Skip to main content

Computation of Pommaret Bases Using Syzygies

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2018)

Abstract

We investigate the application of syzygies for efficiently computing (finite) Pommaret bases. For this purpose, we first describe a non-trivial variant of Gerdt’s algorithm [10] to construct an involutive basis for the input ideal as well as an involutive basis for the syzygy module of the output basis. Then we apply this new algorithm in the context of Seiler’s method to transform a given ideal into quasi stable position to ensure the existence of a finite Pommaret basis [19]. This new approach allows us to avoid superfluous reductions in the iterative computation of Janet bases required by this method. We conclude the paper by proposing an involutive variant of the signature based algorithm of Gao et al. [8] to compute simultaneously a Gröbner basis for a given ideal and for the syzygy module of the input basis. All the presented algorithms have been implemented in Maple and their performance is evaluated via a set of benchmark ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Maple code of the implementations of our algorithms and examples are available at http://amirhashemi.iut.ac.ir/softwares.

References

  1. Binaei, B., Hashemi, A., Seiler, W.M.: Improved computation of involutive bases. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds.) CASC 2016. LNCS, vol. 9890, pp. 58–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6_5

    Chapter  Google Scholar 

  2. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: Ng, E.W. (ed.) EUROSM 1979. LNCS, vol. 72, pp. 3–21. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_52

    Chapter  Google Scholar 

  3. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. University of Innsbruck, Mathematisches Institut (Diss.), Innsbruck (1965)

    Google Scholar 

  4. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-35651-8

    Book  MATH  Google Scholar 

  5. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, New York (2005). https://doi.org/10.1007/b138611

    Book  MATH  Google Scholar 

  6. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases \((F_4)\). J. Pure Appl. Algebra 139(1–3), 61–88 (1999). https://doi.org/10.1016/S0022-4049(99)00005-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero \((F_5)\). In: Proceedings of ISSAC 2002, pp. 75–83 (2002)

    Google Scholar 

  8. Gao, S., Volny, F.I., Wang, M.: A new framework for computing Gröbner bases. Math. Comput. 85(297), 449–465 (2016). https://doi.org/10.1090/mcom/2969

    Article  MATH  Google Scholar 

  9. Gebauer, R., Möller, H.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2–3), 275–286 (1988). https://doi.org/10.1016/S0747-7171(88)80048-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computational Commutative and Non-commutative Algebraic Geometry. Proceedings of the NATO Advanced Research Workshop, pp. 199–225. IOS Press, Amsterdam (2005)

    Google Scholar 

  11. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45(5–6), 519–541 (1998). https://doi.org/10.1016/S0378-4754(97)00127-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerdt, V.P., Hashemi, A., Alizadeh, B.M.: Involutive bases algorithm incorporating F\(_5\) criterion. J. Symb. Comput. 59, 1–20 (2013). https://doi.org/10.1016/j.jsc.2013.08.002

    Article  MathSciNet  MATH  Google Scholar 

  13. Hashemi, A., Schweinfurter, M., Seiler, W.: Deterministic genericity for polynomial ideals. J. Symb. Comput. 86, 20–50 (2018)

    Article  MathSciNet  Google Scholar 

  14. Janet, M.: Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci. Paris 170, 1101–1103 (1920)

    MATH  Google Scholar 

  15. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12868-9_99

    Chapter  Google Scholar 

  16. Möller, H., Mora, T., Traverso, C.: Gröbner bases computation using syzygies. In: Proceedings of ISSAC 1992, pp. 320–328 (1992)

    Google Scholar 

  17. Pommaret, J.: Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach Science Publishers, Philadelphia (1978)

    MATH  Google Scholar 

  18. Schreyer, F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrass’schen Divisionssatz. Master’s thesis, University of Hamburg, Germany (1980)

    Google Scholar 

  19. Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-regularity. II: structure analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng. Commun. Comput. 20(3–4), 261–338 (2009). https://doi.org/10.1007/s00200-009-0101-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Seiler, W.M.: Involution. The Formal Theory of Differential Equations and Its Applications in Computer Algebra. Springer, Berlin (2001). https://doi.org/10.1007/978-3-642-01287-7

    Book  Google Scholar 

  21. Wall, B.: On the computation of syzygies. SIGSAM Bull. 23(4), 5–14 (1989)

    Article  Google Scholar 

  22. Zharkov, A., Blinkov, Y.: Involution approach to investigating polynomial systems. Math. Comput. Simul. 42(4), 323–332 (1996). https://doi.org/10.1016/S0747-7171(88)80048-8

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of the second author was in part supported by a grant from IPM (No. 95550420). The work of the third author was partially performed as part of the H2020-FETOPEN-2016-2017-CSA project \(SC^{2}\) (712689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hashemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binaei, B., Hashemi, A., Seiler, W.M. (2018). Computation of Pommaret Bases Using Syzygies. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2018. Lecture Notes in Computer Science(), vol 11077. Springer, Cham. https://doi.org/10.1007/978-3-319-99639-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99639-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99638-7

  • Online ISBN: 978-3-319-99639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics