Skip to main content

Rotordynamic Instabilities in Washing Machines

  • Conference paper
  • First Online:
Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM (IFToMM 2018)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 61))

Included in the following conference series:

  • 1647 Accesses

Abstract

Rigid-body resonances used to be the only known vibration phenomena to occur in washing machines. However, lately there have been unexpected incidences of excessive, self-destructive vibrations. It is not clear how these incidents can be explained and reliably prevented. It is presumed that design changes evoke or shift vibrational phenomena which did not occur in the operating speed range of previous machines. Rotordynamic theories might be a suitable explanatory approach for these effects. However, since these effects have yet not been an issue, rotordynamic theories have never been applied to washing machines, even though they are obviously a rotor system and effects are well known for other applications. This paper investigates and highlights rotordynamic effects in frontloaders with a horizontal axis of rotation. To do so, a numerical multi-body model is utilized for dynamical analysis. Potential causes for rotordynamic effects in washing machines are discussed and included in the model. Numerical analyses of eigenvalues and transient displacements show several rotordynamic effects, their rough speeds and their dependency of different parameters. It is discussed how likely each effect is to shift into the operating speed range because of design changes, and thus how likely it is to become a threat. This gives a supplemented overview of the dynamic behavior of washing machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kloss-Grote, B.: Zum Einfluss der Aufstellbedingungen auf das Gehäuseschwingungsverhalten von Waschmaschinen—Experiment und Simulation. Dissertation, Technische Universität Berlin (2011). https://doi.org/10.14279/depositonce-2694

  2. Samsung Electronics America: Voluntary Recall of Certain Top-Load Washers. https://pages.samsung.com/us/tlw. Accessed 22 Jan 2018

  3. The Guardian: Samsung Recalls 2.8 m Washing Machines After Reports Of Explosions. https://www.theguardian.com/technology/2016/nov/04/samsung-washing-machine-recall-explosion-risk. Accessed 20 Jan 2018

  4. Samsung Electronics America: Samsung Statement on Top-Load Washing Machines. http://news.samsung.com/us/2016/09/28/samsung-official-statement-on-top-load-washing-machines. Accessed 22 Jan 2018

  5. The Telegraph: Samsung Washing Machines are also Exploding, Says Lawsuit. http://www.telegraph.co.uk/technology/2016/09/29/samsung-washing-machines-are-also-exploding. Accessed 22 Jan 2018

  6. Nygårds, T., Berbyuk, V.: Multibody modeling and vibration dynamics analysis of washing machines. Multibody Syst. Dyn. 27(2), 197–238 (2012). https://doi.org/10.1007/s11044-011-9292-5

    Article  MATH  Google Scholar 

  7. Lim, H.-T., Jeong, W.-B., Kim, K.-J.: Dynamic modeling and analysis of drum-type washing machine. Int. J. Precis. Eng. Manuf. 11(3), 407–417 (2010). https://doi.org/10.1007/s12541-010-0047-7

    Article  Google Scholar 

  8. Gödecker, H., von Wagner, U., Heubner, A.: Dynamical behavior of washing machines. Proc. Appl. Math. Mech. 9(1), 109–110 (2009). https://doi.org/10.1002/pamm.200910029

    Article  Google Scholar 

  9. Ma, X., Hu, F., Liu, J.: Dynamic Characteristic simulation of drum washing machine rigid-flexible coupling model. Int. J. Control Autom. 8(5), 167–176 (2015). https://doi.org/10.14257/ijca.2015.8.5.16

    Article  Google Scholar 

  10. Bae, S., Lee, J.M., Kang, Y.J., Kang, J.S., Yun, J.R.: Dynamic analysis of an automatic washing machine with a hydraulic balancer. J. Sound Vib. 257(1), 3–18 (2002). https://doi.org/10.1006/jsvi.2001.4162

    Article  Google Scholar 

  11. Agnani, A., Cannella, F., Martarelli, M., Merloni, G., Tomasini, E.P.: Dynamic characterization of a washing machine: numerical multi-body analysis and experimental validation. In: 26th IMAC: Conference and Exposition on Structural Dynamics 2008, pp. 4–7. Curran Associates, Inc., Red Hook (2008)

    Google Scholar 

  12. Jang, J.-S., Jin, J.-H., Jung, H.-Y., Park, J.-H., Lee, J.-W., Yoo, W.-S.: Multibody dynamic analysis of a washing machine with a rapid change of mass during dehydration. Int. J. Precis. Eng. Manuf. 17(1), 91–97 (2016). https://doi.org/10.1007/s12541-016-0012-1

    Article  Google Scholar 

  13. Barcha, W.A.M., Varoto, P.S.: Three methods to study the dynamic behavior of a vertical Axis Washing Machine during the Spinning Stage. In: Rade, D., Steffen, V., Jr. (eds.) Proceedings of XI DINAME (2005)

    Google Scholar 

  14. Wagner, F.: Dynamics of Washing Machines. Fortschrittberichte VDI: Reihe 11, Schwigungstechnik, vol. 287. VDI Verlag, Düsseldorf (2000)

    Google Scholar 

  15. Conrad, D.C.: The fundamentals of automatic washing machine design based upon dynamic constraints. Ph.D. thesis, Purdue University (1994)

    Google Scholar 

  16. Argentini, T., Belloli, M., Robustelli, F.C., Martegani, L., Fraternale, G.: Innovative designs for the suspension system of horizontal-axis washing machines: secondary suspensions and tuned mass dampers. In: ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 4B: Dynamics, Vibration and Control, p. V04BT04A058. American Society of Mechanical Engineers, New York (2013) https://doi.org/10.1115/imece2013-64425

  17. Türkay, O.S., Sümer, İ.T., Tuǧcu, A.K., Kiray, B.: Modeling and experimental assessment of suspension dynamics of a horizontal-axis washing machine. J. Vib. Acoust. 120(2), 534–543 (1998). https://doi.org/10.1115/1.2893862

    Article  Google Scholar 

  18. Buśkiewicz, J., Pittner, G.: Reduction in vibration of a washing machine by means of a disengaging damper. Mechatronics 33, 121–135 (2016). https://doi.org/10.1016/j.mechatronics.2015.11.002

    Article  Google Scholar 

  19. Nguyen, Q.H., Nguyen, N.D., Choi, S.B.: Optimal design and performance evaluation of a flow-mode MR damper for front-loaded washing machines. Asia Pac. J. Comput. Eng. 1, 3 (2014). https://doi.org/10.1186/2196-1166-1-3

    Article  Google Scholar 

  20. Yalçın, B.C., Erol, H.: Semiactive vibration control for horizontal axis washing machine. Shock Vib. 2015(6), 1–10 (2015). https://doi.org/10.1155/2015/692570

    Article  Google Scholar 

  21. Boyraz, P., Gündüz, M.: Dynamic modeling of a horizontal washing machine and optimization of vibration characteristics using genetic algorithms. Mechatronics 23(6), 581–593 (2013). https://doi.org/10.1016/j.mechatronics.2013.05.006

    Article  Google Scholar 

  22. Jung, C.-H., Kim, C.-S., Choi, Y.-H.: A dynamic model and numerical study on the liquid balancer used in an automatic washing machine. J. Mech. Sci. Technol. 22(9), 1843–1852 (2008). https://doi.org/10.1007/s12206-008-0623-2

    Article  Google Scholar 

  23. Urbiola-Soto, L., Lopez-Parra, M.: Dynamic performance of the LeBlanc balancer for automatic washing machines. J. Vib. Acoust. 133(4), 41014 (2011). https://doi.org/10.1115/1.4003597

    Article  Google Scholar 

  24. Löffler, A., Schweers, C., Fast, V., Kruse, D., Trächtler, A.: Multidomänen-Modell eines Waschvollautomaten für einen Hardware-in-the-Loop-Prüfstand. In: Gausemeier, J., Rammig, F.-J., Schäfer, W., Trächtler, A. (eds.) 8 Paderborner Workshop Entwurf mechatronischer Systeme. Verlagsschriftenreihe des Heinz Nixdorf Instituts, Paderborn (2011)

    Google Scholar 

  25. Schweers, C.: Adaptive Sigma-Punkte-Filter-Auslegung zur Zustands- und Parameterschätzung an Black-Box-Modellen. Dissertation, Universität Paderborn (2016) https://doi.org/10.17619/unipb/1-33

  26. Löffler, A., Koert, D., Schweers, C., Trächtler, A.: Einführung in die modellbasierte Entwicklung im Bereich der Hausgerätetechnik. In: Bertram, T., Corves, B., Janschek, K. (eds.) Fachtagung Mechatronik 2011, Dresden, pp. 321–326 (2011)

    Google Scholar 

  27. Crandall, S.H., Brosens, P.J.: On the stability of rotation of a rotor with rotationally unsymmetric inertia and stiffness properties. J. Appl. Mech. 28(4), 567–570 (1961). https://doi.org/10.1115/1.3641784

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Drüke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Drüke, S., Bicker, R., Schuller, B., Henke, C., Trächtler, A. (2019). Rotordynamic Instabilities in Washing Machines. In: Cavalca, K., Weber, H. (eds) Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM . IFToMM 2018. Mechanisms and Machine Science, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-99268-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99268-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99267-9

  • Online ISBN: 978-3-319-99268-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics