Skip to main content

Evolving Living Technologies—Insights from the EvoEvo Project

  • Conference paper
  • First Online:
Search-Based Software Engineering (SSBSE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11036))

Included in the following conference series:

Abstract

The EvoEvo project was a 2013–2017 FP7 European project aiming at developing new evolutionary approaches in information science and producing novel algorithms based on the current understanding of molecular and evolutionary biology, with the ultimate goals of addressing open-ended problems in which the specifications are either unknown or too complicated to express, and of producing software able to operate even in unpredictable, varying conditions. Here we present the main rationals of the EvoEvo project and propose a set of design rules to evolve adaptive software systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The following text is massively derived from the EvoEvo project documents. In particular, many paragraphs are derived from the EvoEvo Description of Work (DoW) and from the project Final Report (EvoEvo Deliverable 6.8), available at www.evoevo.eu.

  2. 2.

    ICT-2013.9.6 – FET Proactive: Evolving Living Technologies (EVLIT).

  3. 3.

    Clustering is a data-mining task that aims to group objects sharing similar characteristics into a same cluster over the whole data space. Subspace clustering similarly aims at identifying groups of similar objects, but it also aims at detecting the subspaces where similarity occurs. Hence it can be conceived as “similarity examined under different representations” [23]. Subspace clustering is recognized as a more complicated and general task than standard clustering. Moreover, retrieving meaningful subspaces is particularly useful when dealing with high dimensional data [21].

References

  1. Abernot, J., Beslon, G., Hickinbotham, S., Peignier, S., Rigotti, C.: Evolving instrument based on symbiont-host metaphor: a commensal computation. J. Creative Music Syst. 2(1), 1–10 (2017)

    Google Scholar 

  2. Banzhaf, W., et al.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theory Biosci. 135(3), 131–161 (2016)

    Article  Google Scholar 

  3. Batut, B., Parsons, D.P., Fischer, S., Beslon, G., Knibbe, C.: In silico experimental evolution: a tool to test evolutionary scenarios. In: BMC Bioinformatics, vol. 14, no. 15, p. S11 (2013)

    Google Scholar 

  4. Beslon, G., Liard, V., Elena, S.F.: Evolvability drives innovation in viral genomes. In: 2nd EvoEvo Workshop, Satellite Workshop of CCS2016, Amsterdam, September 2016, 6 p. (2016)

    Google Scholar 

  5. Brooks, R.A.: Elephants don’t play chess. Rob. Auton. Syst. 6(1–2), 3–15 (1990)

    Article  Google Scholar 

  6. Chatterjee, K., Pavlogiannis, A., Adlam, B., Nowak, M.A.: The time scale of evolutionary innovation. PLoS Comput. Biol. 10(9), e1003818 (2014)

    Article  Google Scholar 

  7. Clark, E.B., Hickinbotham, S.J., Stepney, S.: Semantic closure demonstrated by the evolution of a universal constructor architecture in an artificial chemistry. J. R. Soc. Interface 14, 20161033 (2017)

    Article  Google Scholar 

  8. Colizzi, E.S., Hogeweg, P.: Evolution of functional diversification within quasispecies. Genome Biol. Evol. 6(8), 1990–2007 (2014)

    Article  Google Scholar 

  9. Colizzi, E.S., Hogeweg, P.: High cost enhances cooperation through the interplay between evolution and self-organisation. BMC Evol. Biol. 16(1), 31 (2016)

    Article  Google Scholar 

  10. Cuypers, T.D., Hogeweg, P.: Virtual genomes in flux: an interplay of neutrality and adaptability explains genome expansion and streamlining. Genome Biol. Evol. 4(3), 212–229 (2012)

    Article  Google Scholar 

  11. de Boer, F.K., Hogeweg, P.: Co-evolution and ecosystem based problem solving. Ecol. Inform. 9, 47–58 (2012)

    Article  Google Scholar 

  12. https://youtu.be/p_eJFiQfW1E

  13. Fischer, S., Bernard, S., Beslon, G., Knibbe, C.: A model for genome size evolution. Bull. Math. Biol. 76(9), 2249–2291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hickinbotham, S., Stepney, S.: Bio-reflective architectures for evolutionary innovation. In: A Life 2016, Cancun, Mexico, pp. 192–199. MIT Press (2016)

    Google Scholar 

  15. Hickinbotham, S., Stepney, S.: Augmenting live coding with evolved patterns. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 31–46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31008-4_3

    Chapter  Google Scholar 

  16. Hindré, T., Knibbe, C., Beslon, G., Schneider, D.: New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat. Rev. Microbiol. 10, 352–365 (2012)

    Article  Google Scholar 

  17. Hooper, L.V., Gordon, J.I.: Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001)

    Article  Google Scholar 

  18. Hooper, L.V., Midtvedt, T., Gordon, J.I.: How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann. Rev. Nutr. 22(1), 283–307 (2002)

    Article  Google Scholar 

  19. Hoverd, T., Stepney, S.: EvoMachina: a novel evolutionary algorithm inspired by bacterial genome reorganisation. In: 2nd EvoEvo Workshop, CCS 2016, Amsterdam, Netherlands (2016)

    Google Scholar 

  20. Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)

    Article  Google Scholar 

  21. Kriegel, H.-P., Kröger, P., Zimek, A.: Clustering highdimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data 3(1), 1–58 (2009)

    Article  Google Scholar 

  22. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol. Comput. 5(4), 401–418 (1997)

    Article  Google Scholar 

  23. Patrikainen, A., Meila, M.: Comparing subspace clusterings. IEEE Trans. Knowl. Data Eng. 18(7), 902–916 (2006)

    Article  Google Scholar 

  24. Peignier, S., Rigotti, C., Beslon, G.: Subspace clustering using evolvable genome structure. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 575–582 (2015)

    Google Scholar 

  25. Peignier, S., Abernot, J., Rigotti, C., Beslon, G.: EvoMove: evolutionary-based living musical companion. In European Conference on Artificial Life (ECAL), pp. 340–347 (2017)

    Google Scholar 

  26. Peignier, S., Rigotti, C., Rossi, A., Beslon, G.: Weight-based search to find clusters around medians in subspaces. In: ACM Symposium on Applied Computing, p. 10 (2018)

    Google Scholar 

  27. Plucain, J., et al.: Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343, 1366–1369 (2014)

    Article  Google Scholar 

  28. Rocabert, C., Knibbe, C., Consuegra, J., Schneider, D., Beslon, G.: Beware batch culture: seasonality and niche construction predicted to favor bacterial adaptive diversification. PLoS Comput. Biol. 13(3), e1005459 (2017)

    Article  Google Scholar 

  29. Rutten, J., Hogeweg, P., Beslon, G.: (in prep) Adapting the engine to the fuel: mutator populations can reduce the mutational load by reorganizing their genome structure. in prep

    Google Scholar 

  30. Szathmáry, E., Maynard-Smith, J.: The major evolutionary transitions. Nature 374(6519), 227–232 (1997)

    Article  Google Scholar 

  31. van Dijk, B., Hogeweg, P.: In silico gene-level evolution explains microbial population diversity through differential gene mobility. Genome Biol. Evol. 8(1), 176–188 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission \(7^{th}\) Framework Program (FP7-ICT-2013.9.6 FET Proactive: Evolving Living Technologies) EvoEvo project (ICT- 610427, http://www.evovo.eu/). The authors thank all the partners of the EvoEvo project for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Beslon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beslon, G., Elena, S.F., Hogeweg, P., Schneider, D., Stepney, S. (2018). Evolving Living Technologies—Insights from the EvoEvo Project. In: Colanzi, T., McMinn, P. (eds) Search-Based Software Engineering. SSBSE 2018. Lecture Notes in Computer Science(), vol 11036. Springer, Cham. https://doi.org/10.1007/978-3-319-99241-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99241-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99240-2

  • Online ISBN: 978-3-319-99241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics