Skip to main content

Age, T Cell Homeostasis, and T Cell Diversity in Humans

  • Reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Thymic production is the only source of new naïve T cells; however, very little meaningful thymic output remains after early adulthood. Throughout adult life, peripheral homeostatic mechanisms are critical to maintain sizes of T cell subpopulation and diversity of the T cell receptor repertoire. Failure in T cell homeostasis may result in repertoire contraction and increased clonality within the naïve and memory T cell compartments that could negatively impact immune health in elderly population. This chapter details how to get and how to maintain a diverse repertoire and how uneven homeostatic proliferation can lead to a less diverse and unbalanced repertoire. In the healthy elderly, studies using next-generation sequencing suggest that the repertoire contracts population two to fivefold in the absence of thymic output but remains sufficiently diverse to maintain immunocompetence; however, additional studies across the spectrum of aged individuals are needed to assess the population heterogeneity in maintaining a functional repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286:958–961

    Article  CAS  Google Scholar 

  • Benedict CL, Gilfillan S, Thai TH, Kearney JF (2000) Terminal deoxynucleotidyl transferase and repertoire development. Immunol Rev 175:150–157

    Article  CAS  Google Scholar 

  • Blom B, Verschuren MC, Heemskerk MH, Bakker AQ, van Gastel-Mol EJ, Wolvers-Tettero IL, van Dongen JJ, Spits H (1999) TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood 93:3033–3043

    CAS  PubMed  Google Scholar 

  • von Boehmer H (2005) Unique features of the pre-T-cell receptor alpha-chain: not just a surrogate. Nat Rev Immunol 5:571–577

    Article  Google Scholar 

  • Boyman O, Krieg C, Homann D, Sprent J (2012) Homeostatic maintenance of T cells and natural killer cells. Cell Mol Life Sci 69:1597–1608

    Article  CAS  Google Scholar 

  • den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mogling R, de Boer AB, Willems N, Schrijver EH, Spierenburg G, Gaiser K, Mul E, Otto SA, Ruiter AF, Ackermans MT, Miedema F, Borghans JA, de Boer RJ, Tesselaar K (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36:288–297

    Article  Google Scholar 

  • Brandle D, Muller C, Rulicke T, Hengartner H, Pircher H (1992) Engagement of the T-cell receptor during positive selection in the thymus down-regulates RAG-1 expression. Proc Natl Acad Sci U S A 89:9529–9533

    Article  CAS  Google Scholar 

  • Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA, Mamedov IZ, Pogorelyy MV, Bolotin DA, Izraelson M, Davydov AN, Egorov ES, Kasatskaya SA, Rebrikov DV, Lukyanov S, Chudakov DM (2016) Dynamics of individual T cell repertoires: from cord blood to centenarians. J Immunol 196:5005–5013

    Article  CAS  Google Scholar 

  • Brocker T (1997) Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J Exp Med 186:1223–1232

    Article  CAS  Google Scholar 

  • Czesnikiewicz-Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL, Yang ZZ, Ouslander JG, Weyand CM, Goronzy JJ (2008) T cell subset-specific susceptibility to aging. Clin Immunol 127:107–118

    Article  CAS  Google Scholar 

  • Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402

    Article  CAS  Google Scholar 

  • Deshpande NR, Parrish HL, Kuhns MS (2015) Self-recognition drives the preferential accumulation of promiscuous CD4(+) T-cells in aged mice. elife 4:e05949

    Article  Google Scholar 

  • van Dongen JJ, Comans-Bitter WM, Wolvers-Tettero IL, Borst J (1990) Development of human T lymphocytes and their thymus-dependency. Thymus 16:207–234

    PubMed  Google Scholar 

  • Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95:2860–2868

    CAS  PubMed  Google Scholar 

  • Faint JM, Annels NE, Curnow SJ, Shields P, Pilling D, Hislop AD, Wu L, Akbar AN, Buckley CD, Moss PA, Adams DH, Rickinson AB, Salmon M (2001) Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics. J Immunol 167:212–220

    Article  CAS  Google Scholar 

  • Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, Montandon N, Rufer N, Waldvogel S, Delorenzi M, Speiser DE (2015) Long-lasting stem cell-like memory CD8+ T cells with a naive-like profile upon yellow fever vaccination. Sci Transl Med 7:282ra48

    Article  Google Scholar 

  • Ge Q, Rao VP, Cho BK, Eisen HN, Chen J (2001) Dependence of lymphopenia-induced T cell proliferation on the abundance of peptide/ MHC epitopes and strength of their interaction with T cell receptors. Proc Natl Acad Sci U S A 98:1728–1733

    Article  CAS  Google Scholar 

  • Gil A, Yassai MB, Naumov YN, Selin LK (2015) Narrowing of human influenza A virus-specific T cell receptor alpha and beta repertoires with increasing age. J Virol 89:4102–4116

