Skip to main content

Contemporary Intensive Care Treatment for Patients with Severe Multiple Trauma

  • Chapter
  • First Online:
General Trauma Care and Related Aspects

Part of the book series: European Manual of Medicine ((EUROMANUAL))

  • 3038 Accesses

Abstract

The primary reason for mortality in patients younger than 40 years are still severe injuries induced by multiple trauma. Improvement of the rescue system with shorter intervals for rescue and transport and early respiratory and circulatory support significantly reduced early death resulting from brain damage, hypoxia, and the typical reasons of death such as exsanguinating hemorrhage in combination with acidosis, hypothermia, and coagulopathy, referred to as the “lethal triad”. Consequently, complex and sequential multiple organ dysfunction and failure (MOD/MOF) has advanced to being the predominant reason for increased mortality. Interestingly, the triggers for subsequent MOD/MOF are the same as those factors that accounted for the early casualties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rotstein OD (2003) Modeling the two-hit hypothesis for evaluating strategies to prevent organ injury after shock/resuscitation. J Trauma 54(supp):203–206

    Google Scholar 

  2. Dunham CM, Damiano AM, Wiles CE, Cushing BM (1995) Post-traumatic multiple organ dysfunction syndrome — infection is an uncommon antecedent risk factor. Injury 26:363–432

    Article  Google Scholar 

  3. Marks JD, Montgomery AB, Murray JF, Turner J et al (1990) Plasma tumor necrosis factor in patients with septic shock. Mortality rate, incidence of adult respiratory distress syndrome, and effects of methylprednisolone administration. Am Rev Respir Dis 141:94–97

    Article  PubMed  CAS  Google Scholar 

  4. Marano MA, Wei H, Barie PS et al (1990) Serum cachectin/tumor necrosis factor in critically ill patients with burns correlates with infection and mortality. Surg Gynecol Obstet 170:32–38

    PubMed  CAS  Google Scholar 

  5. Levy EM, Alharbi SA, Grindlinger G et al (1984) Changes in mitogen responsiveness lymphocyte subsets after traumatic injury: relation to development of sepsis. Immunol Immunopathol 32:224–233

    Article  CAS  Google Scholar 

  6. Keane RM, Birmingham W, Shatney CM et al (1983) Prediction of sepsis in the multitraumatic patient by assays of lymphocyte responsiveness. Surg Gynecol Obstet 156:163–167

    PubMed  CAS  Google Scholar 

  7. Bone RC (1992) Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA 268:3452–3455

    Article  PubMed  CAS  Google Scholar 

  8. McGowan JE Jr, Barnes MW, Finland M (1975) Bacteremia at Boston City hospital: occurrence and mortality during 12 selected years (1935–1972), with special reference to hospital-acquired cases. J Infect Dis 132:316–335

    Article  PubMed  Google Scholar 

  9. Schroder J, Kahlke V, Staubach KH et al (1998) Gender differences in human sepsis. Arch Surg 133:1200–1205

    Article  PubMed  CAS  Google Scholar 

  10. Angele MK, Frantz MC, Chaudri ICH (2006) Gender and sex hormones influence the response to trauma and sepsis: potential therapeutic approaches. Clinics 61:479–488

    Article  PubMed  Google Scholar 

  11. Davis EG, Eichenberger MR, Grant BS, Polk HC (2000) Microsatellite marker of interferon-gamma receptor 1 gene correlates with infection following major trauma. Surgery 128:301–305

    Article  PubMed  CAS  Google Scholar 

  12. Rotondo MF, Zonies DH (1997) The damage control sequence and underlying logic. Surg Clin North Am 77:761–777

    Article  PubMed  CAS  Google Scholar 

  13. Asensio JA, McDuffie L, Petrone P, Roldan G (2001) Reliable variables in the exsanguinated patient which indicate damage control and predict outcome. Am J Surg 182:743–751

    Article  PubMed  CAS  Google Scholar 

  14. Sartorelli KH, Frumiento C, Rogers FB, Osler TM (2000) Nonoperative management of hepatic, splenic, and renal injuries in adults with multiple injuries. J Trauma 49:56–62

    Article  PubMed  CAS  Google Scholar 

  15. Border JR, La Duca J, Seibel R (1975) Priorities in the management of the patient with polytrauma. Prog Surg 14:84–120

    PubMed  CAS  Google Scholar 

  16. Bone L, Johnson KD, Gruen GS et al (1994) The acute management of hemodynamically unstable patients with pelvic ring fractures. J Trauma 36:706–713

    Article  Google Scholar 

  17. Siegel JH, Rivkind AI, Dalal S et al (1990) Early physiologic predictors of injury severity and death in blunt multiple trauma. Arch Surg 125:498–508

    Article  PubMed  CAS  Google Scholar 

  18. Burri C, Henkemeyer H, Pässler HH et al (1973) Evaluation of acute blood loss by means of simple hemodynamic parameters. Prog Surg 11:109–127

    Google Scholar 

  19. Giannoudis PV, Smith RM, Bellamy MC et al (1999) Stimulation of the inflammatory system by reamed and unreamed nailing of femoral fractures. J Bone Joint Surg Br 81:356–361

    Article  PubMed  CAS  Google Scholar 

  20. Garrison JR, Richardson JD, Hilakos AS et al (1996) Predicting the need to pack early for severe intra-abdominal hemorrhage. J Trauma 40:923–927

    Article  PubMed  CAS  Google Scholar 

  21. Gando S, Nanzaki S, Kemmotsu O (1999) Disseminated intravascular coagulation and sustained systemic inflammatory response syndrome predict organ ­dysfunctions after trauma: application of clinical decision analysis. Ann Surg 229:121–127

    Google Scholar 

  22. Robertson R, Eidt J, Bitzer L et al (1995) Severe acidosis alone does not predict mortality in the trauma patient. Am J Surg 170:691–694

    Article  PubMed  CAS  Google Scholar 

  23. Malone DL, Kuhls D, Napolitano LM et al (2001) Back to basics: validation of the admission systemic inflammatory response syndrome score in predicting outcome in trauma. J Trauma 51:458–463

    Article  PubMed  CAS  Google Scholar 

  24. Claridge JA, Crabtree TD, Pelletier SJ et al (2000) Persistent occult hypoperfusion is associated with a significant increase in infection rate and mortality in major trauma patients. J Trauma 48:8–14

    Article  PubMed  CAS  Google Scholar 

  25. Crowl AC, Young JS, Kahler DM et al (2000) Occult hypo­perfusion is associated with increased morbidity in patients undergoing early femur fracture fixation. J Trauma 48:260–267

    Google Scholar 

  26. Abt R, Lustenberger T, Stover JF, Benninger E, Lenzlinger PM, Stocker R, Keel M (2009) Base excess determined within one hour of admission predicts mortality in patients with severe pelvic fractures and severe hemorrhagic shock. Eur J Trauma Emerg Surg 35:429–436

    Article  Google Scholar 

  27. Husain FA, Martin MJ, Mullenix PS et al (2003) Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg 185:485–491

    Article  PubMed  Google Scholar 

  28. Blow O, Magliore L, Claridge JA et al (1999) The golden hour and the silver day: detection and correction of occult hypoperfusion within 24 h improves outcome from major trauma. J Trauma 47:964–969

    Article  PubMed  CAS  Google Scholar 

  29. Hebert PC, Wells G, Blajchman MA et al (1999) The transfusion requirements in critical care investigators: a multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340:409–417

    Article  PubMed  CAS  Google Scholar 

  30. Asimos AW, Gibbs MA, Marx JA et al (2000) Value of point-of-care blood testing in emergent trauma management. J Trauma 48:1101–1108

    Article  PubMed  CAS  Google Scholar 

  31. Cosgrif N, Moore EE, Sauaia A et al (1997) Predicting life-threatening coagulopathy in the massively transfused patient: hypothermia and acidoses revisited. J Trauma 42:857–862

    Article  Google Scholar 

  32. Ferrara A, MacArthur J, Wright H et al (1990) Hypothermia and acidosis worsen coagulopathy in the patient requiring massive transfusion. Am J Surg 160:515–518

    Article  PubMed  CAS  Google Scholar 

  33. Reed R, Bracey A, Hudson J (1990) Hypothermia and blood coagulation: dissociation between enzyme activity and clotting levels. Circ Shock 32:141–152

    PubMed  Google Scholar 

  34. Rohrer M, Natale A (1992) Effect of hypothermia on the coagulation cascade. Crit Care Med 20:1402–1405

    Article  PubMed  CAS  Google Scholar 

  35. Boldt J, Menges T, Wollbruck M et al (1994) Platelet function in critically ill patients. Chest 106:899–903

    Article  PubMed  CAS  Google Scholar 

  36. Russell MW, Reilly PM, Berger N et al (1999) Thromboelastography (TEG) suggests abnormal platelet/fibrinogen interaction in resuscitation from traumatic hemorrhage. Crit Care Med 27(suppl 1):A179

    Article  Google Scholar 

  37. Kaufmann CR, Dwyer KM, Crews JD et al (1997) Usefulness of thrombelastography in assessment of trauma patient coagulation. J Trauma 42:716–722

    Article  PubMed  CAS  Google Scholar 

  38. Murad MH, Stubbs JR, Gandhi MJ, Wang AT, Paul A, Erwin PJ et al (2010) The effect of plasma transfusion on morbidity and mortality: a systematic review and meta-analysis. Transfusion 50:1370–1383

    Google Scholar 

  39. Kaufmann JE, Oksche A, Wollheim CB, Gunther G, Rosenthal W, Vischer UM (2000) Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP. J Clin Invest 106:107–116

    Article  PubMed  CAS  Google Scholar 

  40. Burggraaf J, Schoemaker HC, Kroon JM, Huisman L, Kluft C, Cohen AF (1994) Influence of 1-desamino-8-D-vasopressin on endogenous fibrinolysis, haemodynamics and liver blood flow in healthy subjects. Clin Sci 86:497–503

    PubMed  CAS  Google Scholar 

  41. Longstaff C (1994) Studies on the mechanisms of action of aprotinin and tranexamic acid as plasmin inhibitors and antifibrinolytic agents. Blood Coagul Fibrinolysis 5:537–542

    PubMed  CAS  Google Scholar 

  42. Velmahos GC, Kern J, Chan LS et al (2000) Prevention of venous thromboembolism after injury: an evidence-based report – part II: analysis of risk factors and evaluation of the role of vena caval filters. J Trauma 49:140–144

    Article  PubMed  CAS  Google Scholar 

  43. Velmahos GC, Kern J, Chan LS et al (2000) Prevention of venous thromboembolism after injury: an evidence-based report – part I: analysis of risk factors and evaluation of the role of vena caval filters. J Trauma 49:132–139

    Article  PubMed  CAS  Google Scholar 

  44. Maxwell RA, Gibson JB, Fabian TC et al (2000) Effects of a novel antioxidant during resuscitation from severe blunt chest trauma. Shock 14:646–651

    Article  PubMed  CAS  Google Scholar 

  45. Platz A, Ertel W, Helmy N et al (2001) Erfahrungen mit dem einsatz eines potentiell temporären vena cava-filters beim mehrfachverletzten patienten. Chirurg 72:717–722

    Article  PubMed  CAS  Google Scholar 

  46. Meier C, Keller IS, Pfiffner R et al (2006) Early experience with the retrievable optEase vena cava filter in high-risk trauma patients. Eur J Vasc Endovasc Surg 32:589–595

    Article  PubMed  CAS  Google Scholar 

  47. Meier C, Pfiffner R, Labler L et al (2006) Prophylactic insertion of optional vena cava filters in high-risk trauma patients. Eur J Trauma 32:37–43

    Article  Google Scholar 

  48. Lobo DN (2004) Fluid, electrolytes, and nutrition: physiological and clinical aspects. Proc Nutr Soc 63:453–466

    Article  PubMed  Google Scholar 

  49. Brandstrup B, Tonnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238:641–648

    Article  PubMed  Google Scholar 

  50. Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90:1265–1270

    Article  PubMed  CAS  Google Scholar 

  51. Williams EL, Hildebrand KL, McCormick SA, Bedel MJ (1999) The effect of intravenous lactated Ringer’s solution versus 0.9 % sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 88:999–1003

    PubMed  CAS  Google Scholar 

  52. Gibson JB, Maxwell RA, Schweitzer JB et al (2002) Resuscitation from severe hemorrhagic shock after traumatic brain injury using saline, shed blood, or a blood substitute. Shock 17:234–244

    Article  PubMed  Google Scholar 

  53. Conahan ST, Dupre A, Giaimo ME et al (1987) Resuscitation fluid composition and myocardial performance during burn shock. Circ Shock 23:37–49

    PubMed  CAS  Google Scholar 

  54. Schmand JF, Ayala A, Morrison MH, Chaudry ICH (1995) Effects of hydroxyethyl starch after trauma-hemorrhagic shock: restoration of macrophage integrity and prevention of increased circulating interleukin-6 levels. Crit Care Med 23:806–814

    Article  PubMed  CAS  Google Scholar 

  55. Powers KA, Zurawska J, Szaszi K et al (2005) Hypertonic resuscitation of hemorrhagic shock prevents alveolar macrophage activation by preventing systemic oxidative stress due to gut ischemia/reperfusion. Surgery 137:66–74

    Article  PubMed  CAS  Google Scholar 

  56. Arieff AI (1999) Fatal postoperative pulmonary edema: pathogenesis and literature review. Chest 115:1371–1377

    Article  PubMed  CAS  Google Scholar 

  57. Layon J, Duncan D, Gallagher TJ et al (1987) Hypertonic saline as a resuscitation solution in hemorrhagic shock: effects on extra vascular lung water and cardiopulmonary function. Anesth Analg 66:154–158

    Article  PubMed  CAS  Google Scholar 

  58. Rackow EC, Weil MH, MacNeil AR et al (1987) Effects of crystalloid and colloid fluids on extravascular lung water in hypoproteinemic dogs. J Appl Physiol 62:2421–2425

    PubMed  CAS  Google Scholar 

  59. Holte K, Sharrock NE, Kehlet H (2002) Pathophysiology and clinical implications of preoperative fluid excess. Br J Anaesth 89:622–632

    Article  PubMed  CAS  Google Scholar 

  60. Kaneki T, Koizumi T, Yamamoto H et al (2002) Effects of resuscitation with hydroxyethyl starch (HES) on pulmonary hemodynamics and lung lymph balance in hemorrhagic sheep; comparative study of low and high molecular HES. Resuscitation 52:101–108

    Article  PubMed  CAS  Google Scholar 

  61. Lang F et al (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:248–273

    Google Scholar 

  62. Chan ST, Kapadia CR, Johnson AW et al (1983) Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses. Br J Surg 70:36–39

    Article  PubMed  CAS  Google Scholar 

  63. Raeburn CD, Moore EE, Biffl WL et al (2001) The abdominal compartment syndrome is a morbid complication of post injury damage control surgery. Am J Surg 182:542–546

    Article  PubMed  CAS  Google Scholar 

  64. Biffl WL, Moore EE, Burch JM et al (2001) Secondary abdominal compartment syndrome is a highly lethal event. Am J Surg 182:645–648

    Article  PubMed  CAS  Google Scholar 

  65. Balogh Z, McKinley BA, Cocanour CS et al (2003) Supra-normal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 138:637–643

    Article  PubMed  Google Scholar 

  66. Maxwell RA, Fabian TC, Croce MA, Davis KA (1999) Secondary abdominal compartment syndrome: an underappreciated manifestation of severe hemorrhagic shock. J Trauma 47:995–999

    Article  PubMed  CAS  Google Scholar 

  67. Miller RS, Morris JA Jr, Diaz JJ Jr, May AK, Herring MB (2005) Complications after 344 damage control open celiotomies. J Trauma 59:1365–1371

    Article  PubMed  Google Scholar 

  68. Gracias VH, Braslow B, Johnson J et al (2002) Abdominal compartment syndrome in the open abdomen. Arch Surg 137:1298–1300

    Article  PubMed  Google Scholar 

  69. Mizushima Y, Wang P, Cioffi WG et al (2000) Restoration of body temperature to normothermia during resuscitation following trauma-hemorrhage improves the depressed cardiovascular and hepatocellular functions. Arch Surg 135:175–181

    Article  PubMed  CAS  Google Scholar 

  70. Mizushima Y, Wang P, Cioffi WG et al (2000) Should normothermia be restored and maintained during resuscitation after trauma and hemorrhage? J Trauma 48:58–65

    Article  PubMed  CAS  Google Scholar 

  71. Gregory J, Flancbaum L, Townsend M et al (1991) Incidence and timing of hypothermia in trauma patients undergoing operations. J Trauma 31:795–800

    Article  PubMed  CAS  Google Scholar 

  72. Jurkovich G, Greiser W, Luterman A et al (1987) Hypothermia in trauma victims: an ominous predictor of survival. J Trauma 27:1019–1024

    Article  PubMed  CAS  Google Scholar 

  73. Steinemann S, Shackford SR, Davis JW (1990) Implications of admission hypothermia in trauma patients. J Trauma 30:200–202

    Article  PubMed  CAS  Google Scholar 

  74. Davis J, Shackford S, Mackersie R et al (1988) Base deficit as a guide to volume resuscitation. J Trauma 28:1464–1467

    Article  PubMed  CAS  Google Scholar 

  75. Rutherford E, Morris J, Reed G et al (1992) Base deficit stratifies mortality and determines therapy. J Trauma 33:417–423

    Article  PubMed  CAS  Google Scholar 

  76. Ivatury RR, Simon RJ, Islam S et al (1996) A prospective, randomized study of endpoints of resuscitation after major trauma: global oxygen transport indices versus organ- specific gastric mucosal pH. J Am Coll Surg 183:145–154

    PubMed  CAS  Google Scholar 

  77. Beltrame F, Lucangelo U, Gregori D, Gregoretti C (1999) Noninvasive positive pressure ventilation in trauma patients with acute respiratory failure. Monaldi Arch Chest Dis 54:109–114

    PubMed  CAS  Google Scholar 

  78. Putensen C, Muders T, Varelmann D et al (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12:13–18

    Article  PubMed  Google Scholar 

  79. Putensen C, Zech S, Wrigge H et al (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49

    Article  PubMed  CAS  Google Scholar 

  80. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  81. OBoyle CJ, MacFie J, Mitchell CJ et al (1998) Microbiology of bacterial translocation in humans. Gut 42:29–35

    Article  CAS  Google Scholar 

  82. Ivatury RR, Diebel L, Porter JM et al (1997) Intra-abdominal hypertension and the abdominal compartment syndrome. Surg Clin North Am 77:783–800

    Article  PubMed  CAS  Google Scholar 

  83. Schein M, Wittmann D, Aprahamian C et al (1995) The abdominal compartment syndrome: the physiological and clinical consequences of elevated intra-abdominal pressure. J Am Coll Surg 180:745–753

    PubMed  CAS  Google Scholar 

  84. Iberti TJ (1987) A simple technique to accurately determine intra-abdominal pressure. Crit Care Med 15:1140–1142

    Article  PubMed  CAS  Google Scholar 

  85. Feliciano D, Mattox K, Burch J et al (1986) Packing for control of hepatic hemorrhage. J Trauma 26:738–743

    Article  PubMed  CAS  Google Scholar 

  86. Chang MC, Miller PR, D’Agostino R et al (1998) Effects of abdominal decompression on cardiopulmonary function and visceral perfusion in patients with intra-abdominal hypertension. J Trauma 44:440–445

    Article  PubMed  CAS  Google Scholar 

  87. Saifi J, Fortune J, Graca L et al (1990) Benefits of intra-abdominal pack placement for the management of nonmechanical hemorrhage. Arch Surg 125:119–122

    Article  PubMed  CAS  Google Scholar 

  88. Zager RA (1989) Studies of mechanisms and protective maneuvers in myoglobinuric acute renal injury. Lab Invest 60:619–629

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reto Stocker MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stocker, R., Lenzlinger, P.M., Stover, J.F. (2014). Contemporary Intensive Care Treatment for Patients with Severe Multiple Trauma. In: Oestern, HJ., Trentz, O., Uranues, S. (eds) General Trauma Care and Related Aspects. European Manual of Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88124-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88124-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88123-0

  • Online ISBN: 978-3-540-88124-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics