Skip to main content

Mammogram Diagnostics Using Robust Wavelet-Based Estimator of Hurst Exponent

  • Chapter
  • First Online:
New Frontiers of Biostatistics and Bioinformatics

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

Breast cancer is one of the leading causes of death in women. Mammography is an effective method for early detection of breast cancer. Like other medical images, mammograms demonstrate a certain degree of self-similarity over a range of scales, which can be used in classifying individuals as cancerous or non-cancerous. In this paper, we study the robust estimation of Hurst exponent (self-similarity measure) in two-dimensional images based on non-decimated wavelet transforms (NDWT). The robustness is achieved by applying a general trimean estimator on non-decimated wavelet detail coefficients of the transformed data, and the general trimean estimator is derived as a weighted average of the distribution’s median and quantiles, combining the median’s emphasis on central values with the quantiles’ attention to the extremes. The properties of the proposed estimators are studied both theoretically and numerically. Compared with other standard wavelet-based methods (Veitch and Abry (VA) method, Soltani, Simard, and Boichu (SSB) method, median based estimators MEDL and MEDLA, and Theil-type (TT) weighted regression method), our methods reduce the variance of the estimators and increase the prediction precision in most cases. We apply proposed methods to digitized mammogram images, estimate Hurst exponent, and then use it as a discriminatory descriptor to classify mammograms to benign and malignant. Our methods yield the highest classification accuracy around 65%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abry, P. (2003). Scaling and wavelets: An introductory walk. In Processes with long-range correlations (pp. 34–60). Berlin: Springer.

    Chapter  Google Scholar 

  • Abry, P., Gonçalvés, P., & Flandrin, P. (1995). Wavelets, spectrum analysis and 1/f processes. In: Wavelets and statistics (pp. 15–29). Springer: New York.

    Chapter  MATH  Google Scholar 

  • Abry, P., Goncalves, P., & Véhel, J. L. (2013). Scaling, fractals and wavelets. New York: Wiley.

    MATH  Google Scholar 

  • Abry, P., Flandrin, P., Taqqu, M. S., & Veitch, D. (2000). Wavelets for the analysis, estimation and synthesis of scaling data. Self-similar network traffic and performance evaluation (pp. 39–88). New York: Wiley.

    Google Scholar 

  • Abry, P., Flandrin, P., Taqqu, M. S., & Veitch, D. (2003). Self-similarity and long-range dependence through the wavelet lens. In Theory and applications of long-range dependence (pp. 527–556). Boston, MA: Birkhauser.

    MATH  Google Scholar 

  • Andrews, D. F., & Hampel, F. R. (2015). Robust estimates of location: Survey and advances. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Bala, B. K., & Audithan, S. (2014). Wavelet and curvelet analysis for the classification of microcalcifiaction using mammogram images. In Second International Conference on Current Trends in Engineering and Technology - ICCTET 2014 (pp. 517–521). https://doi.org/10.1109/ICCTET.2014.6966351

  • DasGupta, A. (2008). Edgeworth expansions and cumulants. In Asymptotic theory of statistics and probability (pp. 185–201). New York: Springer.

    Chapter  MATH  Google Scholar 

  • El-Naqa, I., Yang, Y., Wernick, M. N., Galatsanos, N. P., & Nishikawa, R. M. (2002). A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging, 21(12), 1552–1563.

    Article  Google Scholar 

  • Engel, Jr J., Bragin, A., Staba, R., & Mody, I. (2009). High-frequency oscillations: What is normal and what is not? Epilepsia, 50(4), 598–604.

    Article  Google Scholar 

  • Feng, C., & Vidakovic, B. (2017), Estimation of the hurst exponent using trimean estimators on nondecimated wavelet coefficients. arXiv preprint arXiv:170908775.

