Skip to main content

Thyroid Hormone Biosynthesis and Physiology

  • Chapter
  • First Online:
Thyroid Disease and Reproduction

Abstract

Thyroid hormones are key regulators of development, growth, and metabolism. Growth and function of thyroid cells are controlled by positive and negative feedback mediated by the hypothalamic-pituitary-thyroid axis. Appropriate thyroid hormone synthesis requires a normally developed thyroid gland, an intact hypothalamic-pituitary-thyroid axis, adequate iodine intake, and a series of regulated biochemical reactions within thyroid follicular cells. Circulating thyroid hormones are primarily bound to plasma proteins, and only a small portion is present as free hormone. Thyroid hormones enter the cell nucleus and act predominantly by altering genomic activity via nuclear receptors, but they can also exert non-genomic activity through interactions with mitochondrial and plasma membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoki Y, Belin RM, Clickner R, Jeffries R, Phillips L, Mahaffey KR. Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999-2002). Thyroid. 2007;17(12):1211–23.

    Article  Google Scholar 

  2. Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017 guidelines of the American Thyroid Association for the diagnosis and Management of Thyroid Disease during pregnancy and the postpartum. Thyroid. 2017;27(3):315–89.

    Article  Google Scholar 

  3. Maraka S, Singh Ospina NM, O'Keeffe DT, Rodriguez-Gutierrez R, Espinosa De Ycaza AE, Wi CI, et al. Effects of levothyroxine therapy on pregnancy outcomes in women with subclinical hypothyroidism. Thyroid. 2016;26(7):980–6.

    Article  CAS  Google Scholar 

  4. Cooper DS, Pearce EN. Subclinical hypothyroidism and hypothyroxinemia in pregnancy – still no answers. N Engl J Med. 2017;376(9):876–7.

    Article  Google Scholar 

  5. Skudlinski M, Kazlauskaite R, Weintraub B. Thyroid-stimulating hormone and regulation of the thyroid axis. In: DeGroot LJ, Jameson JL, editors. Endocrinology. 2Vols. 5th ed. Philadelphia: Elsevier; 2006, p. 1803–22.

    Google Scholar 

  6. Kopp P. The TSH receptor and its role in thyroid disease. Cell Mol Life Sci. 2001;58(9):1301–22.

    Article  CAS  Google Scholar 

  7. Benvenga S. Thyroid hormone transport proteins and the physiology of hormone binding. In: Braverman L, Utiger R, editors. Werner and Ingbar's the thyroid: a fundamental and clinical text. 9th ed. Philadelphia: Lippincott, Williams & Wilkins; 2005. p. 97–108.

    Google Scholar 

  8. Bernal J, Guadano-Ferraz A, Morte B. Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol. 2015;11(7):406–17.

    Article  CAS  Google Scholar 

  9. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23(1):38–89.

    Article  CAS  Google Scholar 

  10. Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol. 2014;10(10):582–91.

    Article  CAS  Google Scholar 

  11. Kopp P. Thyroid hormone synthesis: thyroid iodine metabolism. In: Braverman L, Utiger R, editors. Werner and Ingbar's the thyroid: a fundamental and clinical text. 10th ed. Philadelphia: Lippincott, Williams & Wilkins; 2013. p. 48–74.

    Google Scholar 

  12. Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev. 2003;24(1):48–77.

    Article  CAS  Google Scholar 

  13. Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM, Carrasco N. The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol. 2017;79:261–89.

    Article  CAS  Google Scholar 

  14. Wemeau JL, Kopp P. Pendred syndrome. Best Pract Res Clin Endocrinol Metab. 2017;31(2):213–24.

    Article  CAS  Google Scholar 

  15. Taurog A. Hormone synthesis: thyroid iodine metabolism. In: Braverman L, Utiger R, editors. Werner and Ingbar's the thyroid: a fundamental and clinical text. 8th ed. Philadelphia: Lippincott, Williams & Wilkins; 2000. p. 61–85.

    Google Scholar 

  16. Moreno JC, Visser TJ. New phenotypes in thyroid dyshormonogenesis: hypothyroidism due to DUOX2 mutations. Endocr Dev. 2007;10:99–117.

    Article  CAS  Google Scholar 

  17. Visser WE, Friesema EC, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol (Baltimore, Md). 2011;25(1):1–14.

    Article  CAS  Google Scholar 

  18. Di Jeso B, Arvan P. Thyroglobulin from molecular and cellular biology to clinical endocrinology. Endocr Rev. 2016;37(1):2–36.

    Article  Google Scholar 

  19. Moreno JC, Klootwijk W, van Toor H, Pinto G, D'Allessandro M, Leger A, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med. 2008;358(17):1811–8.

    Article  CAS  Google Scholar 

  20. Martin T, Findlay D, Sexton P. Calcitonin. In: DeGroot LJ, Jameson JL, editors. Endocrinology. 2 vols. 5th ed. Philadelphia: Elsevier; 2006, p. 1419–33.

    Google Scholar 

  21. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001;86(12):5658–71.

    Article  CAS  Google Scholar 

  22. Dohan O, Portulano C, Basquin C, Reyna-Neyra A, Amzel LM, Carrasco N. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc Natl Acad Sci U S A. 2007;104(51):20250–5.

    Article  CAS  Google Scholar 

  23. Hilditch TE, Horton PW, McCruden DC, Young RE, Alexander WD. Defects in intrathyroid binding of iodine and the perchlorate discharge test. Acta Endocrinol. 1982;100(2):237–44.

    Article  CAS  Google Scholar 

  24. Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, et al. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med. 2000;6(8):871–8.

    Article  CAS  Google Scholar 

  25. Grollman EF, Smolar A, Ommaya A, Tombaccini D, Santisteban P. Iodine suppression of iodide uptake in FRTL-5 thyroid cells. Endocrinology. 1986;118(6):2477–82.

    Article  CAS  Google Scholar 

  26. Kogai T, Curcio F, Hyman S, Cornford EM, Brent GA, Hershman JM. Induction of follicle formation in long-term cultured normal human thyroid cells treated with thyrotropin stimulates iodide uptake but not sodium/iodide symporter messenger RNA and protein expression. J Endocrinol. 2000;167(1):125–35.

    Article  CAS  Google Scholar 

  27. Eng PH, Cardona GR, Previti MC, Chin WW, Braverman LE. Regulation of the sodium iodide symporter by iodide in FRTL-5 cells. Eur J Endocrinol. 2001;144(2):139–44.

    Article  CAS  Google Scholar 

  28. Wolff J, Chaikoff I. Plasma inorganic iodide as homeostatic regulator of thyroid function. J Biol Chem. 1948;174:555–64.

    CAS  PubMed  Google Scholar 

  29. Wolff J, Chaikoff I, Goldberg R, Meier J. The temporary nature of the inhibitory action of excess iodide on organic iodide synthesis in the normal thyroid. Endocrinology. 1949;45:504–13.

    Article  CAS  Google Scholar 

  30. Braverman LE, Ingbar SH. Changes in thyroidal function during adaptation to large doses of iodide. J Clin Invest. 1963;42:1216–31.

    Article  CAS  Google Scholar 

  31. Gillam MP, Sidhaye A, Lee EJ, Rutishauser J, Waeber Stephan C, Kopp P. Functional characterization of pendrin in a polarized cell system: evidence for pendrin-mediated apical iodide efflux. J Biol Chem. 2004;279:13004–10.

    Article  CAS  Google Scholar 

  32. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997;17:411–22.

    Article  CAS  Google Scholar 

  33. Pesce L, Bizhanova A, Caraballo JC, Westphal W, Butti ML, Comellas A, et al. TSH regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells. Endocrinology. 2012;153(1):512–21.

    Article  CAS  Google Scholar 

  34. Iosco C, Cosentino C, Sirna L, Romano R, Cursano S, Mongia A, et al. Anoctamin 1 is apically expressed on thyroid follicular cells and contributes to ATP- and calcium-activated iodide efflux. Cell Physiol Biochem. 2014;34(3):966–80.

    Article  CAS  Google Scholar 

  35. Twyffels L, Strickaert A, Virreira M, Massart C, Van Sande J, Wauquier C, et al. Anoctamin-1/TMEM16A is the major apical iodide channel of the thyrocyte. Am J Physiol Cell Physiol. 2014;307(12):C1102–12.

    Article  CAS  Google Scholar 

  36. Vono-Toniolo J, Rivolta CM, Targovnik HM, Medeiros-Neto G, Kopp P. Naturally occurring mutations in the thyroglobulin gene. Thyroid. 2005;15(9):1021–33.

    Article  CAS  Google Scholar 

  37. Haugen B, Alexander E, Bible K, Doherty G, Mandel S, Nikiforov Y, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  Google Scholar 

  38. Bakker B, Bikker H, Vulsma T, de Randamie JS, Wiedijk BM, De Vijlder JJ. Two decades of screening for congenital hypothyroidism in the Netherlands: TPO gene mutations in total iodide organification defects (an update). J Clin Endocrinol Metab. 2000;85:3708–12.

    Article  CAS  Google Scholar 

  39. Grasberger H, Refetoff S. Genetic causes of congenital hypothyroidism due to dyshormonogenesis. Curr Opin Pediatr. 2011;23(4):421–8.

    Article  CAS  Google Scholar 

  40. Di Cosmo C, Liao XH, Dumitrescu AM, Philp NJ, Weiss RE, Refetoff S. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest. 2010;120(9):3377–88.

    Article  Google Scholar 

  41. Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet (London, England). 2004;364(9443):1435–7.

    Article  CAS  Google Scholar 

  42. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74(1):168–75.

    Article  CAS  Google Scholar 

  43. Bartalena L, Robbins J. Variations in thyroid hormone transport proteins and their clinical implications. Thyroid. 1992;2(3):237–45.

    Article  CAS  Google Scholar 

  44. Kopp P. Genetic basis of thyroid disorders. In: Ganten D, Ruekpaul K, editors. Genomics and proteomics in molecular medicine. 2nd ed. Berlin: Springer; 2006. p. 1862–7.

    Google Scholar 

  45. Glinoer D, de Nayer P, Bourdoux P, Lemone M, Robyn C, van Steirteghem A, et al. Regulation of maternal thyroid during pregnancy. J Clin Endocrinol Metab. 1990;71(2):276–87.

    Article  CAS  Google Scholar 

  46. Cooper DS, Ladenson PW. The thyroid gland. In: Gardner DG, Shoback D, editors. Greenspan’s basic & clinical endocrinology, 10e. New York: McGraw-Hill Education; 2017.

    Google Scholar 

  47. Refetoff S. Thyroid Hormone Serum Transport Proteins. June 7, 2015. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth; 2000.

    Google Scholar 

  48. Pappa T, Ferrara AM, Refetoff S. Inherited defects of thyroxine-binding proteins. Best Pract Res Clin Endocrinol Metab. 2015;29(5):735–47.

    Article  CAS  Google Scholar 

  49. Bianco AC. Minireview: cracking the metabolic code for thyroid hormone signaling. Endocrinology. 2011;152(9):3306–11.

    Article  CAS  Google Scholar 

  50. Williams GR, Bassett JH. Deiodinases: the balance of thyroid hormone: local control of thyroid hormone action: role of type 2 deiodinase. J Endocrinol. 2011;209(3):261–72.

    Article  CAS  Google Scholar 

  51. Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014;24(10):1456–65.

    Article  Google Scholar 

  52. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–70.

    Article  CAS  Google Scholar 

  53. Astapova I, Hollenberg AN. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim Biophys Acta. 2013;1830(7):3876–81.

    Article  CAS  Google Scholar 

  54. Ortiga-Carvalho TM, Shibusawa N, Nikrodhanond A, Oliveira KJ, Machado DS, Liao XH, et al. Negative regulation by thyroid hormone receptor requires an intact coactivator-binding surface. J Clin Invest. 2005;115(9):2517–23.

    Article  CAS  Google Scholar 

  55. Refetoff S. Inherited thyroxine-binding globulin abnormalities in man. Endocr Rev. 1989;10:275–93.

    Article  CAS  Google Scholar 

  56. Refetoff S, Bassett JH, Beck-Peccoz P, Bernal J, Brent G, Chatterjee K, et al. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. Thyroid. 2014;24(3):407–9.

    Article  Google Scholar 

  57. Refetoff S, Dumitrescu AM. Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab. 2007;21(2):277–305.

    Article  CAS  Google Scholar 

  58. Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, et al. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med. 2012;366(3):243–9.

    Article  CAS  Google Scholar 

  59. Moran C, Agostini M, McGowan A, Schoenmakers E, Fairall L, Lyons G, et al. Contrasting phenotypes in resistance to thyroid hormone alpha correlate with divergent properties of thyroid hormone receptor alpha1 mutant proteins. Thyroid. 2017;27(7):973–82.

    Article  CAS  Google Scholar 

  60. van Gucht AL, Meima ME, Zwaveling-Soonawala N, Visser WE, Fliers E, Wennink JM, et al. Resistance to thyroid hormone alpha in an 18-month-old girl: clinical, therapeutic, and molecular characteristics. Thyroid. 2016;26(3):338–46.

    Article  Google Scholar 

  61. Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol. 2016;12(2):111–21.

    Article  CAS  Google Scholar 

  62. Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev. 2010;31(5):702–55.

    Article  CAS  Google Scholar 

  63. Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993;14(3):348–99.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Malini Soundarrajan is supported by a Ruth L. Kirschstein National Research Service Award T32 DK007169 from NIH/NIDDK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Kopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soundarrajan, M., Kopp, P.A. (2019). Thyroid Hormone Biosynthesis and Physiology. In: Eaton, J. (eds) Thyroid Disease and Reproduction. Springer, Cham. https://doi.org/10.1007/978-3-319-99079-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99079-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99078-1

  • Online ISBN: 978-3-319-99079-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics