Skip to main content

Modeling Plant Development with L-Systems

  • Chapter
  • First Online:
Mathematical Modelling in Plant Biology

Abstract

Since their inception in 1968, L-systems have become a key conceptual, mathematical and software tool for modeling plant development at different levels of plant organization spanning molecular genetics, plant physiology, whole plant architecture and plant communities. The models can be descriptive, directly recapitulating observations and measurements of plants; mechanistic, explaining higher-level processes in terms of lower-level ones; or they may combine features of both classes. We present the basic idea of L-systems, motivate and outline some of their most useful extensions, and give a taste of current techniques for modeling with L-systems. The sample models progress in the scale of organization from a bacterium to a herbaceous plant to a tree, and simulate different forms of information transfer during the development, from communication between adjacent cells to bidirectional information exchange with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelson H, diSessa AA (1982) Turtle geometry. MIT Press, Cambridge

    Google Scholar 

  2. Adams D, Duggan P (1999) Heterocyst and akinete differentiation in cyanobacteria. New Phytol 144(1):3–33

    Article  Google Scholar 

  3. Algorithmic botany (2018) The Virtual Laboratory/L-studio software distribution. http://algorithmicbotany.org/virtual_laboratory

  4. Baker R, Herman GT (1970) CELIA — a cellular linear iterative array simulator. In: Proceedings of the fourth conference on applications of simulation, 9–11 December 1970, pp 64–73

    Google Scholar 

  5. Baker R, Herman GT (1972) Simulation of organisms using a developmental model, Parts I and II. Int J Bio-Med Comput 3:201–215, 251–267

    Article  CAS  Google Scholar 

  6. Bastien R, Bohr T, Moulia B, Douady S (2013) Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants. Proc Natl Acad Sci 110(2):755–760

    Article  CAS  Google Scholar 

  7. Bastien R, Douady S, Moulia B (2015) A unified model of shoot tropism in plants: photo-, gravi-and propio-ception. PLoS Comput Biol 11(2):e1004037

    Article  Google Scholar 

  8. Borchert R, Honda H (1984) Control of development in the bifurcating branch system of Tabebuia rosea: a computer simulation. Bot Gaz 145:184–195

    Article  Google Scholar 

  9. Borchert R, Slade N (1981) Bifurcation ratios and the adaptive geometry of trees. Bot Gaz 142(3):394–401

    Article  Google Scholar 

  10. Boudon F, Pradal C, Cokelaer T, Prusinkiewicz P, Godin C (2012) L-Py: an L-system simulation framework for modeling plant architecture development based on a dynamic language. Front Plant Sci 3:76

    Article  Google Scholar 

  11. Buikema W, Haselkorn R (1991) Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev 5(2):321–330

    Article  CAS  Google Scholar 

  12. Chelakkot R, Mahadevan L (2017) On the growth and form of shoots. J R Soc Interface 14(128):1–6

    Article  Google Scholar 

  13. Coen E, Rolland-Lagan AG, Matthews M, Bangham A, Prusinkiewicz P (2004) The genetics of geometry. Proc Natl Acad Sci USA 101:4728–4735

    Article  CAS  Google Scholar 

  14. de Koster CG, Lindenmayer A (1987) Discrete and continuous models for heterocyst differentiation in growing filaments of blue-green bacteria. Acta Biotheor 36:249–273

    Article  Google Scholar 

  15. Dumais J (2013) Beyond the sine law of plant gravitropism. Proc Natl Acad Sci 110(2):391–392

    Article  CAS  Google Scholar 

  16. Fogg G (1949) Growth and heterocyst production in Anabaena cylindrica Lemm. in relation to carbon and nitrogen metabolism. Ann Bot 13(51):241–259

    Article  CAS  Google Scholar 

  17. Fournier C, Andrieu B (1998) A 3D architectural and process-based model of maize development. Ann Bot 81:233–250

    Article  Google Scholar 

  18. Fritsch F (1951) The heterocyst: a botanical enigma. Proc Linnean Soc Lond 162(2):194–211

    Article  Google Scholar 

  19. Gerdtzen Z, Salgado J, Osses A, Asenjo J, Rapaport I, Andrews B (2009) Modeling heterocyst pattern formation in cyanobacteria. BMC Bioinf 10(6):S16

    Article  Google Scholar 

  20. Giavitto JL, Godin C, Michel O, Prusinkiewicz P (2002) Computational models for integrative and developmental biology. LaMI Rapport de Recherche 72–2002, CNRS — Université d’Evry val d’Essonne

    Google Scholar 

  21. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  CAS  Google Scholar 

  22. Hammel M, Prusinkiewicz P (1996) Visualization of developmental processes by extrusion in space-time. In: Proceedings of graphics interface ’96, pp 246–258

    Google Scholar 

  23. Hanan JS (1992) Parametric L-systems and their application to the modelling and visualization of plants. PhD thesis, University of Regina

    Google Scholar 

  24. Hanan JS (1997) Virtual plants — integrating architectural and physiological models. Environ Model Softw 12:35–42

    Article  Google Scholar 

  25. Haselkorn R (1998) How cyanobacteria count to 10. Science 282:891–892

    Article  CAS  Google Scholar 

  26. Herrero A, Stavans J, Flores E (2016) The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev 40(6):831–854

    Article  CAS  Google Scholar 

  27. Huxley JS (1924) Constant differential growth ratios and their significance. Nature 114:895–896

    Article  Google Scholar 

  28. Huxley JS (1932) Problems of relative growth. MacVeagh, London

    Google Scholar 

  29. Karwowski R, Prusinkiewicz P (2003) Design and implementation of the L+C modeling language. Electron Notes Theor Comput Sci 86(2):134–152

    Article  Google Scholar 

  30. Kniemeyer O (2004) Rule-based modelling with the XL/GroIMP software. In: The logic of artificial life: abstracting and synthesizing the principles of living systems; Proceedings of the 6th German workshop on artificial life, April 14–16, 2004, Bamberg, AKA Akademische Verlagsgesellschaft, Berlin, pp 56–65

    Google Scholar 

  31. Kniemeyer O, Buck-Sorlin G, Kurth W (2007) GroIMP as a platform for functional-structural modelling of plants. In: Vos J et al (eds) Functional-structural modeling in crop production. Springer, Dordrecht, pp 43–52

    Chapter  Google Scholar 

  32. Kurth W (1994) Growth grammar interpreter GROGRA 2.4: a software tool for the 3-dimensional interpretation of stochastic, sensitive growth grammars in the context of plant modeling. Introduction and reference manual. Forschungszentrum Waldökosysteme der Universität Göttingen, Göttingen

    Google Scholar 

  33. Lane B (2015) Cell complexes: the structure of space and the mathematics of modularity. PhD thesis, University of Calgary

    Google Scholar 

  34. Lane B, Prusinkiewicz P (2002) Generating spatial distributions for multilevel models of plant communities. In: Proceedings of graphics interface 2002, pp 69–80

    Google Scholar 

  35. Lindenmayer A (1968) Mathematical models for cellular interaction in development, Parts I and II. J Theor Biol 18:280–315

    Article  CAS  Google Scholar 

  36. Lindenmayer A (1971) Developmental systems without cellular interaction, their languages and grammars. J Theor Biol 30:455–484

    Article  CAS  Google Scholar 

  37. Lindenmayer A (1974) Adding continuous components to L-systems. In: Rozenberg G, Salomaa A (eds) L Systems. Lecture notes in computer science, vol 15. Springer, Berlin, pp 53–68

    Chapter  Google Scholar 

  38. MacDonald N (1983) Trees and networks in biological models. Wiley, New York

    Google Scholar 

  39. MacNamara S, Strang G (2016) Operator splitting. In: Glowinski R, Osher S, Yin W (eds) Splitting methods in communication, imaging, science, and engineering. Springer, Berlin, pp 95–114

    Chapter  Google Scholar 

  40. McGhee G (1999) Theoretical morphology: the concept and its applications. Columbia University Press, New York

    Google Scholar 

  41. Meinhardt H (1982) Models of biological pattern formation. Academic, London

    Google Scholar 

  42. Mitchison G, Wilcox M (1972) Rules governing cell division in Anabaena. Nature 239:110–111

    Article  Google Scholar 

  43. Mündermann L, Erasmus Y, Lane B, Coen E, Prusinkiewicz P (2005) Quantitative modeling of Arabidopsis development. Plant Physiol 139:960–968

    Article  Google Scholar 

  44. Měch R, Prusinkiewicz P (1996) Visual models of plants interacting with their environment. In: Proceedings of SIGGRAPH 1996, pp 397–410

    Google Scholar 

  45. Niklas KJ (1994) Plant allometry: the scaling of form and process. The University of Chicago Press, Chicago

    Google Scholar 

  46. Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79(4):871–889

    Article  Google Scholar 

  47. Owens A, Cieslak M, Hart J, Classen-Bockhoff R, Prusinkiewicz P (2016) Modeling dense inflorescences. ACM Trans Graph 35(4):136

    Article  Google Scholar 

  48. Palubicki W, Horel K, Longay S, Runions A, Lane B, Měch R, Prusinkiewicz P (2009) Self-organizing tree models for image synthesis. ACM Trans Graph 28:58

    Article  Google Scholar 

  49. Papert S (1980) Mindstorms: children, computers and powerful ideas. Basic Books, New York

    Google Scholar 

  50. Prusinkiewicz P (1986) Graphical applications of L-systems. In: Proceedings of graphics interface ’86 — vision Interface ’86, pp 247–253

    Google Scholar 

  51. Prusinkiewicz P (2004) Art and science for life: designing and growing virtual plants with L-systems. Acta Horti 630:15–28

    Article  Google Scholar 

  52. Prusinkiewicz P, de Reuille PB (2010) Constraints of space in plant development. J Exp Bot 61:2117–2129

    Article  CAS  Google Scholar 

  53. Prusinkiewicz P, Hanan J (1990) Visualization of botanical structures and processes using parametric L-systems. In: Thalmann D (ed) Scientific visualization and graphics simulation. Wiley, Chichester, pp 183–201

    Google Scholar 

  54. Prusinkiewicz P, Lane B (2013) Modeling morphogenesis in multicellular structures with cell complexes and L-systems. In: Capasso V et al (eds) Pattern Formation in Morphogenesis, Springer, Berlin, pp 137–151

    Chapter  Google Scholar 

  55. Prusinkiewicz P, Lindenmayer A (1990) Hanan JS, Fracchia FD, Fowler DR, de Boer MJM, Mercer L (eds) The algorithmic beauty of plants. Springer, New York

    Google Scholar 

  56. Prusinkiewicz P, Runions A (2012) Computational models of plant development and form. New Phytol 193:549–569

    Article  CAS  Google Scholar 

  57. Prusinkiewicz P, Hammel M, Mjolsness E (1993) Animation of plant development. In: Proceedings of SIGGRAPH 1993, pp 351–360

    Google Scholar 

  58. Prusinkiewicz P, James M, Měch R (1994) Synthetic topiary. In: Proceedings of SIGGRAPH 1994, pp 351–358

    Google Scholar 

  59. Prusinkiewicz P, Remphrey W, Davidson C, Hammel M (1994) Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems. Can J Bot 72:701–714

    Article  Google Scholar 

  60. Prusinkiewicz P, Hanan J, Měch R (2000) An L-system-based plant modeling language. In: Nagl M, Schürr A, Münch M (eds) Applications of graph transformations with industrial relevance. Lecture notes in computer science, vol 1779. Springer, Berlin, pp 395–410

    Chapter  Google Scholar 

  61. Prusinkiewicz P, Karwowski R, Lane B (2007) The L+C plant-modeling language. In: Vos J et al (eds) Functional-structural modeling in crop production. Springer, Dordrecht, pp 27–42

    Chapter  Google Scholar 

  62. Robinson S, de Reuille PB, Chan J, Bergmann D, Prusinkiewicz P, Coen E (2011) Generation of spatial patterns through cell polarity switching. Science 333:1436–1440

    Article  CAS  Google Scholar 

  63. Room PM, Maillette L, Hanan J (1994) Module and metamer dynamics and virtual plants. Adv Ecol Res 25:105–157

    Article  Google Scholar 

  64. Sachs T, Novoplansky A (1995) Tree form: architectural models do not suffice. Isr J Plant Sci 43:203–212

    Article  Google Scholar 

  65. Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form — the pipe model theory. I. Basic analyses. Jpn J Ecol 14(3):97–104

    Google Scholar 

  66. Smith C (2006) On vertex-vertex systems and their use in geometric and biological modeling. PhD thesis, University of Calgary

    Google Scholar 

  67. Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I (2018) The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Methods 14:6:1–10

    Google Scholar 

  68. Ulam S (1962) On some mathematical properties connected with patterns of growth of figures. In: Proceedings of symposia on applied mathematics, vol 14. American Mathematical Society, Providence, RI, pp 215–224

    Google Scholar 

  69. Ulam S (1966) Patterns of growth of figures: mathematical aspects. In: Kepes G (ed) Module, Proportion, Symmetry, Rhythm. Braziller, New York, pp 64–74

    Google Scholar 

  70. von Neumann J (1966) Burks AW (ed) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  71. Wardlaw I (1999) Thermal time. In: Atwell B, Kriedemann P, Turnbull (eds) Plants in action: adaptation in nature, performance in cultivation, Macmillan Education Australia, Melbourne

    Google Scholar 

  72. Wilcox M, Mitchison GJ, Smith RJ (1973) Pattern formation in the blue-green alga, Anabaena. I. Basic mechanisms. J Cell Sci 12:707–723

    CAS  PubMed  Google Scholar 

  73. Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10(1–2):1–35

    Article  Google Scholar 

  74. Wolfram S (2002) A new kind of science. Wolfram Media/Cambridge University Press, Champaign, IL

    Google Scholar 

  75. Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Hall for the prototype version of the timeline editor featured in Fig. 8.10, Andrew Owens for help with Fig. 8.11, and Lynn Mercer for insightful discussions. The authors’ research on the L-system-based modeling methods, specific models, and the Virtual Laboratory (vlab) software used in the preparation of this paper was supported by the Natural Sciences and Engineering Research Council and the Plant Phenotyping Imaging and Research Centre/Canada First Research Excellence Fund. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemyslaw Prusinkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prusinkiewicz, P., Cieslak, M., Ferraro, P., Hanan, J. (2018). Modeling Plant Development with L-Systems. In: Morris, R. (eds) Mathematical Modelling in Plant Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-99070-5_8

Download citation

Publish with us

Policies and ethics