 25:79–83

    Article  PubMed  CAS  Google Scholar 

  • Alexandrakis MG, Kyriakou DS, Passam FH et al (2002) Correlation between the uptake of Tc-99m-sestaMIBI and prognostic factors in patients with multiple myeloma. Clin Lab Haematol 24:155–159

    Article  PubMed  CAS  Google Scholar 

  • Algra PR, Heimans JJ, Valk J et al (1992) Do metastases in vertebrae begin in the body or the pedicles? Imaging study in 45 patients. AJR Am J Roentgenol 158:1275–1279

    PubMed  CAS  Google Scholar 

  • Barai S, Bandopadhayaya GP, Malhotra A et al (2004) Does I-131-MIBG underestimate skeletal disease burden in neuroblastoma? J Postgrad Med 50:257–260

    PubMed  CAS  Google Scholar 

  • Bataille R, Chevalier J, Rossi M et al (1982) Bone scintigraphy in plasma-cell myeloma. A prospective study of 70 patients. Radiology 145:801–804

    PubMed  CAS  Google Scholar 

  • Baum RP, Hellwig D, Mezzetti M (2004) Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 48:119–142

    PubMed  CAS  Google Scholar 

  • Baum RP, Niesen A, Leonhardi J et al (2005) Receptor PET/CT imaging of neuroendocrine tumors using the Ga-68 labelled, high affinity somatostatin analogue DOTA-1-Nal³-octreotide (DOTA-NOC): clinical results in 327 patients. Eur J Nucl Med Mol Imaging 32:S54

    Google Scholar 

  • Bhargava P, Hanif M, Nash C (2008) Whole-body F-18 sodium fluoride PET-CT in a patient with renal cell carcinoma. Clin Nucl Med 33:894–895

    Article  PubMed  Google Scholar 

  • Blau M, Ganatra R, Bender MA (1972) 18F-fluoride for bone imaging. Semin Nucl Med 2:31–37

    Article  PubMed  CAS  Google Scholar 

  • Boubaker A, BischofDelaloye A (2003) Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med 47:31–40

    PubMed  CAS  Google Scholar 

  • Bouvier JF, Philip T, Chauvot P et al (1988) Pitfalls and solutions in neuroblastoma diagnosis using radioiodine MIBG: our experience about 50 cases. Prog Clin Biol Res 271:707–720

    PubMed  CAS  Google Scholar 

  • Brandt-Mainz K, Muller SP, Gorges R et al (2000) The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer. Eur J Nucl Med 27:490–496

    Article  PubMed  CAS  Google Scholar 

  • Bredella MA, Steinbach L, Caputo G et al (2005) Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol 184:1199–1204

    PubMed  Google Scholar 

  • Bruzzi JF, Komaki R, Walsh GL et al (2008) Imaging of non-small cell lung cancer of the superior sulcus: part 2: initial staging and assessment of resectability and therapeutic response. Radiographics 28:561–572

    Article  PubMed  Google Scholar 

  • Bybel B, Brunken RC, DiFilippo FP et al (2008) SPECT/CT imaging: clinical utility of an emerging technology. Radiographics 28:1097–1113

    Article  PubMed  Google Scholar 

  • Cheran SK, Herndon JE, Patz EF (2004) Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 44:317–325

    Article  PubMed  Google Scholar 

  • Cheung N-KV, Kushner BH (2003) Should we replace bone scintigraphy plus CT with MR imaging for staging of neuroblastoma? Radiology 226:286–287

    Article  PubMed  Google Scholar 

  • Chiu ML, Kronauge JF, Piwnica-Worms D (1990) Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med 31:1646–1653

    PubMed  CAS  Google Scholar 

  • Cohen R, Campos JM, Salaun C et al (2000) Preoperative calcitonin levels are predictive of tumor size and postoperative calcitonin normalization in medullary ­thyroid carcinoma. Groupe d’Etudes des Tumeurs a Calcitonine (GETC). J Clin Endocrinol Metab 85:919–922

    Article  PubMed  CAS  Google Scholar 

  • Conti PS, Durski JM, Bacqai F et al (1999) Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid 9:797–804

    Article  PubMed  CAS  Google Scholar 

  • D’Sa S, Abildgaard N, Tighe J et al (2007) Guidelines for the use of imaging in the management of myeloma. Br J Haematol 137:49–63

    PubMed  Google Scholar 

  • Dankerl A, Liebisch P, Glatting G et al (2007) Multiple myeloma: molecular imaging with 11C-methionine PET/CT – initial experience. Radiology 242:498–508

    Article  PubMed  Google Scholar 

  • de Geus-Oei L-F, Oei H-Y, Hennemann G et al (2002) Sensitivity of 123I whole-body scan and thyroglobulin in the detection of metastases or recurrent differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 29:768–774

    Article  PubMed  CAS  Google Scholar 

  • de Groot JWB, Links TP, Jager PL et al (2004) Impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol 11:786–794

    Article  PubMed  Google Scholar 

  • De Maeseneer M, Lenchik L, Everaert H et al (1999) Evaluation of lower back pain with bone scintigraphy and SPECT. Radiographics 19:901–912

    PubMed  Google Scholar 

  • Diehl M, Risse JH, Brandt-Mainz K et al (2001) Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 28:1671–1676

    Article  PubMed  CAS  Google Scholar 

  • Dowell HM, Losty P, Barnes N et al (2009) Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer 52(4):552

    Article  Google Scholar 

  • Durie BGM (2006) The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 42:1539–1543

    Article  PubMed  Google Scholar 

  • Durie BGM, Kyle RA, Belch A et al (2003) Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Hematol J 4:379–398

    Article  PubMed  Google Scholar 

  • Eriksson B, Orlefors H, Oberg K et al (2005) Developments in PET for the detection of endocrine tumors. Best Pract Res Clin Endocrinol Metab 19:311–324

    Article  PubMed  CAS  Google Scholar 

  • Even-Sapir E, Keidar Z, Sachs J et al (2001) The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med 42:998–991004

    PubMed  CAS  Google Scholar 

  • Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  • Even-Sapir E, Mishani E, Flusser G et al (2007) 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 37:462–469

    Article  PubMed  Google Scholar 

  • Falini B, Canino S, Sacchi S et al (1988) Immunocyto­chemical evaluation of the percentage of proliferating cells in pathological bone marrow and peripheral blood samples with the Ki-67 and anti-bromo-deoxyuridine monoclonal antibodies. Br J Haematol 69:311–320

    Article  PubMed  CAS  Google Scholar 

  • Fogelman I, Cook G, Israel O et al (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35:135–142

    Article  PubMed  Google Scholar 

  • Fonti R, Salvatore B, Quarantelli M et al (2008) 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 49:195–200

    Article  PubMed  Google Scholar 

  • Freudenberg LS, Antoch G, Jentzen W et al (2004) Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 14:2092–2098

    Article  PubMed  CAS  Google Scholar 

  • Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    Article  PubMed  CAS  Google Scholar 

  • Giraudet AL, Vanel D, Leboulleux S et al (2007) Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab 92:4185–4190

    Article  PubMed  CAS  Google Scholar 

  • Grant FD, Fahey FH, Packard AB et al (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  PubMed  Google Scholar 

  • Grunwald F, Menzel C, Bender H et al (1997) Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 7:327–335

    Article  PubMed  CAS  Google Scholar 

  • Grunwald F, Kalicke T, Feine U et al (1999) Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 26:1547–1552

    Article  PubMed  CAS  Google Scholar 

  • Hafez KS, Novick AC, Campbell SC (1997) Patterns of tumor recurrence and guidelines for followup after nephron sparing surgery for sporadic renal cell carcinoma. J Urol 157:2067–2070

    Article  PubMed  CAS  Google Scholar 

  • Han K-R, Pantuck AJ, Bui MHT et al (2003) Number of metastatic sites rather than location dictates overall survival of patients with node-negative metastatic renal cell carcinoma. Urology 61:314–319

    Article  PubMed  Google Scholar 

  • Hetzel M, Arslandemir C, Konig H-H et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214

    Article  PubMed  Google Scholar 

  • Hung G-U, Tsai C-C, Tsai S-C et al (2005) Comparison of Tc-99m sestamibi and F-18 FDG-PET in the assessment of multiple myeloma. Anticancer Res 25:4737–4741

    PubMed  Google Scholar 

  • Iagaru A, Kalinyak JE, McDougall IR (2007) F-18 FDG PET/CT in the management of thyroid cancer. Clin Nucl Med 32:690–695

    Article  PubMed  Google Scholar 

  • Ilias I, Pacak K (2005) Diagnosis and management of tumors of the adrenal medulla. Horm Metab Res 37:717–721

    Article  PubMed  CAS  Google Scholar 

  • Ilias I, Yu J, Carrasquillo JA et al (2003) Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab 88:4083–4087

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Kato K, Ikeda M et al (2007) Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 48:889–895

    Article  PubMed  CAS  Google Scholar 

  • Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354:496–507

    Article  PubMed  CAS  Google Scholar 

  • Kaltsas G, Korbonits M, Heintz E et al (2001) Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab 86:895–902

    Article  PubMed  CAS  Google Scholar 

  • Kang DE, White RL, Zuger JH et al (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171:1806–1809

    Article  PubMed  Google Scholar 

  • Kato T, Tsukamoto E, Nishioka T et al (2000) Early detection of bone marrow involvement in extramedullary plasmacytoma by whole-body F-18 FDG positron emission tomography. Clin Nucl Med 25:870–873

    Article  PubMed  CAS  Google Scholar 

  • Kollender Y, Bickels J, Price WM et al (2000) Metastatic renal cell carcinoma of bone: indications and technique of surgical intervention. J Urol 164:1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Koopmans KP, Neels OC, Kema IP et al (2008) Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol 26:1489–1495

    Article  PubMed  Google Scholar 

  • Kosuda S, Kaji T, Yokoyama H et al (1996) Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med 37:975–978

    PubMed  CAS  Google Scholar 

  • Krausz Y, Israel O (2006) Single-photon emission computed tomography/computed tomography in endocrinology. Semin Nucl Med 36:267–274

    Article  PubMed  Google Scholar 

  • Krausz Y, Keidar Z, Kogan I et al (2003) SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumors. Clin Endocrinol (Oxf) 59:565–573

    Article  Google Scholar 

  • Kulke MH, Mayer RJ (1999) Carcinoid tumors. N Engl J Med 340:858–868

    Article  PubMed  CAS  Google Scholar 

  • Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92

    Article  PubMed  Google Scholar 

  • Leboulleux S, Dromain C, Vataire AL et al (2008) Prediction and diagnosis of bone metastases in well-differentiated gastro-entero-pancreatic endocrine cancer: a prospective comparison of whole body magnetic resonance imaging and somatostatin receptor scintigraphy. J Clin Endocrinol Metab 93:3021–3028

    Article  PubMed  CAS  Google Scholar 

  • Levy DA, Slaton JW, Swanson DA et al (1998) Stage specific guidelines for surveillance after radical nephrectomy for local renal cell carcinoma. J Urol 159:1163–1167

    Article  PubMed  CAS  Google Scholar 

  • Lin JD, Huang MJ, Juang JH et al (1999) Factors related to the survival of papillary and follicular thyroid carcinoma patients with distant metastases. Thyroid 9:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Lynn MD, Braunstein EM, Shapiro B (1987) Pheochromocytoma presenting as musculoskeletal pain from bone metastases. Skeletal Radiol 16:552–555

    Article  PubMed  CAS  Google Scholar 

  • Mamede M, Carrasquillo JA, Chen CC et al (2006) Discordant localization of 2-[18F]-fluoro-2-deoxy-D-glucose in 6-[18F]-fluorodopamine- and [(123)I]-metaiodobenzylguanidine-negative metastatic pheochromocytoma sites. Nucl Med Commun 27:31–36

    Article  PubMed  Google Scholar 

  • Meijer WG, van der Veer E, Jager PL et al (2003) Bone metastases in carcinoid tumors: clinical features, imaging characteristics, and markers of bone metabolism. J Nucl Med 44:184–191

    PubMed  Google Scholar 

  • Mitchell MS (1992) Chemotherapy in combination with biomodulation: a 5-year experience with cyclophosphamide and interleukin-2. Semin Oncol 19:80–87

    PubMed  CAS  Google Scholar 

  • Muresan MM, Olivier P, Leclere J et al (2008) Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer 15:37–49

    Article  PubMed  CAS  Google Scholar 

  • Oberg K (1999) Neuroendocrine gastrointestinal tumors – a condensed overview of diagnosis and treatment. Ann Oncol 10(Suppl 2):3–8

    Article  Google Scholar 

  • Perault C, Schvartz C, Wampach H et al (1997) Thoracic and abdominal SPECT-CT image fusion without external markers in endocrine carcinomas. The Group of Thyroid Tumoral Pathology of Champagne-Ardenne. J Nucl Med 38:1234–1242

    PubMed  CAS  Google Scholar 

  • Peterson JJ, Kransdorf MJ, O’Connor MI (2003) Diagnosis of occult bone metastases: positron emission tomography. Clin Orthop Relat Res (Suppl 415):120–128

    Google Scholar 

  • Pezeshk P, Sadow CA, Winalski CS et al (2006) Usefulness of 18F-FDG PET-directed skeletal biopsy for metastatic neoplasm. Acad Radiol 13:1011–1015

    Article  PubMed  Google Scholar 

  • Pfannenberg AC, Eschmann SM, Horger M et al (2003) Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 30:835–843

    Article  PubMed  Google Scholar 

  • Robbins RJ, Wan Q, Grewal RK et al (2006) Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 91:498–505

    Article  PubMed  CAS  Google Scholar 

  • Rosen PR, Murphy KG (1984) Bone scintigraphy in the initial staging of patients with renal-cell carcinoma: concise communication. J Nucl Med 25:289–291

    PubMed  CAS  Google Scholar 

  • Ross EM, Roberts WC (1985) The carcinoid syndrome: comparison of 21 necropsy subjects with carcinoid heart disease to 15 necropsy subjects without carcinoid heart disease. Am J Med 79:339–354

    Article  PubMed  CAS  Google Scholar 

  • Ruegemer JJ, Hay ID, Bergstralh EJ et al (1988) Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables. J Clin Endocrinol Metab 67:501–508

    Article  PubMed  CAS  Google Scholar 

  • Ruf J, Lehmkuhl L, Bertram H et al (2004) Impact of SPECT and integrated low-dose CT after radioiodine therapy on the management of patients with thyroid carcinoma. Nucl Med Commun 25:1177–1182

    Article  PubMed  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2006) Imaging of ­neuroendocrine tumors. Semin Nucl Med 36:228–247

    Article  PubMed  Google Scholar 

  • Sandock DS, Seftel AD, Resnick MI (1995) A new protocol for the followup of renal cell carcinoma based on pathological stage. J Urol 154:28–31

    Article  PubMed  CAS  Google Scholar 

  • Savelli G, Maffioli L, Maccauro M et al (2001) Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med 45:27–37

    PubMed  CAS  Google Scholar 

  • Scarsbrook AF, Ganeshan A, Statham J et al (2007) Anatomic and functional imaging of metastatic carcinoid tumors. Radiographics 27:455–477

    Article  PubMed  Google Scholar 

  • Schirrmeister H, Guhlmann A, Elsner K et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629

    PubMed  CAS  Google Scholar 

  • Schirrmeister H, Glatting G, Hetzel J et al (2001a) Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42:1800–1804

    PubMed  CAS  Google Scholar 

  • Schirrmeister H, Buck A, Guhlmann A et al (2001b) Anatomical distribution and sclerotic activity of bone metastases from thyroid cancer assessed with F-18 sodium fluoride positron emission tomography. Thyroid 11:677–683

    Article  PubMed  CAS  Google Scholar 

  • Schirrmeister H, Bommer M, Buck AK et al (2002) Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:361–366

    Article  PubMed  CAS  Google Scholar 

  • Schirrmeister H, Arslandemir C, Glatting G et al (2004) Omission of bone scanning according to staging guidelines leads to futile therapy in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 31:964–968

    Article  PubMed  Google Scholar 

  • Schlumberger M, Tubiana M, De Vathaire F et al (1986) Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab 63:960–967

    Article  PubMed  CAS  Google Scholar 

  • Schluter B, Bohuslavizki KH, Beyer W et al (2001) Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 42:71–76

    PubMed  CAS  Google Scholar 

  • Schmidt GP, Schoenberg SO, Schmid R et al (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949

    Article  PubMed  Google Scholar 

  • Shammas A, Degirmenci B, Mountz JM et al (2007) 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med 48:221–226

    PubMed  CAS  Google Scholar 

  • Shapiro B, Rufini V, Jarwan A et al (2000) Artifacts, anatomical and physiological variants, and unrelated diseases that might cause false-positive whole-body 131-I scans in patients with thyroid cancer. Semin Nucl Med 30:115–132

    Article  PubMed  CAS  Google Scholar 

  • Shebani KO, Souba WW, Finkelstein DM et al (1999) Prognosis and survival in patients with gastrointestinal tract carcinoid tumors. Ann Surg 229:815–821

    Article  PubMed  CAS  Google Scholar 

  • Shulkin BL, Shapiro B (1998) Current concepts on the diagnostic use of MIBG in children. J Nucl Med 39:679–688

    PubMed  CAS  Google Scholar 

  • Shulkin BL, Wieland DM, Schwaiger M et al (1992) PET scanning with hydroxyephedrine: an approach to the localization of pheochromocytoma. J Nucl Med 33:1125–1131

    PubMed  CAS  Google Scholar 

  • Shulkin BL, Wieland DM, Baro ME et al (1996) PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med 37:16–21

    PubMed  CAS  Google Scholar 

  • Shulkin BL, Thompson NW, Shapiro B et al (1999) Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology 212:35–41

    PubMed  CAS  Google Scholar 

  • Shulkin BL, Ilias I, Sisson JC et al (2006) Current trends in functional imaging of pheochromocytomas and paragangliomas. Ann N Y Acad Sci 1073:374–382

    Article  PubMed  Google Scholar 

  • Sofka CM, Semelka RC, Kelekis NL et al (1999) Magnetic resonance imaging of neuroblastoma using current techniques. Magn Reson Imaging 17:193–198

    Article  PubMed  CAS  Google Scholar 

  • Stafford SE, Gralow JR, Schubert EK et al (2002) Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 9:913–921

    Article  PubMed  Google Scholar 

  • Staudenherz A, Steiner B, Puig S et al (1999) Is there a diagnostic role for bone scanning of patients with a high pretest probability for metastatic renal cell carcinoma? Cancer 85:153–155

    Article  PubMed  CAS  Google Scholar 

  • Taggart D, Dubois S, Matthay KK (2008) Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q J Nucl Med Mol Imaging 52:403–418

    PubMed  CAS  Google Scholar 

  • Tenenbaum F, Lumbroso J, Schlumberger M et al (1995) Comparison of radiolabeled octreotide and meta-iodobenzylguanidine (MIBG) scintigraphy in malignant pheochromocytoma. J Nucl Med 36:1–6

    PubMed  CAS  Google Scholar 

  • Tharp K, Israel O, Hausmann J et al (2004) Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging 31:1435–1442

    Article  PubMed  CAS  Google Scholar 

  • Tickoo SK, Pittas AG, Adler M et al (2000) Bone metastases from thyroid carcinoma: a histopathologic study with clinical correlates. Arch Pathol Lab Med 124:1440–1447

    PubMed  CAS  Google Scholar 

  • Utsunomiya D, Shiraishi S, Imuta M et al (2006) Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 238:264–271

    Article  PubMed  Google Scholar 

  • Vinjamuri M, Craig M, Campbell-Fontaine A et al (2008) Can positron emission tomography be used as a staging tool for small-cell lung cancer? Clin Lung Cancer 9:30–34

    Article  PubMed  Google Scholar 

  • Wallace S, Ajani JA, Charnsangavej C et al (1996) Carcinoid tumors: imaging procedures and interventional radiology. World J Surg 20:147–156

    Article  PubMed  CAS  Google Scholar 

  • Wu HC, Yen RF, Shen YY et al (2002) Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas – a preliminary report. J Cancer Res Clin Oncol 128:503–506

    Article  PubMed  CAS  Google Scholar 

  • Zanotti-Fregonara P, Rubello D, Hindie E (2008) Bone metastases of differentiated thyroid cancer: the importance of early diagnosis and 131I therapy on prognosis. J Nucl Med 49:1902–1903

    Article  PubMed  Google Scholar 

  • Zekri J, Ahmed N, Coleman RE et al (2001) The skeletal metastatic complications of renal cell carcinoma. Int J Oncol 19:379–382

    PubMed  CAS  Google Scholar 

  • Zhu X-x, Chen Y-q, Chen L-h (2004) Value of integrated positron-emission tomography and computed ­tomography in gross tumor volume delineation for radiotherapy for bone metastasis. Di Yi Jun Yi Da Xue Xue Bao 24:700–702

    PubMed  Google Scholar 

  • Zoller M, Kohlfuerst S, Igerc I et al (2007) Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality? Eur J Nucl Med Mol Imaging 34:487–495

    Article  PubMed  Google Scholar 

  • Zuetenhorst JM, Hoefnageli CA, Boot H et al (2002) Evaluation of (111)In-pentetreotide, (131)I-MIBG and bone scintigraphy in the detection and clinical management of bone metastases in carcinoid disease. Nucl Med Commun 23:735–741

    Article  PubMed  CAS  Google Scholar 

  • Zuijdwijk MD, Vogel WV, Corstens FHM et al (2008) Utility of fluorodeoxyglucose-PET in patients with differentiated thyroid carcinoma. Nucl Med Commun 29:636–641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue S. C. Chua M.B.B.S, B.Sc., MRCPCH, FRCR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chua, S.S.C., Gnanasegaran, G., Cook, G.J.R. (2012). Lung, Thyroid, Renal Cancer, Myeloma and Neuroendocrine Cancers: Role of Planar, SPECT and PET in Imaging Bone Metastases. In: Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds) Radionuclide and Hybrid Bone Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02400-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02400-9_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02399-6

  • Online ISBN: 978-3-642-02400-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics