Skip to main content

Renal Tubular Acidosis

  • Reference work entry
Pediatric Nephrology

Abstract

Renal tubular acidosis (RTA) is a condition in which there is a defect in renal excretion of hydrogen ion, or reabsorption of bicarbonate, or both, which occurs in the absence of or out of proportion to an impairment in the glomerular filtration rate (1). Thus, RTA is distinguished from the renal acidosis that develops as a result of advanced chronic kidney disease (24).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodriguez-Soriano J, Edelmann CM, Jr. Renal tubular acidosis. Annu Rev Med 1969;20:363–382.

    PubMed  CAS  Google Scholar 

  2. Davies HE, Wrong O. Acidity of urine and excretion of ammonium in renal disease. Lancet 1957;273:625.

    PubMed  CAS  Google Scholar 

  3. Schwartz WB, Hall PW, III, Hays RM, Relman AS. On the mechanism of acidosis in chronic renal disease. J Clin Invest 1959;38:39–52.

    PubMed  CAS  Google Scholar 

  4. Wrong O, Davies HE. The excretion of acid in renal disease. Q J Med 1959;28:259–313.

    PubMed  CAS  Google Scholar 

  5. Albright F, Burnett CH, Parson W, Reifenstein EC, Jr, Roos A. Osteomalacia and late rickets. Medicine 1946;25:399–479.

    PubMed  CAS  Google Scholar 

  6. Pines KL, Mudge GH. Renal tubular acidosis with osteomalacia; Report of 3 cases. Am J Med 1951;11:302–311.

    PubMed  CAS  Google Scholar 

  7. Lightwood R. Calcium infarction of the kidneys in infants. Arch Dis Child 1935;10:205.

    Google Scholar 

  8. Butler AM, Wilson JL, Farber S. Dehydration and acidosis with calcification at renal tubules. J Pediatr 1936;8:489–499.

    Google Scholar 

  9. Lightwood R, Payne WW, Black JA. Infantile renal acidosis. Pediatrics 1953;12:628–644.

    PubMed  CAS  Google Scholar 

  10. Baines AM, Barelay JA, Cooke WT. Nephrocalcinosis associated with hyperchloremia and low plasma-bicarbonate. Q J Med 1945;14:113–123.

    CAS  Google Scholar 

  11. Reynolds TB. Observations on the pathogenesis of renal tubular acidosis. Am J Med 1958;25:503–515.

    PubMed  CAS  Google Scholar 

  12. Elkinton JR. Renal acidosis. Am J Med 1960;28:165–168.

    PubMed  CAS  Google Scholar 

  13. Elkinton JR, Huth EJ, Webster GD, Jr, McCance RA. The renal excretion of hydrogen ion in renal tubular acidosis I quantitative assessment of the response to ammonium chloride as an acid load. Am J Med 1960;29:554–575.

    PubMed  CAS  Google Scholar 

  14. Berliner RW. Homer Smith: his contribution to physiology. J Am Soc Nephrol 1995;5:1988–1992.

    PubMed  CAS  Google Scholar 

  15. Stapleton T. Idiopathic renal acidosis in an infant with excessive loss of bicarbonate in the urine. Lancet 1949;1:683–685.

    PubMed  CAS  Google Scholar 

  16. Rodriguez SJ, Boichis H, Stark H, Edelmann CM, Jr. Proximal renal tubular acidosis. A defect in bicarbonate reabsorption with normal urinary acidification. Pediatr Res 1967;1:81–98.

    Google Scholar 

  17. Soriano JR, Boichis H, Edelmann CM, Jr. Bicarbonate reabsorption and hydrogen ion excretion in children with renal tubular acidosis. J Pediatr 1967;71:802–813.

    PubMed  CAS  Google Scholar 

  18. Morris RC, Jr. Renal tubular acidosis. Mechanisms, classification and implications. N Engl J Med 1969;281:1405–1413.

    PubMed  Google Scholar 

  19. Gennari FJ, Cohen JJ. Renal tubular acidosis. Annu Rev Med 1978;29:521–541.

    PubMed  CAS  Google Scholar 

  20. Williams JS, Williams GH. 50th anniversary of aldosterone. J Clin Endocrinol Metab 2003;88:2364–2372.

    PubMed  CAS  Google Scholar 

  21. Perez GO, Oster JR, Vaamonde CA. Renal acidosis and renal potassium handling in selective hypoaldosteronism. Am J Med 1974;57:809–816.

    PubMed  CAS  Google Scholar 

  22. Perez GO, Oster JR, Vaamonde CA. Renal acidification in patients with mineralocorticoid deficiency. Nephron 1976;17:461–473.

    PubMed  CAS  Google Scholar 

  23. Rocher LL, Tannen RL. The clinical spectrum of renal tubular acidosis. Annu Rev Med 1986;37:319–331.

    PubMed  CAS  Google Scholar 

  24. Carlisle EJ, Donnelly SM, Halperin ML. Renal tubular acidosis (RTA): recognize the ammonium defect and pH or get the urine pH. Pediatr Nephrol 1991;5:242–248.

    PubMed  CAS  Google Scholar 

  25. Halperin ML, Goldstein MB, Richardson RM, Stinebaugh BJ. Distal renal tubular acidosis syndromes: a pathophysiological approach. Am J Nephrol 1985;5:1–8.

    PubMed  CAS  Google Scholar 

  26. Halperin ML, Jungas RL. Metabolic production and renal disposal of hydrogen ions. Kidney Int 1983;24:709–713.

    PubMed  CAS  Google Scholar 

  27. Chan JC. The influence of dietary intake on endogenous acid production. Theoretical and experimental background. Nutr Metab 1974;16:1–9.

    PubMed  CAS  Google Scholar 

  28. Chan JC. Calcium and hydrogen ion metabolism in children with classic (type I/distal) renal tubular acidosis. Ann Nutr Metab 1981;25:65–78.

    Google Scholar 

  29. Kildeberg P, Engel K, Winters RW. Balance of net acid in growing infants. Endogenous and transintestinal aspects. Acta Paediatr Scand 1969;58:321–329.

    PubMed  CAS  Google Scholar 

  30. Sebastian A, McSherry E, Morris RC, Jr. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA). J Clin Invest 1971;50:231–243.