    Google Scholar 

  • Franzke, C. L., Graves, T., Watkins, N. W., Gramacy, R. B., & Hughes, C. (2012). Robustness of estimators of long-range dependence and self-similarity under non-gaussianity. Philosophical Transactions of the Royal Society A, 370(1962), 1250–1267.

    Article  Google Scholar 

  • Gastwirth, J. L. (1966). On robust procedures. Journal of the American Statistical Association, 61(316), 929–948.

    Article  MathSciNet  MATH  Google Scholar 

  • Gastwirth, J. L., & Cohen, M.L (1970) Small sample behavior of some robust linear estimators of location. Journal of the American Statistical Association, 65(330), 946–973

    Article  MATH  Google Scholar 

  • Gastwirth, J. L, & Rubin, H. (1969). On robust linear estimators. The Annals of Mathematical Statistics, 40(1), 24–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207–1210.

    Article  Google Scholar 

  • Hamilton, E. K., Jeon, S., Cobo, P. R., Lee, K. S., & Vidakovic, B. (2011). Diagnostic classification of digital mammograms by wavelet-based spectral tools: A comparative study. In 2011 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE (pp. 384–389).

    Google Scholar 

  • Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, W. P. (2000). The digital database for screening mammography. In Proceedings of the 5th International Workshop on Digital Mammography (pp. 212–218). Medical Physics Publishing.

    Google Scholar 

  • Jeon, S., Nicolis, O., & Vidakovic, B. (2014). Mammogram diagnostics via 2-d complex wavelet-based self-similarity measures. The São Paulo Journal of Mathematical Sciences, 8(2), 265–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, M., & Vidakovic, B. (2017). Medl and medla: Methods for assessment of scaling by medians of log-squared nondecimated wavelet coefficients. ArXiv Preprint ArXiv:170304180.

    Google Scholar 

  • Katul, G., Vidakovic, B., & Albertson, J. (2001). Estimating global and local scaling exponents in turbulent flows using discrete wavelet transformations. Physics of Fluids, 13(1), 241–250.

    Article  MATH  Google Scholar 

  • Kestener, P., Lina, J. M., Saint-Jean, P., & Arneodo, A. (2011). Wavelet-based multifractal formalism to assist in diagnosis in digitized mammograms. Image Analysis & Stereology, 20(3), 169–174.

    Article  MATH  Google Scholar 

  • Kolmogorov, A. N. (1940). Wienersche spiralen und einige andere interessante kurven in hilbertscen raum, cr (doklady). Academy of Sciences URSS (NS), 26, 115–118.

    Google Scholar 

  • Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437.

    Article  MathSciNet  MATH  Google Scholar 

  • Nason, G. P., & Silverman, B. W. (1995). The stationary wavelet transform and some statistical applications. In Wavelets and statistics (pp. 281–299). New York: Springer.

    Chapter  MATH  Google Scholar 

  • Netsch, T., & Peitgen, H. O. (1999). Scale-space signatures for the detection of clustered microcalcifications in digital mammograms. IEEE Transactions on Medical Imaging, 18(9), 774–786.

    Article  Google Scholar 

  • Nicolis, O., Ramírez-Cobo, P., & Vidakovic, B. (2011). 2d wavelet-based spectra with applications. Computational Statistics & Data Analysis, 55(1), 738–751.

    Article  MathSciNet  MATH  Google Scholar 

  • Park, J., & Park, C. (2009). Robust estimation of the hurst parameter and selection of an onset scaling. Statistica Sinica, 19, 1531–1555.

    MathSciNet  MATH  Google Scholar 

  • Park, K., & Willinger, W. (2000). Self-similar network traffic and performance evaluation. Wiley Online Library. https://doi.org/10.1002/047120644X.

    Google Scholar 

  • Percival, D. B., & Walden, A. T. (2006). Wavelet methods for time series analysis (vol. 4). New York: Cambridge University Press.

    MATH  Google Scholar 

  • Ramírez-Cobo, P., & Vidakovic, B. (2013). A 2d wavelet-based multiscale approach with applications to the analysis of digital mammograms. Computational Statistics & Data Analysis, 58, 71–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Reiss, P. T., & Ogden, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics, 66(1), 61–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Reiss, P. T., Ogden, R. T., Mann, J. J., & Parsey, R. V. (2005). Functional logistic regression with pet imaging data: A voxel-level clinical diagnostic tool. Journal of Cerebral Blood Flow & Metabolism, 25(1_suppl), S635–S635.

    Article  Google Scholar 

  • Shen, H., Zhu. Z., & Lee, T. C. (2007). Robust estimation of the self-similarity parameter in network traffic using wavelet transform. Signal Processing, 87(9), 2111–2124.

    Article  MATH  Google Scholar 

  • Sheng, H., Chen, Y., & Qiu, T. (2011). On the robustness of hurst estimators. IET Signal Processing, 5(2), 209–225.

    Article  MathSciNet  Google Scholar 

  • Soltani, S., Simard, P., & Boichu, D. (2004). Estimation of the self-similarity parameter using the wavelet transform. Signal Processing, 84(1), 117–123.

    Article  MATH  Google Scholar 

  • Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In Henri Theils contributions to economics and econometrics (pp. 345–381). The Netherlands: Springer.

    Chapter  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Vidakovic, B. (2009). Statistical modeling by wavelets (Vol. 503). New York: Wiley.

    MATH  Google Scholar 

  • Wang, T. C., & Karayiannis, N. B. (1998). Detection of microcalcifications in digital mammograms using wavelets. IEEE Transactions on Medical Imaging, 17(4), 498–509.

    Article  Google Scholar 

  • Wood, A. T., & Chan, G. (1994). Simulation of stationary gaussian processes in [0, 1] d. Journal of Computational and Graphical Statistics, 3(4), 409–432.

    MathSciNet  Google Scholar 

  • Woods, T., Preeprem, T., Lee, K., Chang, W., & Vidakovic, B. (2016). Characterizing exons and introns by regularity of nucleotide strings. Biology Direct, 11(1), 6.

    Article  Google Scholar 

  • Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of Business and Economic Statistics, 14(1), 45–52.

    Google Scholar 

  • Zhou, H., Li, L., & Zhu, H. (2013). Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association, 108(502), 540–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Zipunnikov, V., Caffo, B., Yousem, D. M., Davatzikos, C., Schwartz, B. S., Crainiceanu. C. (2011). Functional principal component model for high-dimensional brain imaging. NeuroImage, 58(3), 772–784.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Feng .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Theorem 5.1

Proof

A single wavelet coefficient in a non-decimated wavelet transform of a 2-D fBm of size N × N with Hurst exponent H is normally distributed, with variance depending on its level j. The four coefficients in each set

$$\displaystyle \begin{aligned}\{d_{j,j;(k_{i1},k_{i2})}, d_{j,j;(k_{i1},k_{i2}+\frac{N}{2})}, d_{j,j;(k_{i1}+\frac{N}{2},k_{i2})}, d_{j,j;(k_{i1}+\frac{N}{2},k_{i2}+\frac{N}{2})}\}\end{aligned}$$

are assumed to be independent and follow the same normal distribution.

$$\displaystyle \begin{aligned} &d_{j,j;(k_{i1},k_{i2})}, d_{j,j;(k_{i1},k_{i2}+\frac{N}{2})}, d_{j,j;(k_{i1}+\frac{N}{2},k_{i2})}, d_{j,j;(k_{i1}+\frac{N}{2},k_{i2}+\frac{N}{2})}\\ &\quad \sim \mathcal{N}\left(0, 2^{-\left(2H+2\right)j}\sigma^2\right).\end{aligned} $$

Then the mid-energies in D j defined in (5.9) and (5.8) can be readily shown to have exponential distribution with scale parameter \(\lambda _j=\sigma ^2\cdot 2^{-\left (2H+2\right )j}\). Therefore at each detail level j, the mid-energies in D j are i.i.d. \( \mathcal {E}xp\left (\lambda _j^{-1}\right )\), and when applying general trimean estimator \(\hat {\mu }_{j}\) on D j, following the derivation in Sect. 5.3, we have

$$\displaystyle \begin{aligned}\boldsymbol{\xi}=\left[\log\left(\frac{1}{1-p}\right)\lambda_j\ \ \ \log\left(2\right)\lambda_j\ \ \ \log\left(\frac{1}{p}\right)\lambda_j\right]^T,\end{aligned}$$

and

therefore, the asymptotic distribution of \(\hat {\mu }_{j,i}\) is normal with mean

and variance

Since the Hurst exponent can be estimated as

$$\displaystyle \begin{aligned} \hat{H}=-\frac{\hat{\beta}}{2}-1, \end{aligned} $$
(5.27)

where \(\hat {\beta }\) is the regression slope in the least square linear regression on pairs \(\left (j, \log _2\left (\hat {\mu }_{j}\right )\right )\) from level J 1 to J 2, J 1 ≤ j ≤ J 2. It can be easily derived that \(\hat {\beta }\) is a linear combination of \(\log _2\left (\hat {\mu }_{j}\right )\),

$$\displaystyle \begin{aligned} \hat{\beta}=\sum_{j=J_1}^{J_2}a_j\log_2\left(\hat{\mu}_{j}\right), \ \ a_j=\frac{j-(J_1+J_2)/2}{\sum_{j=J_1}^{J_2}\left(j-(J_1+J_2)/2\right)^2}. \end{aligned}$$

We can check that \(\sum _{j=J_1}^{J_2}a_j=0\) and \(\sum _{j=J_1}^{J_2}a_j j=1\). Also, if \(X\sim \mathcal {N}(\mu , \sigma ^2)\), the approximate expectation and variance of g(X) are

$$\displaystyle \begin{aligned} \mathbb{E}\left(g(X)\right)=g(\mu)+\frac{g''(\mu)\sigma^2}{2}, \ \ \mbox{and}\ \ \operatorname{\mathrm{Var}}\left(g(X)\right)=\left(g'(\mu)\right)^2\sigma^2, \end{aligned}$$

based on which we calculate

$$\displaystyle \begin{aligned} \mathbb{E}\left(\log_2\left(\hat{\mu}_{j}\right)\right)=-(2H+2)j+\mbox{Constant},\ \mbox{and}\ \operatorname{\mathrm{Var}}\left(\log_2\left(\hat{\mu}_{j}\right)\right)=\frac{\frac{2}{M^2}f\left(\alpha,p\right)}{(\log2)^2c^2\left(\alpha, p\right)}. \end{aligned}$$

Therefore

$$\displaystyle \begin{aligned} \mathbb{E}\left(\hat{\beta}\right) &=\sum_{j=J_1}^{J_2}a_j\mathbb{E}\left(\log_2\left(\hat{\mu}_{j}\right)\right)=-(2H+2),\ \mbox{and}\ \operatorname{\mathrm{Var}}\left(\hat{\beta}\right)\\ &=\sum_{j=J_1}^{J_2}a^2_j\operatorname{\mathrm{Var}}\left(\log_2\left(\hat{\mu}_{j}\right)\right):=4V1, \end{aligned} $$

and

$$\displaystyle \begin{aligned} \mathbb{E}\left(\hat{H}\right)=H,\ \mbox{and}\ \operatorname{\mathrm{Var}}\left(\hat{H}\right)=V1, \end{aligned} $$
(5.28)

where the asymptotic variance V 1 is a constant number independent of simple size N and level j,

$$\displaystyle \begin{aligned} V_1=\frac{6f(\alpha,p)}{(\log2)^2M^2c^2\left(\alpha,p\right)q(J_1,J_2)}, \end{aligned}$$

and

$$\displaystyle \begin{aligned} q(J_1,J_2)=(J_2-J_1)(J_2-J_1+1)(J_2-J_1+2). \end{aligned}$$

1.2 Proof of Theorem 5.2

Proof

We have stated that each mid-energy in D j follows \(\mathcal {E}xp\left (\lambda _j^{-1}\right )\) with scale parameter \(\lambda _j=\sigma ^2\cdot 2^{-\left (2H+2\right )j}\). If we denote the kth element in \(\log \left (D_{j}\right )\) as y j,k for \(k=1,\ldots ,\frac {M^2}{2}\) and j = 1, …, J, the pdf and cdf of y j,k are

$$\displaystyle \begin{aligned}f\left(y_{j,k}\right)=\lambda_j^{-1}e^{-\lambda_j^{-1}e^{y_{j,k}}}e^{y_{j,k}},\end{aligned}$$

and

$$\displaystyle \begin{aligned}F\left(y_{j,k}\right)=1-e^{-\lambda_j^{-1}e^{y_{j,k}}}.\end{aligned}$$

The p-quantile can be obtained by solving \(F\left (y_p\right )=1-e^{-\lambda _j^{-1}e^{y_p}}=p\), and \(y_p=\log \left (-\lambda _j\log \left (1-p\right )\right )\). Then it can be shown that \(f\left (y_p\right )=-\left (1-p\right )\log \left (1-p\right )\). When applying the general trimean estimator \(\hat {\mu }_{j}\) on \(\log \left (D_{j}\right )\), following the derivation in Sect. 5.3, we get

and

thus, the asymptotic distribution of \(\hat {\mu }_{j,i}\) is normal with mean

and variance

where

$$\displaystyle \begin{aligned} \begin{aligned} g_1\left(p\right)=&\frac{p}{\left(1-p\right)\left(\log\left(1-p\right)\right)^2}+\\ &\frac{1-p}{p\left(\log p\right)^2}+\frac{2p}{\left(1-p\right)\log\left(1-p\right)\log p},\\ \end{aligned} \end{aligned}$$

and

$$\displaystyle \begin{aligned}g_2\left(p\right)=\frac{2p}{\left(1-p\right)\log\left(1-p\right)\log\frac{1}{2}}+\frac{2}{\log\frac{1}{2}\log p}.\end{aligned}$$

Since the Hurst exponent can be estimated as

$$\displaystyle \begin{aligned} \hat{H}=-\frac{1}{2\log2}\hat{\beta}-1, \end{aligned} $$
(5.29)

where \(\hat {\beta }\) is the regression slope in the least square linear regressions on pairs \(\left (j, \hat {\mu }_{j}\right )\) from level J 1 to J 2, J 1 ≤ j ≤ J 2. It can be easily derived that \(\hat {\beta }\) is a linear combination of \(\hat {\mu }_{j}\),

$$\displaystyle \begin{aligned} \hat{\beta}=\sum_{j=J_1}^{J_2}a_j\hat{\mu}_{j}, \ \ a_j=\frac{j-(J_1+J_2)/2}{\sum_{j=J_1}^{J_2}\left(j-(J_1+J_2)/2\right)^2}. \end{aligned}$$

Again, we can check that \(\sum _{j=J_1}^{J_2}a_j=0\) and \(\sum _{j=J_1}^{J_2}a_j j=1\). Therefore

$$\displaystyle \begin{aligned} \mathbb{E}\left(\hat{\beta}\right)&=\sum_{j=J_1}^{J_2}a_j\mathbb{E}\left(\hat{\mu}_{j,i}\right)=-(2H+2)\log2,\ \mbox{and}\ \operatorname{\mathrm{Var}}\left(\hat{\beta}\right)\\ &=\sum_{j=J_1}^{J_2}a^2_j\operatorname{\mathrm{Var}}\left(\hat{\mu}_{j,i}\right):=4(\log2)^2V_2, \end{aligned} $$

and

$$\displaystyle \begin{aligned} \mathbb{E}\left(\hat{H}\right)=H,\ \mbox{and}\ \operatorname{\mathrm{Var}}\left(\hat{H}\right)=V_2, \end{aligned} $$
(5.30)

where the asymptotic variance V 2 is a constant number independent of simple size N and level j,

$$\displaystyle \begin{aligned} V_2=\frac{6f(\alpha,p)}{(\log2)^2M^2q(J_1,J_2)}, \end{aligned}$$

and q(J 1, J 2) is given in Eq. (5.13).

1.3 Proof of Lemma 5.2

Proof

When applying Tukey’s trimean estimator \(\hat {\mu }_{j}^T\) on D j, following the derivation in Sect. 5.3.1, we have

and

therefore, the asymptotic distribution of \(\hat {\mu }_{j}^T\) is normal with mean

and variance

$$\displaystyle \begin{aligned}\operatorname{\mathrm{Var}}\left(\hat{\mu}_{j,i}^T\right)=\frac{2}{M^2}A_T\varSigma_T A_T^T=\frac{5}{3M^2}\lambda_j^2.\end{aligned}$$

When applying Gastwirth estimator \(\hat {\mu }_{j}^G\) on D j, following the derivation in Sect. 5.3.2, we have

and

therefore, the asymptotic distribution of \(\hat {\mu }_{j}^G\) is normal with mean

and variance

$$\displaystyle \begin{aligned}\operatorname{\mathrm{Var}}\left(\hat{\mu}_{j,i}^G\right)=\frac{2}{M^2}A_G\varSigma_G A_G^T=\frac{1.67}{M^2}\lambda_j^2.\end{aligned}$$

Based on Eq. (5.28), we have

(5.31)

where the asymptotic variances \(V^T_1\) and \(V^G_1\) are constant numbers,

$$\displaystyle \begin{aligned} V^T_1=\frac{5}{(\log2)^2M^2c^2_1q(J_1,J_2)}, \end{aligned}$$
$$\displaystyle \begin{aligned} V^G_1=\frac{5.01}{(\log2)^2M^2c^2_2q(J_1,J_2)}. \end{aligned}$$

The function q(J 1, J 2) is the same as Eq. (5.13) in Theorem 5.1.

1.4 Proof of Lemma 5.3

Proof

When applying Tukey’s trimean estimator \(\hat {\mu }_{j}^T\) on \(\log \left (D_{j}\right )\), following the derivation in Sect. 5.3.1, we have

and

therefore, the asymptotic distribution of \(\hat {\mu }_{j}^T\) is normal with mean

and variance

When applying Gastwirth estimator \(\hat {\mu }_{j}^G\) on \(\log \left (D_{j,i}\right )\), following the derivation in Sect. 5.3.2, we have

and

therefore, the asymptotic distribution of \(\hat {\mu }_{j}^G\) is normal with mean

and variance

Based on Eq. (5.30), we can easily derive

(5.32)

where the asymptotic variances \(V^T_2\) and \(V^G_2\) are constant numbers,

$$\displaystyle \begin{aligned} V^T_2=\frac{3V_T}{(\log2)^2q(J_1,J_2)}, \end{aligned}$$
$$\displaystyle \begin{aligned} V^G_2=\frac{3V_G}{(\log2)^2q(J_1,J_2)}. \end{aligned}$$

The function q(J 1, J 2) is provided in Eq. (5.13).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, C., Mei, Y., Vidakovic, B. (2018). Mammogram Diagnostics Using Robust Wavelet-Based Estimator of Hurst Exponent. In: Zhao, Y., Chen, DG. (eds) New Frontiers of Biostatistics and Bioinformatics. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-99389-8_5

Download citation

Publish with us

Policies and ethics