Skip to main content

Subduction zones, island arcs and active continental margins

  • Chapter
  • First Online:
Plate Tectonics

Abstract

Subduction zones are created when two lithospheric plates move against each other and one of the two plates descends under the other through the process of subduction. However, only oceanic lithosphere is able to sink deeply into the Earth’s mantle to become reincorporated there. Continental crustal material is generally too light to be subducted to great depth. The interaction of the subduction zone and the asthenosphere of the mantle generates the melts that rise to feed the volcanism typical of island arcs and active continental margins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bearth P (1959) Über Eklogite, Glaukophanschiefer und metamorphe Pillowlaven. Schweizerische Mineralogische Petrographische Mitteiltungen 39: 267–286

    Google Scholar 

  • Benioff H (1954) Orogenesis and deep crustal structure: additional evidence from seismology. Geol Soc Amer Bull 65: 385–400

    Article  Google Scholar 

  • Bott MPH (1982) The Interior of the Earth: Its Structure, Constitution and Evolution. 2nd ed, Edward Arnold, London, 403 pp

    Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a fi rst record and some consequences. Contrib Mineral Petrol 86: 107–118

    Article  Google Scholar 

  • Cowan DS (1985) Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. Geol Soc Amer Bull 96: 451–462

    Article  Google Scholar 

  • Doglioni C, Harabaglia P, Merlini S, Mongelli F, Peccerillo A, Piromallo C (1999) Orogens and slabs vs. their direction of subduction. Earth Sci Rev 45: 167–208

    Article  Google Scholar 

  • Einsele G, Liu B, Dürr W, Frisch W, Liu G, Luterbacher HP, Ratschbacher L, Ricken W, Wendt J, Wetzel A, Yu G, Zheng H (1994) The Xigaze forearc basin: evolution and facies architecture ( Cretaceous, Tibet). Sed Geol 90: 1–32

    Article  Google Scholar 

  • England PC (1981) Metamorphic pressure estimates and sediment volumes for the Alpine orogeny: An independent control on geobarometers? Earth Planet Sci Lett 56: 387–397

    Article  Google Scholar 

  • Gebauer D, Schertl HP, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira massif, Western Alps. Lithos 41: 5–24

    Article  Google Scholar 

  • Green HW (1994) Solving the paradox of deep earthquakes. Scientifi c American 271/3: 50–57

    Google Scholar 

  • Hawkins JW (1974) Geology of the Lau basin, a marginal sea behind the Tonga arc. In: Burk CA, Drake CL (eds) The Geology of Continental Margins, Springer, New York, 505–524

    Google Scholar 

  • Hyndman RD (1996) Schwere Erdbeben nach langer seismischer Stille. Spektrum der Wissenschaft 10/1996: 64–72

    Google Scholar 

  • Isacks B, Molnar P (1969) Mantle earthquake mechanisms and the sinking of the litho sphere. Nature 223: 1121–1124

    Article  Google Scholar 

  • Karig DE (1971) Origin and development of marginal basins in the western Pacific. J Geophys Res 76: 2542–2561

    Article  Google Scholar 

  • Kopf A (2003) Schlote, die Schlamm statt Feuer speien. Spektrum der Wissenschaft 1/2003: 38–47

    Google Scholar 

  • LePichon X (1968) Sea floor spreading and continental drift. J Geophys Res 73: 3661–3697

    Article  Google Scholar 

  • Meschede M, Pelletier B (1994) Structural style of the accretionary wedge in front of the North d’Entrecasteaux Ridge (ODP Leg 134). Proc. Ocean Drilling Progr, Sci Res, 417–429, College Station, Texas

    Google Scholar 

  • Meschede M, Frisch W, Herrmann UR, Ratschbacher L (1997) Stress transmission across an active plate boundary: an example from southern Mexico. Tectonophysics 266: 81–100

    Article  Google Scholar 

  • Meschede M, Zweigel P, Frisch W, Völker D (1999) Mélange formation by subduction erosion: the case of the Osa mélange in southern Costa Rica. Terra nova 11: 141–148

    Article  Google Scholar 

  • Meschede M, Schmiedl G, Weiss R, Hemleben C (2002) Benthic foraminiferal distribution and sedimentary structures suggest tectonic erosion at the Costa Rica convergent plate margin. Terra nova 14: 1–12.

    Article  Google Scholar 

  • Miyashiro A (1973) Metamorphism and metamorphic belts. Allen and Unwin, London, 492 pp

    Google Scholar 

  • Moore GF, Billman HG, Hehanussa PE, Karig DE (1980) Sedimentoloty and paleobathymetry of trench-slope deposits, Nias Island, Indonesia. J Geol 88: 161–180

    Article  Google Scholar 

  • Nicolas A (1995) The Mid-Oceanic Ridges. Mountains Below Sea Level. Springer, Berlin-Heidelberg, 217 pp

    Google Scholar 

  • Pearce JA (1983) The role of sub-continental litho sphere in magma genesis at destructive plate margins. In: Hawkesworth CJ, Norry MJ (eds) Continental Basalts and Mantle Xenoliths, Shiva Publications, Nantwich, 230–249

    Google Scholar 

  • Platt JP (1986) Dynamics of orogenic wedges and the uplift of high pressure metamorphic rocks. Geol Soc Amer Bull 97: 1037–1053

    Article  Google Scholar 

  • Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15: 1036–1064

    Article  Google Scholar 

  • Schmincke H-U (2004) Volcanism. Springer, Heidelberg-Berlin, 324 pp

    Google Scholar 

  • Scholl DW (1974) Sedimentary sequences in the North Pacific trenches. In: Burke CA, Drake CL (eds) The Geology of Continental Margins. Springer, New York-Heidelberg-Berlin, 493–504

    Google Scholar 

  • Stern RJ (2002) Subduction zones. Reviews of Geophysics 40/4: 3–1 to 3–38

    Google Scholar 

  • Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84: 1049–1061

    Article  Google Scholar 

  • von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29: 279–316

    Article  Google Scholar 

  • von Huene R, Ranero CR, Weinrebe W (2000) Quaternary convergent margin tectonics off Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19: 314–334

    Article  Google Scholar 

  • Wiens DA (2001) Seismological constraints on the mechanism of deep earthquakes: Temperature dependence on deep earthquake source properties. Phys Earth Planet Inter 127: 145–163

    Article  Google Scholar 

  • Wilson M (1989) Igneous Petrogenesis. Unwin Hyman, London, 466 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Frisch .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frisch, W., Meschede, M., Blakey, R. (2011). Subduction zones, island arcs and active continental margins. In: Plate Tectonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76504-2_7

Download citation

Publish with us

Policies and ethics