    PubMed  CAS  Google Scholar 

  31. Alpern RJ. Cell mechanisms of proximal tubule acidification. Physiol Rev 1990;70:79–114.

    PubMed  CAS  Google Scholar 

  32. Boron WF. Acid-base transport by the renal proximal tubule. J Am Soc Nephrol 2006;17:2368–2382.

    PubMed  CAS  Google Scholar 

  33. DuBose TD, Jr. Reclamation of filtered bicarbonate. Kidney Int 1990;38:584–589.

    PubMed  CAS  Google Scholar 

  34. Bobulescu IA, Moe OW. Na+/H+ exchangers in renal regulation of acid-base balance. Semin Nephrol 2006;26:334–344.

    PubMed  CAS  Google Scholar 

  35. Murer H, Hopfer U, Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J 1976;154:597–604.

    PubMed  CAS  Google Scholar 

  36. Preisig PA, Ives HE, Cragge EJ, Jr, Alpern RJ, Rector FC, Jr. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest 1987;80:970–978.

    PubMed  CAS  Google Scholar 

  37. Zimolo Z, Montrose MH, Murer H. H+extrusion by an apical vacuolar-type H+-ATPase in rat renal proximal tubules. J Membr Biol 1992;126:19–26.

    PubMed  CAS  Google Scholar 

  38. Breton S. The cellular physiology of carbonic anhydrases. JOP 2001;2:159–164.

    PubMed  CAS  Google Scholar 

  39. Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int 2007;71:103–115.

    PubMed  CAS  Google Scholar 

  40. Schwartz GJ. Physiology and molecular biology of renal carbonic anhydrase. J Nephrol 2002;15(Suppl 5):S61–S74.

    PubMed  CAS  Google Scholar 

  41. Boron WF, Boulpaep EL. The electrogenic Na/HCO3 cotransporter. Kidney Int 1989;36:392–402.

    PubMed  CAS  Google Scholar 

  42. Grassl SM, Aronson PS. Na+/HCO3 co-transport in basolateral membrane vesicles isolated from rabbit renal cortex. J Biol Chem 1986;261:8778–8783.

    PubMed  CAS  Google Scholar 

  43. Romero MF, Hediger MA, Boulpaep EL, Boron WF. Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 1997;387:409–413.

    PubMed  CAS  Google Scholar 

  44. Pitts RF, Ayer JL, Schiess WA. The renal regulation of acid-base balance in man. III. The reabosrption and excretion of bicarbonate. J Clin Invest 1949;28:35–44.

    CAS  Google Scholar 

  45. Muto S, Asano Y, Okazaki H, Kano S. Renal potassium wasting in distal renal tubular acidosis: role of aldosterone. Intern Med 1992;31:1047–1051.

    PubMed  CAS  Google Scholar 

  46. Pitts RF. Renal production and excretion of ammonia. Am J Med 1964;36:720–742.

    PubMed  CAS  Google Scholar 

  47. Bank N, Schwartz WB. Influence of certain urinary solutes on acidic dissociation constant of ammonium at 37°C. J Appl Physiol 1960;15:125–127.

    PubMed  CAS  Google Scholar 

  48. Curthoys NP. Renal ammonium ion production and excretion. In The Kidney: Physiology and Pathophysiology. Alpern RJ, Hebert SC (eds.). Burlington, MA, Elsevier, 2008, pp. 1601–1620.

    Google Scholar 

  49. DuBose TD, Jr, Good DW, Hamm LL, Wall SM. Ammonium transport in the kidney: New physiological concepts and their clinical implications. J Am Soc Nephrol 1991;1:1193–1203.

    PubMed  Google Scholar 

  50. Karim Z, Szutkowska M, Vernimmen C, Bichara M. Renal handling of NH3/NH4 +: recent concepts. Nephron Physiol 2005;101:77–81.

    Google Scholar 

  51. Good DW, Knepper MA. Ammonia transport in the mammalian kidney. Am J Physiol 1985;248:F459–F471.

    PubMed  CAS  Google Scholar 

  52. Curthoys NP, Gstraunthaler G. Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol 2001;281:F381–F390.

    PubMed  CAS  Google Scholar 

  53. Madison LL, Seldin DW. Ammonia excretion and renal enzymatic adaptation in human subjects, as disclosed by administration of precursor amino acids. J Clin Invest 1958;37:1615–1627.

    PubMed  CAS  Google Scholar 

  54. Capasso G, Unwin R, Rizzo M, Pica A, Giebisch G. Bicarbonate transport along the loop of Henle: molecular mechanisms and regulation. J Nephrol 2002;15(Suppl 5):S88–S96.

    PubMed  CAS  Google Scholar 

  55. Good DW, Knepper MA, Burg MB. Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am J Physiol 1984;247:F35–F44.

    PubMed  CAS  Google Scholar 

  56. Breton S, Brown D. New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol 2007;292:F1–F10.

    PubMed  CAS  Google Scholar 

  57. Karet FE. Physiological and metabolic implications of V-ATPase isoforms in the kidney. J Bioenerg Biomembr 2005;37:425–429.

    PubMed  CAS  Google Scholar 

  58. Valles P, LaPointe MS, Wysocki J, Batlle D. Kidney vacuolar H+-ATPase: physiology and regulation. Semin Nephrol 2006;26:361–374.

    PubMed  CAS  Google Scholar 

  59. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Renal vacuolar H+-ATPase. Physiol Rev 2004;84:1263–1314.

    PubMed  CAS  Google Scholar 

  60. Alper SL. Molecular physiology of SLC4 anion exchangers. Exp Physiol 2006;91:153–161.

    PubMed  CAS  Google Scholar 

  61. Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO3 transporters. Pflugers Arch 2004;447:495–509.

    PubMed  CAS  Google Scholar 

  62. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 2002;416:874–878.

    PubMed  CAS  Google Scholar 

  63. Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney. J Am Soc Nephrol 2001;12:1327–1334.

    PubMed  CAS  Google Scholar 

  64. Harrison HE. The Fanconi syndrome. J Chronic Dis 1958;7:346–355.

    PubMed  CAS  Google Scholar 

  65. White PC, New MI, Dupont B. Congenital adrenal hyperplasia. (1). N Engl J Med 1987;316:1519–1524.

    PubMed  CAS  Google Scholar 

  66. Quigley R. Proximal renal tubular acidosis. J Nephrol 2006;19(Suppl 9):S41–S45.

    PubMed  CAS  Google Scholar 

  67. Brenes LG, Brenes JN, Hernandez MM. Familial proximal renal tubular acidosis. A distinct clinical entity. Am J Med 1977;63:244–252.

    PubMed  CAS  Google Scholar 

  68. Nash MA, Torrado AD, Greifer I, Spitzer A, Edelmann CM, Jr. Renal tubular acidosis in infants and children. Clinical course, response to treatment, and prognosis. J Pediatr 1972;80:738–748.

    PubMed  CAS  Google Scholar 

  69. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R. Natural history of primary distal renal tubular acidosis treated since infancy. J Pediatr 1982;101:669–676.

    PubMed  CAS  Google Scholar 

  70. Gil H, Santos F, Garcia E, Alvarez MV, Ordonez FA, Malaga S, Coto E. Distal RTA with nerve deafness: clinical spectrum and mutational analysis in five children. Pediatr Nephrol 2007;22:825–828.

    PubMed  Google Scholar 

  71. Brenes LG, Sanchez MI. Impaired urinary ammonium excretion in patients with isolated proximal renal tubular acidosis. J Am Soc Nephrol 1993;4:1073–1078.

    PubMed  CAS  Google Scholar 

  72. Clarke BL, Wynne AG, Wilson DM, Fitzpatrick LA. Osteomalacia associated with adult Fanconi’s syndrome: clinical and diagnostic features. Clin Endocrinol (Oxf) 1995;43:479–490.

    CAS  Google Scholar 

  73. Taylor HC, Elbadawy EH. Renal tubular acidosis type 2 with Fanconi’s syndrome, osteomalacia, osteoporosis, and secondary hyperaldosteronism in an adult consequent to vitamin D and calcium deficiency: effect of vitamin D and calcium citrate therapy. Endocr Pract 2006;12:559–567.

    PubMed  Google Scholar 

  74. Baum M. The Fanconi syndrome of cystinosis: insights into the pathophysiology. Pediatr Nephrol 1998;12:492–497.

    PubMed  CAS  Google Scholar 

  75. Baum M. The cellular basis of Fanconi syndrome. Hosp Pract (Off Ed) 1993;28:137–138.

    CAS  Google Scholar 

  76. Gross P, Meye C. Proximal RTA: are all the charts completed yet? Nephrol Dial Transplant 2008;23:1101–1102.

    PubMed  Google Scholar 

  77. Morris RC, Jr, McSherry E. Symposium on acid-base homeostasis. Renal acidosis. Kidney Int 1972;1:322–340.

    PubMed  Google Scholar 

  78. Katzir Z, Dinour D, Reznik-Wolf H, Nissenkorn A, Holtzman E. Familial pure proximal renal tubular acidosis – a clinical and genetic study. Nephrol Dial Transplant 2008;23:1211–1215.

    PubMed  CAS  Google Scholar 

  79. Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, Tsukamoto K, Satoh H, Shimadzu M, Tozawa F, Mori T, Shiobara M, Seki G, Endou H. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet 1999;23:264–266.

    PubMed  CAS  Google Scholar 

  80. Igarashi T, Sekine T, Inatomi J, Seki G. Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol 2002;13:2171–2177.

    PubMed  Google Scholar 

  81. Pushkin A, Kurtz I. SLC4 base (HCO3 CO3 2−) transporters: Classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 2006;290:F580–F599.

    PubMed  CAS  Google Scholar 

  82. Winsnes A, Monn E, Stokke O, Feyling T. Congenital persistent proximal type renal tubular acidosis in two brothers. Acta Paediatr Scand 1979;68:861–868.

    PubMed  CAS  Google Scholar 

  83. Shiohara M, Igarashi T, Mori T, Komiyama A. Genetic and long-term data on a patient with permanent isolated proximal renal tubular acidosis. Eur J Pediatr 2000;159:892–894.

    PubMed  CAS  Google Scholar 

  84. Igarashi T, Ishii T, Watanabe K, Hayakawa H, Horio K, Sone Y, Ohga K. Persistent isolated proximal renal tubular acidosis – a systemic disease with a distinct clinical entity. Pediatr Nephrol 1994;8:70–71.

    PubMed  CAS  Google Scholar 

  85. Usui T, Hara M, Satoh H, Moriyama N, Kagaya H, Amano S, Oshika T, Ishii Y, Ibaraki N, Hara C, Kunimi M, Noiri E, Tsukamoto K, Inatomi J, Kawakami H, Endou H, Igarashi T, Goto A, Fujita T, Araie M, Seki G. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. J Clin Invest 2001;108:107–115.

    PubMed  CAS  Google Scholar 

  86. Bernardo AA, Bernardo CM, Espiritu DJ, Arruda JA. The sodium bicarbonate cotransporter: structure, function, and regulation. Semin Nephrol 2006;26:352–360.

    PubMed  CAS  Google Scholar 

  87. Romero MF. Molecular pathophysiology of SLC4 bicarbonate transporters. Curr Opin Nephrol Hypertens 2005;14:495–501.

    PubMed  CAS  Google Scholar 

  88. Soleimani M, Burnham CE. Na+/HCO3− cotransporters (NBC): cloning and characterization. J Membr Biol 2001;183:71–84.

    PubMed  CAS  Google Scholar 

  89. Toye AM, Parker MD, Daly CM, Lu J, Virkki LV, Pelletier MF, Boron WF. The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol 2006;291:C788–C801.

    PubMed  CAS  Google Scholar 

  90. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 1983;80:2752–2756.

    PubMed  CAS  Google Scholar 

  91. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS, Lorenz JN, Shull GE. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 1998;19:282–285.

    PubMed  CAS  Google Scholar 

  92. Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, Baum M. Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest 2000;105:1141–1146.

    PubMed  CAS  Google Scholar 

  93. Warth R, Barriere H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, Guy N, Bendahhou S, Lesage F, Poujeol P, Barhanin J. Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci USA 2004;101:8215–8220.

    PubMed  CAS  Google Scholar 

  94. Gahl WA, Thoene JG, Schneider JA. Cystinosis. N Engl J Med 2002;347:111–121.

    PubMed  Google Scholar 

  95. Kalatzis V, Antignac C. New aspects of the pathogenesis of cystinosis. Pediatr Nephrol 2003;18:207–215.

    PubMed  Google Scholar 

  96. Kalatzis V, Antignac C. Cystinosis: from gene to disease. Nephrol Dial Transplant 2002;17:1883–1886.

    PubMed  CAS  Google Scholar 

  97. Kalatzis V, Cherqui S, Antignac C, Gasnier B. Cystinosin, the protein defective in cystinosis, is a H+-driven lysosomal cystine transporter. EMBO J 2001;20:5940–5949.

    PubMed  CAS  Google Scholar 

  98. Fanconi G, Bickel H. Die chronische Aminoacidurie (AminosaÈ urediabetes oder nephrotisch-glukosurischer Zwerg-wuchs) bei der Glykogenose und der Cystinkrankheit. Helv Paediatr Acta 1949;4:359–396.

