Skip to main content

Surface Functionalization of Silicene

  • Chapter
  • First Online:
Silicene

Part of the book series: NanoScience and Technology ((NANO))

  • 768 Accesses

Abstract

For two-dimensional (2D) materials, an attractive feature is that all the atoms of the materials are exposed on the surface. Thus tuning the structure and properties by surface treatments becomes straightforward. Similar as graphene, the nearly zero-gap character of silicene hinders its applications in electronic and optoelectronic devices. In the case of graphene, functionalization through hydrogenation, halogenation, oxidation, have been widely explored in order to modify the electronic structure of graphene. However, the stable aromatic π-bond network of graphene makes it very inert and difficult to bond with foreign atoms. For example, hydrogen atoms on graphene usually form clusters instead of an ordered structure. In contrast, silicene possesses hybrid sp2-sp3 bonding, which is more readily to be modified or functionalized. Since the early stage of silicene research, theoretical investigations on the hydrogenation, halogenation, and oxidation of silicene have been widely reported in literature. Recently, increasing experimental successes have been achieved on functionalization of silicene. It is now imperative to review the progresses in the fast-growing field. In this chapter, we will discuss hydrogenation, halogenation oxidization individually. In each section, we first describe those theoretical predictions and then illustrate recent experimental successes. Finally, we will give some overview and outlook of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the 4 × 4 silicene phase is therefore also referred to as a 3 × 3 superstructure, e.g. in Chaps. 5, 7 and 8

References

  1. R. Balog, B. Jørgensen, J. Wells, E. Lægsgaard, P. Hofmann, F. Besenbacher, L. Hornekær, J. Am. Chem. Soc. 131, 8744 (2009)

    Article  Google Scholar 

  2. L.C. Lew Yan Voon, E. Sandberg, R.S. Aga, A.A. Farajian, Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 97:163114 (2010)

    Article  ADS  Google Scholar 

  3. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98, 223107 (2011)

    Article  ADS  Google Scholar 

  4. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)

    Article  ADS  Google Scholar 

  5. S. Lebègue, M. Klintenberg, O. Eriksson, M.I. Katsnelson, Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B 79, 245117 (2009)

    Article  ADS  Google Scholar 

  6. P. Zhang, X.D. Li, C.H. Hu, S.Q. Wu, Z.Z. Zhu, First-principles studies of the hydrogenation effects in silicene sheets. Phys. Lett. A 376, 1230–1233 (2012)

    Article  ADS  Google Scholar 

  7. H. Liu, N. Han, J. Zhao, Band gap opening in bilayer silicene by alkali metal intercalation. J. Phys. Condens. Matter 26, 475303 (2014)

    Article  ADS  Google Scholar 

  8. V. Zólyomi, J.R. Wallbank, V.I. Fal’ko, Silicane and germanane: tight-binding and first-principles studies. 2D Mater. 1:011005 (2014)

    Article  Google Scholar 

  9. Q. Peng, S. De, Elastic limit of silicane. Nanoscale 6, 12071–12079 (2014)

    Article  ADS  Google Scholar 

  10. Y. Ding, Y. Wang, Electronic structures of silicene fluoride and hydride. Appl. Phys. Lett. 100, 083102 (2012)

    Article  ADS  Google Scholar 

  11. W. Wu, Z. Ao, T. Wang, C. Li, S. Li, Electric field induced hydrogenation of silicene. Phys. Chem. Chem. Phys. 16, 16588–16594 (2014)

    Article  Google Scholar 

  12. C.-W. Zhang, S.-S. Yan, First-principles study of ferromagnetism in two-dimensional silicene with hydrogenation. J. Phys. Chem. C 116, 4163–4166 (2012)

    Article  Google Scholar 

  13. T.H. Osborn, A.A. Farajian, O.V. Pupysheva, R.S. Aga, L.C. Lew Yan Voon, Ab initio simulations of silicene hydrogenation. Chem. Phys. Lett. 511:101–105 (2011)

    Article  ADS  Google Scholar 

  14. G. Cao, Y. Zhang, J. Cao, Strain and chemical function decoration induced quantum spin hall effect in 2D silicene and Sn film. Phys. Lett. A 379, 1475–1479 (2015)

    Article  ADS  Google Scholar 

  15. G.G. Guzman-Verri, L.C. Lew Yan Voon, band structure of hydrogenated Si nanosheets and nanotubes. J. Phys. Condens. Matter 23:145502 (2011)

    ADS  Google Scholar 

  16. B. van den Broek, M. Houssa, E. Scalise, G. Pourtois, V.V. Afanas’ev, A. Stesmans, First-principles electronic functionalization of silicene and germanene by adatom chemisorption. Appl. Surf. Sci. 291, 104–108 (2014)

    Article  ADS  Google Scholar 

  17. X.Q. Wang, H.D. Li, J.T. Wang, Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys. Chem. Chem. Phys. 14, 3031–3036 (2012)

    Article  Google Scholar 

  18. F.-B. Zheng, C.-W. Zhang, The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res. Lett. 7, 422 (2012)

    Article  ADS  Google Scholar 

  19. X. Pi, Z. Ni, Y. Liu, Z. Ruan, M. Xu, D. Yang, Density functional theory study on boron- and phosphorus-doped hydrogen-passivated silicene. Phys. Chem. Chem. Phys. 17, 4146–4151 (2015)

    Article  Google Scholar 

  20. C.J. Rupp, S. Chakraborty, R. Ahuja, R.J. Baierle, The effect of impurities in ultra-thin hydrogenated silicene and germanene: a first principles study. Phys. Chem. Chem. Phys. 17, 22210–22216 (2015)

    Article  Google Scholar 

  21. C.J. Rupp, S. Chakraborty, J. Anversa, R.J. Baierle, R. Ahuja, Rationalizing the hydrogen and oxygen evolution reaction activity of two-dimensional hydrogenated silicene and germanene. ACS Appl. Mater. Interfaces 8, 1536–1544 (2016)

    Article  Google Scholar 

  22. B. Huang, H.-X. Deng, H. Lee, M. Yoon, B.G. Sumpter, F. Liu et al., Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys. Rev. X 4, 021029 (2014)

    Google Scholar 

  23. Y. Liu, H. Shu, P. Liang, D. Cao, X. Chen, W. Lu, Structural, electronic, and optical properties of hydrogenated few-layer silicene: size and stacking effects. J. Appl. Phys. 114, 094308 (2013)

    Article  ADS  Google Scholar 

  24. R. Wang, S. Wang, X. Wu, The formation and electronic properties of hydrogenated bilayer silicene from first-principles. J. Appl. Phys. 116, 024303 (2014)

    Article  Google Scholar 

  25. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio et al., Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  26. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng et al., Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012)

    Article  ADS  Google Scholar 

  27. C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim et al., Structure of silicene grown on Ag(111). Appl. Phys. Express 5, 045802 (2012)

    Article  ADS  Google Scholar 

  28. H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J.Y. Hoarau, B. Aufray et al., Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J. Phys. Condens. Matter 24, 172001 (2012)

    Article  ADS  Google Scholar 

  29. D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, A. Molle, Local electronic properties of corrugated silicene phases. Adv. Mater. 24, 5088–5093 (2012)

    Article  Google Scholar 

  30. L. Chen, C.-C. Liu, B. Feng, X. He, P. Cheng, Z. Ding et al., Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 109, 056804 (2012)

    Article  ADS  Google Scholar 

  31. H. Enriquez, S. Vizzini, A. Kara, B. Lalmi, H. Oughaddou, Silicene structures on silver surfaces. J. Phys. Condens. Matter 24, 314211 (2012)

    Article  ADS  Google Scholar 

  32. X. Xun, Z. Jincheng, D. Yi, S. Eilers, G. Peleckis, Y. Waikong et al., Epitaxial growth mechanism of silicene on Ag(111), in 2014 International Conference on Nanoscience and Nanotechnology (ICONN), Adelaide, SA IEEE (2014). p. 28–30

    Google Scholar 

  33. J. Sone, T. Yamagami, Y. Aoki, K. Nakatsuji, H. Hirayama, Epitaxial growth of silicene on ultra-thin Ag(111) films. New J. Phys. 16, 095004 (2014)

    Article  ADS  Google Scholar 

  34. A. Resta, T. Leoni, C. Barth, A. Ranguis, C. Becker, T. Bruhn et al., Atomic structures of silicene layers grown on Ag(111): scanning tunneling microscopy and noncontact atomic force microscopy observations. Sci. Rep. 3, 2399 (2013)

    Article  ADS  Google Scholar 

  35. E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, B. van den Broek, M. Houssa et al., Getting through the nature of silicene: an sp2sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 117, 16719–16724 (2013)

    Article  Google Scholar 

  36. J. Zhuang, X. Xu, Y. Du, K. Wu, L. Chen, W. Hao et al., Investigation of electron-phonon coupling in epitaxial silicene by in situ Raman spectroscopy. Phys. Rev. B. 91, 161409 (2015)

    Article  ADS  Google Scholar 

  37. C. Grazianetti, D. Chiappe, E. Cinquanta, M. Fanciulli, A. Molle, Nucleation and temperature-driven phase transitions of silicene superstructures on Ag(111). J. Phys. Condens. Matter 27, 255005 (2015)

    Article  ADS  Google Scholar 

  38. J. Qiu, H. Fu, Y. Xu, A.I. Oreshkin, T. Shao, H. Li et al., Ordered and reversible hydrogenation of silicene. Phys. Rev. Lett. 114, 126101 (2015)

    Article  ADS  Google Scholar 

  39. Z.-L. Liu, M.-X. Wang, J.-P. Xu, J.-F. Ge, G.L. Lay, P. Vogt et al., Various atomic structures of monolayer silicene fabricated on Ag(111). New J. Phys. 16, 075006 (2014)

    Article  ADS  Google Scholar 

  40. J. Qiu, H. Fu, Y. Xu, Q. Zhou, S. Meng, H. Li et al., From silicene to half-silicane by hydrogenation. ACS Nano 9, 11192 (2015)

    Article  Google Scholar 

  41. Wang et al., PRB 93, 081406R (2016)

    Article  ADS  Google Scholar 

  42. G. Prévot, R. Bernard, H. Cruguel, Y. Borensztein, Monitoring Si growth on Ag(111) with scanning tunneling microscopy reveals that silicene structure involves silver atoms. Appl. Phys. Lett. 105, 213106 (2014)

    Article  ADS  Google Scholar 

  43. N. Gao, W.T. Zheng, Q. Jiang, Density functional theory calculations for two-dimensional silicene with halogen functionalization. Phys. Chem. Chem. Phys. 14, 257–261 (2012)

    Article  Google Scholar 

  44. P.A. Denis, Stacked functionalized silicene: a powerful system to adjust the electronic structure of silicene. Phys. Chem. Chem. Phys. 17, 5393–5402 (2015)

    Article  Google Scholar 

  45. X. Wang, H. Liu, S.-T. Tu, First-principles study of half-fluorinated silicene sheets. RSC Adv. 5, 6238–6245 (2015)

    Article  Google Scholar 

  46. B. Huang, H.J. Xiang, S.-H. Wei, Chemical functionalization of silicene: spontaneous structural transition and exotic electronic properties. Phys. Rev. Lett. 111, 145502 (2013)

    Article  ADS  Google Scholar 

  47. W. Li et al. PRB 2016

    Google Scholar 

  48. G. Liu, X.L. Lei, M.S. Wu, B. Xu, C.Y. Ouyang, Is silicene stable in O2?—First-principles study of O2 dissociation and O2-dissociation–induced oxygen atoms adsorption on free-standing silicene. Europhys. Lett. 106, 47001 (2014)

    Article  ADS  Google Scholar 

  49. G. Liu, X.L. Lei, M.S. Wu, B. Xu, C.Y. Ouyang, Comparison of the stability of free-standing silicene and hydrogenated silicene in oxygen: a first principles investigation. J. Phys. Condens. Matter 26, 355007 (2014)

    Article  Google Scholar 

  50. T. Morishita, M.J. Spencer, How silicene on Ag(111) oxidizes: microscopic mechanism of the reaction of O2 with silicene. Sci. Rep. 5, 17570 (2015)

    Article  ADS  Google Scholar 

  51. R. Wang, X. Pi, Z. Ni, Y. Liu, S. Lin, M. Xu et al., Silicene oxides: formation, structures and electronic properties. Sci. Rep. 3, 3507 (2013)

    Article  ADS  Google Scholar 

  52. P. De Padova, C. Quaresima, B. Olivieri, P. Perfetti, G. Le Lay, Strong resistance of silicene nanoribbons towards oxidation. J. Phys. D Appl. Phys. 44, 312001 (2011)

    Article  Google Scholar 

  53. A. Molle, C. Grazianetti, D. Chiappe, E. Cinquanta, E. Cianci, G. Tallarida et al., Hindering the oxidation of silicene with non-reactive encapsulation. Adv. Funct. Mater. 23, 4340–4344 (2013)

    Article  Google Scholar 

  54. R. Friedlein, H. Van Bui, F.B. Wiggers, Y. Yamada-Takamura, A.Y. Kovalgin, M.P. de Jong, Interaction of epitaxial silicene with overlayers formed by exposure to Al atoms and O2 molecules. J. Chem. Phys. 140, 204705 (2014)

    Article  ADS  Google Scholar 

  55. P. De Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori, E. Salomon et al, 24 h stability of thick multilayer silicene in air. 2D Mat. 1:021003 (2014)

    Google Scholar 

  56. J. Zhuang, X. Xu, Y. Du, K. Wu, L. Chen, W. Hao et al., Investigation of electron-phonon coupling in epitaxial silicene by in situ Raman spectroscopy. Phys. Rev. B 91, 161409 (2015)

    Article  ADS  Google Scholar 

  57. Y. Du, J. Zhuang, H. Liu, X. Xu, S. Eilers, K. Wu et al., Tuning the band gap in silicene by oxidation. ACS Nano 8, 10019–10025 (2014)

    Article  Google Scholar 

  58. X. Xu, J. Zhuang, Y. Du, H. Feng, N. Zhang, C. Liu et al., Effects of oxygen adsorption on the surface state of epitaxial silicene on Ag(111). Sci. Rep. 4, 7543 (2014)

    Article  Google Scholar 

  59. Du et al., Sci. Adv. 2, e1600067 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehui Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, J., Wu, K. (2018). Surface Functionalization of Silicene. In: Vogt, P., Le Lay, G. (eds) Silicene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99964-7_11

Download citation

Publish with us

Policies and ethics