Skip to main content

Modelling the Plant Microtubule Cytoskeleton

  • Chapter
  • First Online:
Mathematical Modelling in Plant Biology
  • 1058 Accesses

Abstract

The physical shape and structure of plants are manifestations of the actions of gene products and their concerted responses to their environment. In this chapter we introduce the plant cortical microtubule array. This structure is both a nexus in the control of plant cell shape and function, and a fascinating out-of-equilibrium system for state-of-the-art physics research. We describe how analytical and computational approaches complement each other in the study of the array, and highlight some recent results and open research questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cosgrove DJ (2005) Nat Rev Mol Cell Biol 6(11):850. https://doi.org/10.1038/nrm1746. http://www.nature.com/doifinder/10.1038/nrm1746

    Article  CAS  Google Scholar 

  2. Desai A, Mitchison TJ (1997) Annu Rev Cell Dev Biol 13(1):83. https://doi.org/10.1146/annurev.cellbio.13.1.83. http://www.annualreviews.org/doi/10.1146/annurev.cellbio.13.1.83

    Article  CAS  Google Scholar 

  3. Mandelkow E, Mandelkow EM (1995) Curr Opin Cell Biol 7(1):72. https://doi.org/10.1016/0955-0674(95)80047-6. http://linkinghub.elsevier.com/retrieve/pii/0955067495800476

    Article  CAS  Google Scholar 

  4. Ehrhardt DW, Shaw SL (2006) Annu Rev Plant Biol 57(1):859. https://doi.org/10.1146/annurev.arplant.57.032905.105329. http://www.annualreviews.org/doi/10.1146/annurev.arplant.57.032905.105329

    Article  CAS  Google Scholar 

  5. Mineyuki Y (1999), pp. 1–49. https://doi.org/10.1016/S0074-7696(08)62415-8. http://linkinghub.elsevier.com/retrieve/pii/S0074769608624158

    Google Scholar 

  6. Smith LG (2001) Nat Rev Mol Cell Biol 2(1):33. https://doi.org/10.1038/35048050. http://www.nature.com/doifinder/10.1038/35048050

    Article  CAS  Google Scholar 

  7. Zhang H, Dawe RK (2011) Chromosom Res 19(3):335. https://doi.org/10.1007/s10577-011-9190-y. http://link.springer.com/10.1007/s10577-011-9190-y

    Article  CAS  Google Scholar 

  8. Bornens M (2002) Curr Opin Cell Biol 14(1):25. https://doi.org/10.1016/S0955-0674(01)00290-3. http://www.sciencedirect.com/science/article/pii/S0955067401002903

    Article  CAS  Google Scholar 

  9. Ehrhardt DW (2008) Curr Opin Cell Biol 20(1):107. https://doi.org/10.1016/j.ceb.2007.12.004. http://www.sciencedirect.com/science/article/pii/S0955067407001937

    Article  CAS  Google Scholar 

  10. Isaeva VV (2012) Biol Bull 39(2):110. https://doi.org/10.1134/S1062359012020069. http://link.springer.com/10.1134/S1062359012020069

    Article  Google Scholar 

  11. Grzybowski BA, Wilmer CE, Kim J, Browne KP, Bishop KJM (2009) Soft Matter 5(6):1110. https://doi.org/10.1039/b819321p. http://xlink.rsc.org/?DOI=b819321p

    Article  CAS  Google Scholar 

  12. Howard J, Hyman AA (2003) Nature 422:753–758. http://dx.doi.org/10.1038/nature01600.

    Article  CAS  Google Scholar 

  13. Tindemans SH, Deinum EE, Lindeboom JJ, Mulder B (2014) Front Physiol 2(19):9. https://doi.org/10.3389/fphy.2014.00019. http://www.frontiersin.org/biophysics/10.3389/fphy.2014.00019/abstract

  14. Chan J, Sambade A, Calder G, Lloyd C (2009) Plant Cell 12(8):2298. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=19706794

    Article  Google Scholar 

  15. Nakamura M, Ehrhardt DW, Hashimoto T (2010) Nat Cell Biol 12(11):1064

    Article  CAS  Google Scholar 

  16. Dixit R, Cyr R (2004) Plant Cell Online 16(12):3274

    Article  CAS  Google Scholar 

  17. Tindemans SH, Hawkins RJ, Mulder BM (2010) Phys Rev Lett 104(5):058103. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=20366797

    Article  Google Scholar 

  18. Hawkins RJ, Tindemans SH, Mulder BM, Phys Rev E Stat Nonlinear Soft Matter Phys (2010) 82(1 Pt 1):011911

    Article  Google Scholar 

  19. Tindemans SH, Mulder BM (2010) Phys Rev E Stat Nonlinear Soft Matter Phys 81(3 Pt 1):031910. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=20365773

    Article  Google Scholar 

  20. Allard JF, Wasteneys GO, Cytrynbaum EN (2010) Mol Biol Cell 21(2):278. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=19910489

    Article  CAS  Google Scholar 

  21. Eren EC, Dixit R, Gautam N (2010) Mol Biol Cell 21(15):2674. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=20519434

    Article  CAS  Google Scholar 

  22. Deinum E, Tindemans S, Mulder B (2011) Phys Biol 8(5):056002. https://doi.org/10.1088/1478-3975/8/5/056002. http://dx.doi.org/10.1088/1478-3975/8/5/056002

    Article  Google Scholar 

  23. Lindeboom JJ, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons AMC, Mulder BM, Kirik V, Ehrhardt DW (2013) Science 342(6163):1245533. https://doi.org/10.1126/science.1245533. http://dx.doi.org/10.1126/science.1245533

    Article  Google Scholar 

  24. Vineyard L, Elliott A, Dhingra S, Lucas JR, Shaw SL (2013) Plant Cell 25(2):662. https://doi.org/10.1105/tpc.112.107326. http://dx.doi.org/10.1105/tpc.112.107326

    Article  CAS  Google Scholar 

  25. Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska AL, Kierzkowski D, Roeder AH, Smith RS, Boudaoud A, Hamant O (2016) Curr Biol 26(8):1019

    Article  CAS  Google Scholar 

  26. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Science 322(5908):1650. https://doi.org/10.1126/science.1165594. http://www.sciencemag.org/cgi/content/abstract/322/5908/1650

    Article  CAS  Google Scholar 

  27. Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykrt D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O (2012) Cell 149(2):439. https://doi.org/10.1016/j.cell.2012.02.048. http://dx.doi.org/10.1016/j.cell.2012.02.048

    Article  CAS  Google Scholar 

  28. Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, Traas J, Meyerowitz EM (2010) PLoS Biol 8(10):e1000516. https://doi.org/10.1371/journal.pbio.1000516. http://dx.doi.org/10.1371/journal.pbio.1000516

    Article  Google Scholar 

  29. Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jönsson H, Meyerowitz EM (2014) Elife 3:e01967. https://doi.org/10.7554/eLife.01967. http://dx.doi.org/10.7554/eLife.01967

  30. Lindeboom JJ, Lioutas A, Deinum EE, Tindemans SH, Ehrhardt DW, Emons AMC, Vos JW, Mulder BM (2013) Plant Physiol 161(3):1189. https://doi.org/10.1104/pp.112.204057. http://dx.doi.org/10.1104/pp.112.204057

    Article  CAS  Google Scholar 

  31. Sethna JP (1992). In: Nagel L, Stein D (eds) 1991 lectures in complex systems. Santa Fe Institute studies in sciences of complexity, vol 15. Addison-Wesley, Reading

    Google Scholar 

  32. Ambrose C, Allard JF, Cytrynbaum EN, Wasteneys GO (2011) Nat Commun 2:430. https://doi.org/10.1038/ncomms1444. http://dx.doi.org/10.1038/ncomms1444

  33. Deinum EE (2013) Simple models for complex questions on plant development. Ph.D. thesis

    Google Scholar 

  34. Zhang Q, Fishel E, Bertroche T, Dixit R (2013) Curr Biol 23(21):2191. https://doi.org/10.1016/j.cub.2013.09.018. http://dx.doi.org/10.1016/j.cub.2013.09.018

    Article  CAS  Google Scholar 

  35. Deinum EE, Tindemans SH, Lindeboom JJ, Mulder BM (2017) Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1702650114. http://www.pnas.org/content/early/2017/06/15/1702650114.abstract

    Article  CAS  Google Scholar 

  36. de Keijzer J, Mulder BM, Janson ME (2014) Syst Synth Biol 8:187. https://doi.org/10.1007/s11693-014-9142-x.

    Article  Google Scholar 

  37. Oda Y, Fukuda H (2012) Science 337(6100):1333. https://doi.org/10.1126/science.1222597. http://dx.doi.org/10.1126/science.1222597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bela M. Mulder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deinum, E.E., Mulder, B.M. (2018). Modelling the Plant Microtubule Cytoskeleton. In: Morris, R. (eds) Mathematical Modelling in Plant Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-99070-5_4

Download citation

Publish with us

Policies and ethics