    PubMed  CAS  Google Scholar 

  99. Santer R, Groth S, Kinner M, Dombrowski A, Berry GT, Brodehl J, Leonard JV, Moses S, Norgren S, Skovby F, Schneppenheim R, Steinmann B, Schaub J. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet 2002;110:21–29.

    PubMed  CAS  Google Scholar 

  100. Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 1997;17:324–326.

    PubMed  CAS  Google Scholar 

  101. Santer R, Schneppenheim R, Suter D, Schaub J, Steinmann B. Fanconi-Bickel syndrome – the original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur J Pediatr 1998;157:783–797.

    PubMed  CAS  Google Scholar 

  102. Santer R, Steinmann B, Schaub J. Fanconi-Bickel syndrome – a congenital defect of facilitative glucose transport. Curr Mol Med 2002;2:213–227.

    PubMed  CAS  Google Scholar 

  103. Morris RC, Jr. An experimental renal acidification defect in patients with hereditary fructose intolerance. II. Its distinction from classic renal tubular acidosis; its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis. J Clin Invest 1968;47:1648–1663.

    PubMed  Google Scholar 

  104. Morris RC, Jr. An experimental renal acidification defect in patients with hereditary fructose intolerance. I. Its resemblance to renal tubular acidosis. J Clin Invest 1968;47:1389–1398.

    PubMed  Google Scholar 

  105. Zhang X, Jefferson AB, Auethavekiat V, Majerus PW. The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc Natl Acad Sci USA 1995;92:4853–4856.

    PubMed  CAS  Google Scholar 

  106. Suchy SF, Nussbaum RL. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet 2002;71:1420–1427.

    PubMed  CAS  Google Scholar 

  107. Devuyst O, Jouret F, Auzanneau C, Courtoy PJ. Chloride channels and endocytosis: new insights from Dent’s disease and ClC-5 knockout mice. Nephron Physiol 2005;99:69–73.

    Google Scholar 

  108. Hryciw DH, Ekberg J, Pollock CA, Poronnik P. ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol 2006;38:1036–1042.

    PubMed  CAS  Google Scholar 

  109. Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV. A common molecular basis for three inherited kidney stone diseases. Nature 1996;379:445–449.

    PubMed  CAS  Google Scholar 

  110. Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB. Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 2000;9:2937–2945.

    PubMed  CAS  Google Scholar 

  111. Aperia A, Bergqvist G, Linne T, Zetterstrom R. Familial Fanconi syndrome with malabsorption and galactose intolerance, normal kinase and transferase activity. A report on two siblings. Acta Paediatr Scand 1981;70:527–533.

    PubMed  CAS  Google Scholar 

  112. Endo F, Sun MS. Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis 2002;25:227–234.

    PubMed  CAS  Google Scholar 

  113. Kubo S, Sun M, Miyahara M, Umeyama K, Urakami K, Yamamoto T, Jakobs C, Matsuda I, Endo F. Hepatocyte injury in tyrosinemia type 1 is induced by fumarylacetoacetate and is inhibited by caspase inhibitors. Proc Natl Acad Sci USA 1998;95:9552–9557.

    PubMed  CAS  Google Scholar 

  114. Sun MS, Hattori S, Kubo S, Awata H, Matsuda I, Endo F. A mouse model of renal tubular injury of tyrosinemia type 1: development of De Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice. J Am Soc Nephrol 2000;11:291–300.

    PubMed  CAS  Google Scholar 

  115. Chen YT. Type I glycogen storage disease: Kidney involvement, pathogenesis and its treatment. Pediatr Nephrol 1991;5:71–76.

    PubMed  CAS  Google Scholar 

  116. Chen YT, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB. Renal disease in type I glycogen storage disease. N Engl J Med 1988;318:7–11.

    PubMed  CAS  Google Scholar 

  117. Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol 2007;13:2541–2553.

    PubMed  CAS  Google Scholar 

  118. Niaudet P, Heidet L, Munnich A, Schmitz J, Bouissou F, Gubler MC, Rotig A. Deletion of the mitochondrial DNA in a case of De Toni-Debre-Fanconi syndrome and Pearson syndrome. Pediatr Nephrol 1994;8:164–168.

    PubMed  CAS  Google Scholar 

  119. Niaudet P, Rotig A. Renal involvement in mitochondrial cytopathies. Pediatr Nephrol 1996;10:368–373.

    PubMed  CAS  Google Scholar 

  120. Niaudet P, Rotig A. The kidney in mitochondrial cytopathies. Kidney Int 1997;51:1000–1007.

    PubMed  CAS  Google Scholar 

  121. Rotig A. Renal disease and mitochondrial genetics. J Nephrol 2003;16:286–292.

    PubMed  CAS  Google Scholar 

  122. Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, Yaniv M. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 1996;84:575–585.

    PubMed  CAS  Google Scholar 

  123. Pontoglio M. Hepatocyte nuclear factor 1, a transcription factor at the crossroads of glucose homeostasis. J Am Soc Nephrol 2000;11(Suppl 16):S140–S143.

    PubMed  CAS  Google Scholar 

  124. Pontoglio M, Prie D, Cheret C, Doyen A, Leroy C, Froguel P, Velho G, Yaniv M, Friedlander G. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep 2000;1:359–365.

    PubMed  CAS  Google Scholar 

  125. Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev 2003;23:146–189.

    PubMed  CAS  Google Scholar 

  126. Guerrini R, Parmeggiani L. Topiramate and its clinical applications in epilepsy. Expert Opin Pharmacother 2006;7:811–823.

    PubMed  CAS  Google Scholar 

  127. Perucca E. A pharmacological and clinical review on topiramate, a new antiepileptic drug. Pharmacol Res 1997;35:241–256.

    PubMed  CAS  Google Scholar 

  128. Supuran CT. Carbonic anhydrases as drug targets. Curr Pharm Des 2008;14:601–602.

    PubMed  CAS  Google Scholar 

  129. Supuran CT. Carbonic anhydrases – an overview. Curr Pharm Des 2008;14:603–614.

    PubMed  CAS  Google Scholar 

  130. Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 2005;99:105–110.

    Google Scholar 

  131. Choudhury D, Ahmed Z. Drug-induced nephrotoxicity. Med Clin North Am 1997;81:705–717.

    PubMed  CAS  Google Scholar 

  132. Choudhury D, Ahmed Z. Drug-associated renal dysfunction and injury. Nat Clin Pract Nephrol 2006;2:80–91.

    PubMed  CAS  Google Scholar 

  133. Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G. Drug-induced Fanconi’s syndrome. Am J Kidney Dis 2003;41:292–309.

    PubMed  CAS  Google Scholar 

  134. Lande MB, Kim MS, Bartlett C, Guay-Woodford LM. Reversible Fanconi syndrome associated with valproate therapy. J Pediatr 1993;123:320–322.

    PubMed  CAS  Google Scholar 

  135. Zaki EL, Springate JE. Renal injury from valproic acid: case report and literature review. Pediatr Neurol 2002;27:318–319.

    PubMed  Google Scholar 

  136. Izumotani T, Ishimura E, Tsumura K, Goto K, Nishizawa Y, Morii H. An adult case of Fanconi syndrome due to a mixture of Chinese crude drugs. Nephron 1993;65:137–140.

    PubMed  CAS  Google Scholar 

  137. Lee S, Lee T, Lee B, Choi H, Yang M, Ihm CG, Kim M. Fanconi’s syndrome and subsequent progressive renal failure caused by a Chinese herb containing aristolochic acid. Nephrology (Carlton) 2004;9:126–129.

    Google Scholar 

  138. Ghiculescu RA, Kubler PA. Aminoglycoside-associated Fanconi syndrome. Am J Kidney Dis 2006;48:e89–e93.

    PubMed  Google Scholar 

  139. James CW, Steinhaus MC, Szabo S, Dressier RM. Tenofovir-related nephrotoxicity: case report and review of the literature. Pharmacotherapy 2004;24:415–418.

    PubMed  Google Scholar 

  140. Melnick JZ, Baum M, Thompson JR. Aminoglycoside-induced Fanconi’s syndrome. Am J Kidney Dis 1994;23:118–122.

    PubMed  CAS  Google Scholar 

  141. Quimby D, Brito MO. Fanconi syndrome associated with use of tenofovir in HIV-infected patients: a case report and review of the literature. AIDS Read 2005;15:357–364.

    PubMed  Google Scholar 

  142. Rossi R, Pleyer J, Schafers P, Kuhn N, Kleta R, Deufel T, Jurgens H. Development of ifosfamide-induced nephrotoxicity: prospective follow-up in 75 patients. Med Pediatr Oncol 1999;32:177–182.

    PubMed  CAS  Google Scholar 

  143. Skinner R. Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol 2003;41:190–197.

    PubMed  CAS  Google Scholar 

  144. Skinner R, Pearson AD, Craft AW. Ifosfamide nephrotoxicity in children. Med Pediatr Oncol 1994;22:153–154.

    PubMed  CAS  Google Scholar 

  145. Tsimihodimos V, Psychogios N, Kakaidi V, Bairaktari E, Elisaf M. Salicylate-induced proximal tubular dysfunction. Am J Kidney Dis 2007;50:463–467.

    PubMed  CAS  Google Scholar 

  146. Pessler F, Emery H, Dai L, Wu YM, Monash B, Cron RQ, Pradhan M. The spectrum of renal tubular acidosis in paediatric Sjogren syndrome. Rheumatology (Oxford) 2006;45:85–91.

    CAS  Google Scholar 

  147. Decourt C, Bridoux F, Touchard G, Cogne M. A monoclonal V kappa l light chain responsible for incomplete proximal tubulopathy. Am J Kidney Dis 2003;41:497–504.

    PubMed  CAS  Google Scholar 

  148. Lacy MQ, Gertz MA. Acquired Fanconi’s syndrome associated with monoclonal gammopathies. Hematol Oncol Clin North Am 1999;13:1273–1280.

    PubMed  CAS  Google Scholar 

  149. Messiaen T, Deret S, Mougenot B, Bridoux F, Dequiedt P, Dion JJ, Makdassi R, Meeus F, Pourrat J, Touchard G, Vanhille P, Zaoui P, Aucouturier P, Ronco PM. Adult Fanconi syndrome secondary to light chain gammopathy. Clinicopathologic heterogeneity and unusual features in 11 patients. Medicine (Baltimore) 2000;79:135–154.

    CAS  Google Scholar 

  150. Guignard JP, Torrado A. Proximal renal tubular acidosis in vitamin D deficiency rickets. Acta Paediatr Scand 1973;62:543–546.

    PubMed  CAS  Google Scholar 

  151. Vainsel M, Manderlier T, Vis HL. Proximal renal tubular acidosis in vitamin D deficiency rickets. Biomedicine 1975;22:35–40.

    PubMed  CAS  Google Scholar 

  152. Firmin CJ, Kruger TF, Davids R. Proximal renal tubular acidosis in pregnancy. A case report and literature review. Gynecol Obstet Invest 2007;63:39–44.

    PubMed  CAS  Google Scholar 

  153. Riley AL, Ryan LM, Roth DA. Renal proximal tubular dysfunction and paroxysmal nocturnal hemoglobinuria. Am J Med 1977;62:125–129.

    PubMed  CAS  Google Scholar 

  154. Brodwall EK, Westlie L, Myhre E. The renal excretion and tubular reabsorption of citric acid in renal tubular acidosis. Acta Med Scand 1972;192:137–139.

    PubMed  CAS  Google Scholar 

  155. Simpson DP. Citrate excretion: a window on renal metabolism. Am J Physiol 1983;244:F223–F234.

    PubMed  CAS  Google Scholar 

  156. Borthwick KJ, Kandemir N, Topaloglu R, Kornak U, Bakkaloglu A, Yordam N, Ozen S, Mocan H, Shah GN, Sly WS, Karet FE. A phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis. J Med Genet 2003;40:115–121.

    PubMed  CAS  Google Scholar 

  157. Serrano A, Batlle D. Images in clinical medicine. Bilateral kidney calcifications. N Engl J Med 2008;359:e1.

    PubMed  Google Scholar 

  158. Feest TG, Proctor S, Brown R, Wrong OM. Nephrocalcinosis: another cause of renal erythrocytosis. Br Med J 1978;2:605.

    PubMed  CAS  Google Scholar 

  159. Feest TG, Wrong O. Erythrocytosis and nephrocalcinosis. Nephrol Dial Transplant 1992;7:1071.

    PubMed  CAS  Google Scholar 

  160. Kamel KS, Briceno LF, Sanchez MI, Brenes L, Yorgin P, Kooh SW, Balfe JW, Halperin ML. A new classification for renal defects in net acid excretion. Am J Kidney Dis 1997;29:136–146.

    PubMed  CAS  Google Scholar 

  161. Miller SG, Schwartz GJ. Hyperammonaemia with distal renal tubular acidosis. Arch Dis Child 1997;77:441–444.

    PubMed  CAS  Google Scholar 

  162. Pela I, Seracini D. Hyperammonemia in distal renal tubular acidosis: is it more common than we think? Clin Nephrol 2007;68:109–114.

    PubMed  CAS  Google Scholar 

  163. Seracini D, Poggi GM, Pela I. Hyperammonaemia in a child with distal renal tubular acidosis. Pediatr Nephrol 2005;20:1645–1647.

    PubMed  CAS  Google Scholar 

  164. Batlle D, Moorthi KM, Schlueter W, Kurtzman N. Distal renal tubular acidosis and the potassium enigma. Semin Nephrol 2006;26:471–478.

    PubMed  CAS  Google Scholar 

  165. Sebastian A, McSherry E, Morris RC, Jr. Renal potassium wasting in renal tubular acidosis (RTA): its occurrence in types 1 and 2 RTA despite sustained correction of systemic acidosis. J Clin Invest 1971;50:667–678.

    PubMed  CAS  Google Scholar 

  166. Bresolin NL, Grillo E, Fernandes VR, Carvalho FL, Goes JE, DaSilva RJ. A case report and review of hypokalemic paralysis secondary to renal tubular acidosis. Pediatr Nephrol 2005;20:818–820.

    PubMed  Google Scholar 

  167. Siamopoulos KC, Elisaf M, Moutsopoulos HM. Hypokalaemic paralysis as the presenting manifestation of primary Sjogren’s syndrome. Nephrol Dial Transplant 1994;9:1176–1178.

    PubMed  CAS  Google Scholar 

  168. Gallagher PG. Red cell membrane disorders. Hematology Am Soc Hematol Educ Program. 2005;13–18.

    Google Scholar 

  169. Tanner MJ. The structure and function of band 3 (AE1): recent developments (review). Mol Membr Biol 1997;14:155–165.

    PubMed  CAS  Google Scholar 

  170. Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, Unwin RJ, Wrong O, Tanner MJ. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 1997;100:1693–1707.

    PubMed  CAS  Google Scholar 

  171. Karet FE, Gainza FJ, Gyory AZ, Unwin RJ, Wrong O, Tanner MJ, Nayir A, Alpay H, Santos F, Hulton SA, Bakkaloglu A, Ozen S, Cunningham MJ, Di Pietro A, Walker WG, Lifton RP. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci USA 1998;95:6337–6342.

    PubMed  CAS  Google Scholar 

  172. Fry AC, Karet FE. Inherited renal acidoses. Physiology (Bethesda) 2007;22:202–211.

    CAS  Google Scholar 

  173. Karet FE. Inherited distal renal tubular acidosis. J Am Soc Nephrol 2002;13:2178–2184.

    PubMed  CAS  Google Scholar 

  174. Khositseth S, Sirikanaerat A, Khoprasert S, Opastirakul S, Kingwatanakul P, Thongnoppakhun W, Yenchitsomanus PT. Hematological abnormalities in patients with distal renal tubular acidosis and hemoglobinopathies. Am J Hematol 2008;83:465–471.

    PubMed  CAS  Google Scholar 

  175. Wrong O, Bruce LJ, Unwin RJ, Toye AM, Tanner MJ. Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int 2002;62:10–19.

    PubMed  CAS  Google Scholar 

  176. Yenchitsomanus PT. Human anion exchanger1 mutations and distal renal tubular acidosis. Southeast Asian J Trop Med Public Health 2003;34:651–658.

    PubMed  CAS  Google Scholar 

  177. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez-Soriano J, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensory neural deafness. Nat Genet 1999;21:84–90.

    PubMed  CAS  Google Scholar 

  178. Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 2007;293:C1187–C1208.

    PubMed  CAS  Google Scholar 

  179. Peters TA, Monnens LA, Cremers CW, Curfs JH. Genetic disorders of transporters/channels in the inner ear and their relation to the kidney. Pediatr Nephrol 2004;19:1194–1201.

    PubMed  Google Scholar 

  180. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al-Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li VG, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez SJ, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 2002;39:796–803.

    PubMed  CAS  Google Scholar 

  181. Bajaj G, Quan A. Renal tubular acidosis and deafness: report of a large family. Am J Kidney Dis 1996;27:880–882.

    PubMed  CAS  Google Scholar 

  182. Fuster DG, Zhang J, Xie XS, Moe OW. The vacuolar-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction. Kidney Int 2008;73:1151–1158.

    PubMed  CAS  Google Scholar 

  183. Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al Sabban EA, Lifton RP, Scherer SW, Karet FE. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 2000;26:71–75.

    PubMed  CAS  Google Scholar 

  184. Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA. Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl/HCO3 exchanger (slc4a1). J Am Soc Nephrol 2007;18:1408–1418.

    PubMed  CAS  Google Scholar 

  185. Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, Persson AE, Bergstrom GG, Enerback S. Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 2004;113:1560–1570.

    PubMed  CAS  Google Scholar 

  186. Cohen EP, Bastani B, Cohen MR, Kolner S, Hemken P, Gluck SL. Absence of H+-ATPase in cortical collecting tubules of a patient with Sjogren’s syndrome and distal renal tubular acidosis. J Am Soc Nephrol 1992;3:264–271.

    PubMed  CAS  Google Scholar 

  187. Pertovaara M, Korpela M, Kouri T, Pasternack A. The occurrence of renal involvement in primary Sjogren’s syndrome: a study of 78 patients. Rheumatology (Oxford) 1999;38:1113–1120.

    CAS  Google Scholar 

  188. Siamopoulos KC, Elisaf M, Drosos AA, Mavridis AA, Moutsopoulos HM. Renal tubular acidosis in primary Sjogren’s syndrome. Clin Rheumatol 1992;11:226–230.

    PubMed  CAS  Google Scholar 

  189. Bagga A, Jain Y, Srivastava RN, Bhuyan UN. Renal tubular acidosis preceding systemic lupus erythematosus. Pediatr Nephrol 1993;7:735–736.

    PubMed  CAS  Google Scholar 

  190. Caruana RJ, Barish CF, Buckalew VM, Jr. Complete distal renal tubular acidosis in systemic lupus: clinical and laboratory findings. Am J Kidney Dis 1985;6:59–63.

    PubMed  CAS  Google Scholar 

  191. Konishi K, Hayashi M, Saruta T. Renal tubular acidosis with autoantibody directed to renal collecting-duct cells. N Engl J Med 1994;331:1593–1594.

    PubMed  CAS  Google Scholar 

  192. Li SL, Liou LB, Fang JT, Tsai WP. Symptomatic renal tubular acidosis (RTA) in patients with systemic lupus erythematosus: an analysis of six cases with new association of type 4 RTA. Rheumatology (Oxford) 2005;44:1176–1180.

    CAS  Google Scholar 

  193. Schwarz C, Benesch T, Kodras K, Oberbauer R, Haas M. Complete renal tubular acidosis late after kidney transplantation. Nephrol Dial Transplant 2006;21:2615–2620.

    PubMed  Google Scholar 

  194. McCurdy DK, Frederic M, Elkinton JR. Renal tubular acidosis due to amphotericin B. N Engl J Med 1968;278:124–130.

    PubMed  CAS  Google Scholar 

  195. Roscoe JM, Goldstein MB, Halperin ML, Schloeder FX, Stinebaugh BJ. Effect of amphotercin B on urine acidification in rats: Implications for the pathogenesis of distal renal tubular acidosis. J Lab Clin Med 1977;89:463–470.

    PubMed  CAS  Google Scholar 

  196. Stinebaugh BJ, Schloeder FX, Tam SC, Goldstein MB, Halperin ML. Pathogenesis of distal renal tubular acidosis. Kidney Int 1981;19:1–7.

    PubMed  CAS  Google Scholar 

  197. Hoorn EJ, Zietse R. Combined renal tubular acidosis and diabetes insipidus in hematological disease. Nat Clin Pract Nephrol 2007;3:171–175.

    PubMed  Google Scholar 

  198. Navarro JF, Quereda C, Quereda C, Gallego N, Antela A, Mora C, Ortuno J. Nephrogenic diabetes insipidus and renal tubular acidosis secondary to foscarnet therapy. Am J Kidney Dis 1996;27:431–434.

    PubMed  CAS  Google Scholar 

  199. Roscoe JM, Goldstein MB, Halperin ML, Wilson DR, Stinebaugh BJ. Lithium-induced impairment of urine acidification. Kidney Int 1976;9:344–350.

    PubMed  CAS  Google Scholar 

  200. Seikaly M, Browne R, Baum M. Nephrocalcinosis is associated with renal tubular acidosis in children with X-linked hypophosphatemia. Pediatrics 1996;97:91–93.

    PubMed  CAS  Google Scholar 

  201. Bonilla-Felix M, Villegas-Medina O, Vehaskari VM. Renal acidification in children with idiopathic hypercalciuria. J Pediatr 1994;124:529–534.

    PubMed  CAS  Google Scholar 

  202. Nilwarangkur S, Nimmannit S, Chaovakul V, Susaengrat W, Ong-aj-yooth S, Vasuvattakul S, Pidetcha P, Malasit P. Endemic primary distal renal tubular acidosis in Thailand. Q J Med 1990;74:289–301.

    PubMed  CAS  Google Scholar 

  203. Dafnis E, Spohn M, Lonis B, Kurtzman NA, Sabatini S. Vanadate causes hypokalemic distal renal tubular acidosis. Am J Physiol 1992;262:F449–F453.

    PubMed  CAS  Google Scholar 

  204. Carlisle EJ, Donnelly SM, Vasuvattakul S, Kamel KS, Tobe S, Halperin ML. Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol 1991;1:1019–1027.

    PubMed  CAS  Google Scholar 

  205. Vainsel M, Fondu P, Cadranel S, Rocmans C, Gepts W. Osteopetrosis associated with proximal and distal tubular acidosis. Acta Paediatr Scand 1972;61:429–434.

    PubMed  CAS  Google Scholar 

  206. Nagai R, Kooh SW, Balfe JW, Fenton T, Halperin ML. Renal tubular acidosis and osteopetrosis with carbonic anhydrase II deficiency: pathogenesis of impaired acidification. Pediatr Nephrol 1997;11:633–636.

    PubMed  CAS  Google Scholar 

  207. Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, Vainsel M, Baluarte HJ, Gruskin A, Al-Mosawi M. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med 1985;313:139–145.

    PubMed  CAS  Google Scholar 

  208. Del FA, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone 2008;42:19–29.

    Google Scholar 

  209. Wagner CA, Geibel JP. Acid-base transport in the collecting duct. J Nephrol 2002;15(Suppl 5):S112–S127.

    PubMed  CAS  Google Scholar 

  210. Sartorius OW, Calhoon D, Pitts RF. The capacity of the adrenalectomized rat to secrete hydrogen and ammonium ions. Endocrinology 1952;51:444–450.

    PubMed  CAS  Google Scholar 

  211. Sartorius OW, Calhoon D, Pitts RF. Studies on the interrelationships of the adrenal cortex and renal ammonia excretion by the rat. Endocrinology 1953;52:256–265.

    PubMed  CAS  Google Scholar 

  212. Welbourne TC, Francoeur D. Influence of aldosterone on renal ammonia production. Am J Physiol 1977;233:E56–E60.

    PubMed  CAS  Google Scholar 

  213. DuBose TD, Jr. Hyperkalemic hyperchloremic metabolic acidosis: pathophysiologic insights. Kidney Int 1997;51:591–602.

    PubMed  Google Scholar 

  214. DuBose TD, Jr. Molecular and pathophysiologic mechanisms of hyperkalemic metabolic acidosis. Trans Am Clin Climatol Assoc 2000;111:122–133.

    PubMed  Google Scholar 

  215. White PC, New MI, Dupont B. Congenital adrenal hyperplasia (2). N Engl J Med 1987;316:1580–1586.

    PubMed  CAS  Google Scholar 

  216. White PC. Steroid 11 beta-hydroxylase deficiency and related disorders. Endocrinol Metab Clin North Am 2001;30:61–79, vi.

    PubMed  CAS  Google Scholar 

  217. Geller DS, Rodriguez-Soriano J, Vallo BA, Schifter S, Bayer M, Chang SS, Lifton RP. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 1998;19:279–281.

    PubMed  CAS  Google Scholar 

  218. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 1996;12:248–253.

    PubMed  CAS  Google Scholar 

  219. Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 1986;8:93–102.

    PubMed  CAS  Google Scholar 

  220. Schambelan M, Sebastian A, Rector FC, Jr. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int 1981;19:716–727.

    PubMed  CAS  Google Scholar 

  221. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 2001;293:1107–1112.

    PubMed  CAS  Google Scholar 

  222. Knochel JP. The syndrome of hyporeninemic hypoaldosteronism. Annu Rev Med 1979;30:145–153.

    PubMed  CAS  Google Scholar 

  223. Sebastian A, Schambelan M, Lindenfeld S, Morris RC, Jr. Amelioration of metabolic acidosis with fludrocortisone therapy in hyporeninemic hypoaldosteronism. N Engl J Med 1977;297:576–583.

    PubMed  CAS  Google Scholar 

  224. Kristjansson K, Laxdal T, Ragnarsson J. Type 4 renal tubular acidosis (sub-type 2) associated with idiopathic interstitial nephritis. Acta Paediatr Scand 1986;75:1051–1054.

    PubMed  CAS  Google Scholar 

  225. Keven K, Ozturk R, Sengul S, Kutlay S, Ergun I, Erturk S, Erbay B. Renal tubular acidosis after kidney transplantation – incidence, risk factors and clinical implications. Nephrol Dial Transplant 2007;22:906–910.

    PubMed  Google Scholar 

  226. Olyaei AJ, DeMattos AM, Bennett WM. Immunosuppressant-induced nephropathy: Pathophysiology, incidence and management. Drug Saf 1999;21:471–488.

    PubMed  CAS  Google Scholar 

  227. Bagga A, Bajpai A, Menon S. Approach to renal tubular disorders. Indian J Pediatr 2005;72:771–776.

    PubMed  Google Scholar 

  228. Bagga A, Sinha A. Evaluation of renal tubular acidosis. Indian J Pediatr 2007;74:679–686.

    PubMed  Google Scholar 

  229. Rodriguez SJ. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 2002;13:2160–2170.

    Google Scholar 

  230. Rodriguez-Soriano J, Vallo A. Renal tubular acidosis. Pediatr Nephrol 1990;4:268–275.

    PubMed  CAS  Google Scholar 

  231. Adedoyin O, Gottlieb B, Frank R, Vento S, Vergara M, Gauthier B, Trachtman H. Evaluation of failure to thrive: diagnostic yield of testing for renal tubular acidosis. Pediatrics 2003;112:e463.

    PubMed  Google Scholar 

  232. Emmett M, Narins RG. Clinical use of the anion gap. Medicine (Baltimore) 1977;56:38–54.

    CAS  Google Scholar 

  233. Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol 2007;2:162–174.

    PubMed  CAS  Google Scholar 

  234. Oh MS, Carroll HJ. The anion gap. N Engl J Med 1977;297:814–817.

    PubMed  CAS  Google Scholar 

  235. Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med 1988;318:594–599.

    PubMed  CAS  Google Scholar 

  236. Dyck RF, Asthana S, Kalra J, West ML, Massey KL. A modification of the urine osmolal gap: An improved method for estimating urine ammonium. Am J Nephrol 1990;10:359–362.

    PubMed  CAS  Google Scholar 

  237. Goldstein MB, Bear R, Richardson RM, Marsden PA, Halperin ML. The urine anion gap: a clinically useful index of ammonium excretion. Am J Med Sci 1986;292:198–202.

    PubMed  CAS  Google Scholar 

  238. Halperin ML, Margolis BL, Robinson LA, Halperin RM, West ML, Bear RA. The urine osmolal gap: a clue to estimate urine ammonium in “hybrid” types of metabolic acidosis. Clin Invest Med 1988;11:198–202.

    PubMed  CAS  Google Scholar 

  239. Kim GH, Han JS, Kim YS, Joo KW, Kim S, Lee JS. Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis 1996;27:42–47.

    PubMed  CAS  Google Scholar 

  240. Richardson RM, Halperin ML. The urine pH: a potentially misleading diagnostic test in patients with hyperchloremic metabolic acidosis. Am J Kidney Dis 1987;10:140–143.

    PubMed  CAS  Google Scholar 

  241. Kleta R, Gahl WA. Pharmacological treatment of nephropathic cystinosis with cysteamine. Expert Opin Pharmacother 2004;5:2255–2262.

    PubMed  CAS  Google Scholar 

  242. Kirschbaum B, Sica D, Anderson FP. Urine electrolytes and the urine anion and osmolar gaps. J Lab Clin Med 1999;133:597–604.

    PubMed  CAS  Google Scholar 

  243. Sulyok E, Guignard JP. Relationship of urinary anion gap to urinary ammonium excretion in the neonate. Biol Neonate 1990;57:98–106.

    PubMed  CAS  Google Scholar 

  244. DuBose TD, Jr, Caflisch CR. Validation of the difference in urine and blood carbon dioxide tension during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis. J Clin Invest 1985;75:1116–1123.

    PubMed  Google Scholar 

  245. Kim S, Lee JW, Park J, Na KY, Joo KW, Ahn C, Kim S, Lee JS, Kim GH, Kim J, Han JS. The urine-blood PCO gradient as a diagnostic index of H+-ATPase defect distal renal tubular acidosis. Kidney Int 2004;66:761–767.

    PubMed  CAS  Google Scholar 

  246. Lin JY, Lin JS, Tsai CH. Use of the urine-to-blood carbon dioxide tension gradient as a measurement of impaired distal tubular hydrogen ion secretion among neonates. J Pediatr 1995;126:114–117.

    PubMed  CAS  Google Scholar 

  247. Walsh SB, Shirley DG, Wrong OM, Unwin RJ. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int 2007;71:1310–1316.

    PubMed  CAS  Google Scholar 

  248. Kleta R, Bernardini I, Ueda M, Varade WS, Phornphutkul C, Krasnewich D, Gahl WA. Long-term follow-up of well-treated nephropathic cystinosis patients. J Pediatr 2004;145:555–560.

    PubMed  Google Scholar 

  249. Schneider JA. Treatment of cystinosis: simple in principle, difficult in practice. J Pediatr 2004;145:436–438.

    PubMed  Google Scholar 

  250. Domrongkitchaiporn S, Khositseth S, Stitchantrakul W, Tapaneya-Olarn W, Radinahamed P. Dosage of potassium citrate in the correction of urinary abnormalities in pediatric distal renal tubular acidosis patients. Am J Kidney Dis 2002;39:383–391.

    PubMed  CAS  Google Scholar 

  251. Tapaneya-Olarn W, Khositseth S, Tapaneya-Olarn C, Teerakarnjana N, Chaichanajarernkul U, Stitchantrakul W, Petchthong T. The optimal dose of potassium citrate in the treatment of children with distal renal tubular acidosis. J Med Assoc Thai 2002;854:S1143–S1149.

    Google Scholar 

  252. Morris RC, Jr, Sebastian A. Alkali therapy in renal tubular acidosis: who needs it? J Am Soc Nephrol 2002;13:2186–2188.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Quigley, R. (2009). Renal Tubular Acidosis. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics