Skip to main content

Advances in Radiotherapy for Prostate Cancer Treatment

  • Chapter
  • First Online:
Molecular & Diagnostic Imaging in Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1126))

Abstract

Major categories of radiotherapy (RT) for prostate cancer (CaP) treatment are: (1) external beam RT (EBRT), and (2) brachytherapy (BT). EBRT are performed using different techniques like three-dimensional conformal RT (3D-CRT), intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic body radiation therapy (SBRT), stereotactic radiosurgery (SRS) and intensity modulated proton therapy (IMPT), etc., using a variety of radiation delivery machines, such as a linear accelerator (Linac), Cyberknife robotic system, Gamma knife, Tomotherapy and proton beam machine. The primary advantage of proton beam therapy is sparing of normal tissues and organ at risks (OARs) with comparable coverage of the tumor volume. MR-Linac is the latest addition in the image-guided RT. Robot-assisted brachytherapy is one of the latest technological innovations in the field. With the advancement of technology, radiation therapy for prostate cancer can be improved using high quality multimodal imaging, robot-assistance for brachytherapy as well as EBRT. This chapter presents the advances in radiation therapy for the treatment of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalbasi A, Li J, Berman AT et al (2015) Dose-escalated irradiation and overall survival in men with nonmetastatic prostate cancer. JAMA Oncol 1(7):897–906

    Article  Google Scholar 

  2. Brenner DJ, Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Rad Oncol Biol Phys 43(5):1095–1101

    Article  CAS  Google Scholar 

  3. King CR, Fowler JF (2001) A simple analytic derivation suggests that prostate cancer a/b ratio is low. Int J Radiat Oncol Biol Phys 51(1):213–214

    Article  CAS  Google Scholar 

  4. Lloyd-Davies RW, Collins CD, Swan AV (1990) Carcinoma of prostate treated byradical external beam radiotherapy using hypofractionation. Twenty-two years’ experience (1962–1984). Urology 36:107–111

    Article  CAS  Google Scholar 

  5. Lukka H, Hayter C, Julian JA, Warde P, Morris WJ, Gospodarowicz M, Levine M, Sathya J, Choo R, Prichard H, Brundage M, Kwan W (2005) Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 23(25):6132–6138

    Article  Google Scholar 

  6. Yeoh EK, Bartholomeusz DL, Holloway RH, Fraser RJ, Botten R, Di Matteo A, Moore JW, Schoeman MN (2010) Disturbed colonic motility contributes to anorectal symptoms and dysfunction after radiotherapy for carcinoma of the prostate. Int J Radiat Oncol Biol Phys 78(3):773–780

    Article  Google Scholar 

  7. Hoskin PJ, Motohashi K, Bownes P, Bryant L, Ostler P (2007) High dose rate brachytherapy in combination with external beam radiotherapy in the radical treatment of prostate cancer: initial results of a randomised phase three trial. Radiother Oncol 84(2):114–120

    Article  Google Scholar 

  8. Dearnaley DP, Jovic G, Syndikus I, Khoo V et al (2014) Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomized controlled trial. Lancet Oncol 15(4):464–473

    Article  Google Scholar 

  9. Kuban DA, Levy LB, Cheung MR, Lee AK et al (2011) Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys 79(5):1310–1317

    Article  Google Scholar 

  10. Michalski JM, Yan Y, Watkins-Bruner D, Walter B, Winter K, Galvin JM, Bahary J, Morton GC, M.B. Parliament, Sandler H (2011) Preliminary analysis of 3D-CRT vs. IMRT on the high dose arm of the RTOG 0126 prostate cancer trial: toxicity report. Int J Radiat Oncol Biol Phys 81(2):S1–S2

    Article  Google Scholar 

  11. Pommier P, Chabaud S, Lagrange JL et al (2011) 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys 80(4):1056–1063

    Article  Google Scholar 

  12. Pugh J, Griffin C, Hall E et al (2016) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol 17(8):1047–1060

    Article  Google Scholar 

  13. Aluwini S, Pos F, Schimmel E, van Lin E, Krol S et al (2016) Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): acute toxicity results from a randomised non-inferiority phase 3 trial. Lancet Oncol 16(3):274–283

    Article  Google Scholar 

  14. Robert Lee W, Dignam JJ, Amin M, Bruner D, Low D, Swanson GP et al NRG oncology RTOG 0415: a randomized phase III non-inferiority study comparing two fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol 34(2 Suppl):1. https://doi.org/10.1200/jco.2016.34.2_suppl.1

  15. Arcangeli S, Strigari L, Gomellini S, Saracino B et al (2012) Updated results and patterns of failure in a randomized hypofractionation trial for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 84(5):1172–1178

    Article  Google Scholar 

  16. Pollack A, Walker G, Horwitz EM, Price R et al (2013) Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol 31(31):3860–3868

    Article  Google Scholar 

  17. Loblaw A, Cheung P, D'Alimonte L, Deabreu A et al (2013) Prostate stereotactic ablative body radiotherapy using a standard linear accelerator: toxicity, biochemical, and pathological outcomes. Radiother Oncol 107(2):153–158

    Article  Google Scholar 

  18. Mantz C (2014) A phase II trial of stereotactic ablative body radiotherapy for low-risk prostate cancer using a non-robotic linear accelerator and real-time target tracking: report of toxicity, quality of life, and disease control outcomes with 5-year minimum follow-up. Front Oncol 4:279

    Article  Google Scholar 

  19. Boike TP, Lotan Y, Cho LC, Brindle J et al (2011) Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. J Clin Oncol 29(15):2020–2026

    Article  Google Scholar 

  20. Lukka H, Stephanie P, Bruner D, Bahary JP et al (2016) Patient-reported outcomes in NRG oncology/RTOG 0938, a randomized phase 2 study evaluating 2 ultrahypofractionated regimens (UHRs) for prostate cancer. Int J Radiat Oncol Biol Phys 94(1):2

    Article  Google Scholar 

  21. Ellis RJ. NRG-GU005: phase III IGRT and SBRT versus IGRT and hypofractionated IMRT for localized intermediate risk prostate cancer. https://www.nrgoncology.org/Clinical-Trials/Protocol-Table

  22. Detti B, Bonomo P, Masi L, Doro R, Cipressi S, Iermano C, Bonucci I, Franceschini D, Di Cataldo V, Di Brina L, Baki M, Simontacchi G, Meattini I, Carini M, Serni S, Nicita G, Livi L (2015) Cyberknife treatment for low and intermediate risk prostate cancer. Cancer Investig 33(5):188–192

    Article  CAS  Google Scholar 

  23. Buzurovic I, Yu Y, Werner-Wasik M, Biswas T, Anne PR, Dicker AP, Podder TK (2012) Implementation and experimental results of 4D tumor tracking using robotic couch. Med Phys 39:6957–6967

    Article  CAS  Google Scholar 

  24. Sweeney RA, Arnold W, Steixner E et al (2009) Compensating for tumor motion by a 6-degree-of-freedom treatment couch: is patient tolerance an issue? Int J Radiat Oncol Biol Phys 74:168–171

    Article  Google Scholar 

  25. Duttenhaver JR, Shipley WU, Perrone T, Verhey LJ, Goitein M, Munzenrider JE, Prout GR, Parkhurst EC, Suit HD (1983) Protons or megavoltage X-rays as boost therapy for patients irradiated for localized prostatic carcinoma. An early phase I/II comparison. Cancer 51(9):1599–1604

    Article  CAS  Google Scholar 

  26. Zietman AL, Bae K, Slater JD, Shipley WU, Efstathiou JA, Coen JJ, Bush DA, Lunt M, Spiegel DY, Skowronski R, Jabola BR, Rossi CJ (2010) Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95–09. J Clin Oncol 28(7):1106–1111

    Article  Google Scholar 

  27. Trofimov A, Nguyen PL, Coen JJ, Doppke KP et al (2007) Radiotherapy treatment of early-stage prostate cancer with IMRT and protons: a treatment planning comparison. Int J Radiat Oncol Biol Phys 69(2):444–453

    Article  Google Scholar 

  28. Mendenhall NP, Li Z, Hoppe BS et al (2012) Early outcomes from three prospective trials of image-guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys 82(1):213–221

    Article  Google Scholar 

  29. Allen AM, Pawlicki T, Dong L, Fourkal E, Buyyounouski M, Cengel K, Plastaras J, Bucci MK, Yock TI, Bonilla L, Price R, Harris EE, Konski AA (2012) An evidence based review of proton beam therapy: the report of ASTRO's emerging technology committee. Radiother Oncol 103(1):8–11

    Article  Google Scholar 

  30. Bryant C, Smith TL, Henderson RH et al (2016) Five-year biochemical results, toxicity, and patient-reported quality of life after delivery of dose-escalated image guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys 95(1):422–434

    Article  Google Scholar 

  31. Vapiwala N (2017) Surgery, radiation, or active surveillance? Findings from the ProtecT trial for prostate cancer. ASCO meeting 2017

    Google Scholar 

  32. Efstathiou J. A landmark study compares proton beam therapy with standard radiation therapy. http://www.massgeneral.org/cancer/advances/fall2013proton.aspx

  33. Hoogeman M, Prévost J, Nuyttens J et al (2009) Clinical accuracy of the respiration tumor tracking system of the CyberKnife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys 74:297–303

    Article  Google Scholar 

  34. Dieterich S, Cavedon C et al (2011) Report of AAPM TG 135: quality assurance for robotic radiosurgery (CyberKnife). Med Phys 38:2914–2936

    Article  Google Scholar 

  35. Buzurovic I, Yu Y, Podder TK (2011) Active tracking and dynamic dose delivery for robotic couch in radiation therapy. Proc IEEE Int Conf Eng Med Biol 2011:2156–2159

    Google Scholar 

  36. Zhu M, Bharat S, Michalski JM, Gay HA, Hou WH, Parikh PJ (2013) Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy. Int J Radiat Oncol Biol Phys 85:1038–1044

    Article  Google Scholar 

  37. Podder TK, Hutapea P, Darvish K, Dicker AP, Yu Y (2012) A novel curvilinear approach for prostate seed implant. Med Phys 39(4):1887–1892

    Article  Google Scholar 

  38. Morton G, Chung HT, McGuffin M, Helou J et al (2017) Prostate high dose-rate brachytherapy as monotherapy for low and intermediate risk prostate cancer: Early toxicity and quality-of life results from a randomized phase II clinical trial of one fraction of 19 Gy or two fractions of 13.5 Gy. Radiother Oncol 122(1):87–92

    Article  Google Scholar 

  39. Martinez AA, Demanes J, Vargas C, Schour L, Ghilezan M, Gustafson GS (2010) High-dose-rate prostate brachytherapy: an excellent accelerated-hypofractionated treatment for favorable prostate cancer. Am J Clin Oncol 33(5):481–488

    Article  Google Scholar 

  40. Maria Joseph F, Kumar M, Hutapea P, Yu Y, Dicker A, Podder T (2015) Development of self-actuating flexible needle system for surgical procedures. J Med Dev 9(2):1–2.020945. https://doi.org/10.1115/1.4030221 Paper No: MED-15-1138

    Article  Google Scholar 

  41. Podder TK, Beaulieu L, Caldwell B, Cormack RA et al (2014) AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192. Med Phys 41:101501–101527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun K. Podder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Podder, T.K., Fredman, E.T., Ellis, R.J. (2018). Advances in Radiotherapy for Prostate Cancer Treatment. In: Schatten, H. (eds) Molecular & Diagnostic Imaging in Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-319-99286-0_2

Download citation

Publish with us

Policies and ethics