    Article  CAS  Google Scholar 

  • Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17:468–475

    Article  CAS  Google Scholar 

  • Goronzy JJ, Weyand CM (2012) Immune aging and autoimmunity. Cell Mol Life Sci 69:1615–1623

    Article  CAS  Google Scholar 

  • Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14:428–436

    Article  CAS  Google Scholar 

  • Goronzy JJ, Lee WW, Weyand CM (2007) Aging and T-cell diversity. Exp Gerontol 42:400–406

    Article  CAS  Google Scholar 

  • Goronzy JJ, Li G, Yang Z, Weyand CM (2013) The janus head of T cell aging – autoimmunity and immunodeficiency. Front Immunol 4:131

    Article  Google Scholar 

  • Goronzy JJ, Qi Q, Olshen RA, Weyand CM (2015) High-throughput sequencing insights into T-cell receptor repertoire diversity in aging. Genome Med 7:117

    Article  Google Scholar 

  • Hazenberg MD, Otto SA, Cohen Stuart JW, Verschuren MC, Borleffs JC, Boucher CA, Coutinho RA, Lange JM, Rinke de Wit TF, Tsegaye A, van Dongen JJ, Hamann D, de Boer RJ, Miedema F (2000) Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nat Med 6:1036–1042

    Article  CAS  Google Scholar 

  • Hazenberg MD, Borghans JA, de Boer RJ, Miedema F (2003) Thymic output: a bad TREC record. Nat Immunol 4:97–99

    Article  CAS  Google Scholar 

  • van Heijst JW, Gerlach C, Swart E, Sie D, Nunes-Alves C, Kerkhoven RM, Arens R, Correia-Neves M, Schepers K, Schumacher TN (2009) Recruitment of antigen-specific CD8+ T cells in response to infection is markedly efficient. Science 325:1265–1269

    Article  Google Scholar 

  • Hong MS, Dan JM, Choi JY, Kang I (2004) Age-associated changes in the frequency of naive, memory and effector CD8+ T cells. Mech Ageing Dev 125:615–618

    Article  Google Scholar 

  • Jacob J, Baltimore D (1999) Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399:593–597

    Article  CAS  Google Scholar 

  • Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2:547–556

    Article  CAS  Google Scholar 

  • Johnson LD, Jameson SC (2012) TGF-beta sensitivity restrains CD8+ T cell homeostatic proliferation by enforcing sensitivity to IL-7 and IL-15. PLoS One 7:e42268

    Article  CAS  Google Scholar 

  • Johnson PL, Yates AJ, Goronzy JJ, Antia R (2012) Peripheral selection rather than thymic involution explains sudden contraction in naive CD4 T-cell diversity with age. Proc Natl Acad Sci U S A 109:21432–21437

    Article  CAS  Google Scholar 

  • Johnson PL, Goronzy JJ, Antia R (2014) A population biological approach to understanding the maintenance and loss of the T-cell repertoire during aging. Immunology 142:167–175

    Article  CAS  Google Scholar 

  • Kim C, Fang F, Weyand CM, Goronzy JJ (2016) The life cycle of a T cell after vaccination – where does immune ageing strike? Clin Exp Immunol 187:71–81

    Article  Google Scholar 

  • Kirberg J, Berns A, von Boehmer H (1997) Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J Exp Med 186:1269–1275

    Article  CAS  Google Scholar 

  • Krangel MS (2003) Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 4:624–630

    Article  CAS  Google Scholar 

  • Kwok WW, Tan V, Gillette L, Littell CT, Soltis MA, LaFond RB, Yang J, James EA, DeLong JH (2012) Frequency of epitope-specific naive CD4(+) T cells correlates with immunodominance in the human memory repertoire. J Immunol 188:2537–2544

    Article  CAS  Google Scholar 

  • Lanzavecchia A, Sallusto F (2000) Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290:92–97

    Article  CAS  Google Scholar 

  • Macallan DC, Asquith B, Irvine AJ, Wallace DL, Worth A, Ghattas H, Zhang Y, Griffin GE, Tough DF, Beverley PC (2003) Measurement and modeling of human T cell kinetics. Eur J Immunol 33:2316–2326

    Article  CAS  Google Scholar 

  • Meyer-Olson D, Shoukry NH, Brady KW, Kim H, Olson DP, Hartman K, Shintani AK, Walker CM, Kalams SA (2004) Limited T cell receptor diversity of HCV-specific T cell responses is associated with CTL escape. J Exp Med 200:307–319

    Article  CAS  Google Scholar 

  • Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, Jenkins MK (2007) Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213

    Article  CAS  Google Scholar 

  • Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286:1377–1381

    Article  CAS  Google Scholar 

  • Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, Davenport MP, Zaunders JJ (2003) Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol 81:487–495

    Article  Google Scholar 

  • Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174:7446–7452

    Article  CAS  Google Scholar 

  • Obar JJ, Khanna KM, Lefrancois L (2008) Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28:859–869

    Article  CAS  Google Scholar 

  • Opferman JT, Ober BT, Ashton-Rickardt PG (1999) Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283:1745–1748

    Article  CAS  Google Scholar 

  • Palmer E (2003) Negative selection – clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol 3:383–391

    Article  CAS  Google Scholar 

  • Petrie HT, Livak F, Schatz DG, Strasser A, Crispe IN, Shortman K (1993) Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes. J Exp Med 178:615–622

    Article  CAS  Google Scholar 

  • Pulko V, Davies JS, Martinez C, Lanteri MC, Busch MP, Diamond MS, Knox K, Bush EC, Sims PA, Sinari S, Billheimer D, Haddad EK, Murray KO, Wertheimer AM, Nikolich-Zugich J (2016) Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol 17:966–975

    Article  CAS  Google Scholar 

  • Qi Q, Zhang DW, Weyand CM, Goronzy JJ (2014a) Mechanisms shaping the naive T cell repertoire in the elderly – thymic involution or peripheral homeostatic proliferation? Exp Gerontol 54:71–74

    Article  CAS  Google Scholar 

  • Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014b) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A 111:13139–13144

    Article  CAS  Google Scholar 

  • Qi Q, Cavanagh MM, Le Saux S, NamKoong H, Kim C, Turgano E, Liu Y, Wang C, Mackey S, Swan GE, Dekker CL, Olshen RA, Boyd SD, Weyand CM, Tian L, Goronzy JJ (2016) Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Sci Transl Med 8:332ra46

    Article  Google Scholar 

  • Quinn KM, Zaloumis SG, Cukalac T, Kan WT, Sng XY, Mirams M, Watson KA, McCaw JM, Doherty PC, Thomas PG, Handel A, La Gruta NL (2016) Heightened self-reactivity associated with selective survival, but not expansion, of naive virus-specific CD8+ T cells in aged mice. Proc Natl Acad Sci U S A 113:1333–1338

    Article  CAS  Google Scholar 

  • Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, Riddell SR, Warren EH, Carlson CS (2009) Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114:4099–4107

    Article  CAS  Google Scholar 

  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  CAS  Google Scholar 

  • Schonland SO, Zimmer JK, Lopez-Benitez CM, Widmann T, Ramin KD, Goronzy JJ, Weyand CM (2003) Homeostatic control of T-cell generation in neonates. Blood 102:1428–1434

    Article  Google Scholar 

  • Spits H (2002) Development of alphabeta T cells in the human thymus. Nat Rev Immunol 2:760–772

    Article  CAS  Google Scholar 

  • Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B (1997) Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276:2057–2062

    Article  CAS  Google Scholar 

  • Trigueros C, Ramiro AR, Carrasco YR, de Yebenes VG, Albar JP, Toribio ML (1998) Identification of a late stage of small noncycling pTalpha- pre-T cells as immediate precursors of T cell receptor alpha/beta+ thymocytes. J Exp Med 188:1401–1412

    Article  CAS  Google Scholar 

  • Wang Q, Strong J, Killeen N (2001) Homeostatic competition among T cells revealed by conditional inactivation of the mouse Cd4 gene. J Exp Med 194:1721–1730

    Article  CAS  Google Scholar 

  • Wang GC, Dash P, McCullers JA, Doherty PC, Thomas PG (2012) T cell receptor alphabeta diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci Transl Med 4:128ra42

    PubMed  PubMed Central  Google Scholar 

  • Warren RL, Freeman JD, Zeng T, Choe G, Munro S, Moore R, Webb JR, Holt RA (2011) Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res 21:790–797

    Article  CAS  Google Scholar 

  • Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, Currier NL, Nikolich-Zugich D, Kaye J, Nikolich-Zugich J (2014) Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol 192:2143–2155

    Article  CAS  Google Scholar 

  • Westera L, van Hoeven V, Drylewicz J, Spierenburg G, van Velzen JF, de Boer RJ, Tesselaar K, Borghans JA (2015) Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell 14:219–227

    Article  CAS  Google Scholar 

  • Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499

    Article  CAS  Google Scholar 

  • Wilson A, Held W, MacDonald HR (1994) Two waves of recombinase gene expression in developing thymocytes. J Exp Med 179:1355–1360

    Article  CAS  Google Scholar 

  • Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA (2008) Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 205:711–723

    Article  CAS  Google Scholar 

  • Zhang N, Bevan MJ (2012) TGF-beta signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol 13:667–673

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Gustafson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gustafson, C.E., Lamar, D.L., Weyand, C.M., Goronzy, J.J. (2019). Age, T Cell Homeostasis, and T Cell Diversity in Humans. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-99375-1_9

Download citation

Publish with us

Policies and ethics