Skip to main content

Aggregation-Induced Emission Luminogens for Biomedical Applications

  • Chapter
  • First Online:
Principles and Applications of Aggregation-Induced Emission

Abstract

In recent years, luminogens with aggregation-induced emission (AIE) feature have attracted a great deal of attention, and been used in many high-tech fields. One important application is the biological diagnostics and therapeutics. Thus far, AIE luminogens (AIEgens) have been successfully utilized for in vitro/in vivo imaging and therapy, which show excellent performance and great promise. AIEgens have several notable characteristics, such as high brightness, large Stokes shift, marked photostability, and good biocompatibility, making them very suitable for biomedical applications. In this chapter, the recent development of AIEgens as biological agents is summarized, including the in vivo imaging with AIE nanoparticles, activable probes with special turn-on signature, near-infrared AIEgens for high-resolution imaging, theranostic systems combining diagnostic with therapeutic capabilities, and emerging multi-modality platforms. The future perspectives of AIEgens for biomedical applications are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7(7):591–607

    CAS  Google Scholar 

  2. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(187):580–589

    CAS  Google Scholar 

  3. Antonsen SL et al (2013) MRI, PET/CT and ultrasound in the preoperative staging of endometrial cancer—a multicenter prospective comparative study. Gynecol Oncol 128(2):300–308

    CAS  Google Scholar 

  4. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    CAS  Google Scholar 

  5. Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44(13):4185–4191

    CAS  Google Scholar 

  6. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    CAS  Google Scholar 

  7. Wu C, Bull B, Szymanski C, Christensen K, McNeill J (2018) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2(11):2415–2423

    Google Scholar 

  8. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41(3):1130–1172

    CAS  Google Scholar 

  9. Pansare VJ, Hejazi S, Faenza WJ, Prud’homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater 24(5):812–827

    CAS  Google Scholar 

  10. Feng G et al (2014) Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking. Biomaterials 35(30):8669–8677

    CAS  Google Scholar 

  11. Oushiki D et al (2010) Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J Am Chem Soc 132(8):2795–2801

    CAS  Google Scholar 

  12. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (29):4332–4353

    Google Scholar 

  13. Luo J et al (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun (18):1740–1741

    Google Scholar 

  14. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388

    CAS  Google Scholar 

  15. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940

    CAS  Google Scholar 

  16. Zhao Z, Lam JWY, Tang BZ (2012) Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J Mater Chem 22(45):23726–23740

    CAS  Google Scholar 

  17. Hu R et al (2009) Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J Phys Chem C 113(36):15845–15853

    CAS  Google Scholar 

  18. Zhang H et al (2017) Why do simple molecules with “isolated” phenyl rings emit visible light? J Am Chem Soc 139(45):16264–16272

    CAS  Google Scholar 

  19. Wang D et al (2017) Facile synthesis of red/NIR AIE luminogens with simple structures, bright emissions, and high photostabilities, and their applications for specific imaging of lipid droplets and image-guided photodynamic therapy. Adv Funct Mater 27(46):1704039

    Google Scholar 

  20. Du X, Qi J, Zhang Z, Ma D, Wang ZY (2012) Efficient non-doped near infrared organic light-emitting devices based on fluorophores with aggregation-induced emission enhancement. Chem Mater 24(11):2178–2185

    CAS  Google Scholar 

  21. Ding D, Li K, Liu B, Tang BZ (2013) Bioprobes based on AIE fluorogens. Acc Chem Res 46(11):2441–2453

    CAS  Google Scholar 

  22. Ding D et al (2015) A fluorescent light-up nanoparticle probe with aggregation-induced emission characteristics and tumor-acidity responsiveness for targeted imaging and selective suppression of cancer cells. Mater Horiz 2(1):100–105

    CAS  Google Scholar 

  23. Qian J, Tang BZ (2017) AIE luminogens for bioimaging and theranostics: from organelles to animals. Chem 3(4):56–91

    CAS  Google Scholar 

  24. Yi X et al (2017) In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug Discov Today 22(9):1412–1420

    CAS  Google Scholar 

  25. Qin W et al (2012) Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv Funct Mater 22(4):771–779

    CAS  Google Scholar 

  26. Li D, Qin W, Xu B, Qian J, Tang BZ (2017) AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv Mater 29(43):1703643

    Google Scholar 

  27. Wang Y et al (2015) Smart albumin-biomineralized nanocomposites for multimodal imaging and photothermal tumor ablation. Adv Mater 27(26):3874–3882

    CAS  Google Scholar 

  28. Park S et al (2015) Amphiphilized poly(ethyleneimine) nanoparticles: a versatile multi-cargo carrier with enhanced tumor-homing efficiency and biocompatibility. J Mater Chem B 3(2):198–206

    CAS  Google Scholar 

  29. Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6

    CAS  Google Scholar 

  30. Ly HQ, Frangioni JV, Hajjar RJ (2008) Imaging in cardiac cell-based therapy: in vivo tracking of the biological fate of therapeutic cells. Nat Clin Pract Cardiovasc Med 5:S96–S102

    CAS  Google Scholar 

  31. Doubrovin MM et al (2007) In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res 67(24):11959–11969

    CAS  Google Scholar 

  32. Li K et al (2013) Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci Rep 3:1150

    Google Scholar 

  33. Ding D et al (2014) Precise and long-term tracking of adipose-derived stem cells and their regenerative capacity via superb bright and stable organic nanodots. ACS Nano 8(12):12620–12631

    CAS  Google Scholar 

  34. Larson DR et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436

    CAS  Google Scholar 

  35. He GS, Tan LS, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108(4):1245–1330

    CAS  Google Scholar 

  36. Qian J et al (2015) High-order non-linear optical effects in organic luminogens with aggregation-induced emission. Adv Mater 27(14):2332–2339

    CAS  Google Scholar 

  37. Wang D et al (2014) Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging. Sci Rep 4:4279

    Google Scholar 

  38. Lou X, Zhao Z, Tang BZ (2016) Organic dots based on AIEgens for two-photon fluorescence bioimaging. Small 12(47):6430–6450

    CAS  Google Scholar 

  39. Ding D et al (2013) Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv Mater 25(42):6083–6088

    CAS  Google Scholar 

  40. Yuan Y, Kwok RTK, Tang BZ, Liu B (2014) Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J Am Chem Soc 136(6):2546–2554

    CAS  Google Scholar 

  41. Han A et al (2016) Peptide-induced AIEgen self-assembly: a new strategy to realize highly sensitive fluorescent light-up probes. Anal Chem 88(7):3872–3878

    CAS  Google Scholar 

  42. Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44(2):83–90

    CAS  Google Scholar 

  43. Wang J et al (2011) Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 71(23):7238–7249

    CAS  Google Scholar 

  44. Ding D et al (2014) Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells. J Mater Chem B 2(2):231–238

    CAS  Google Scholar 

  45. Yuan Y, Xu S, Cheng X, Cai X, Liu B (2016) Bioorthogonal turn-on probe based on aggregation-induced emission characteristics for cancer cell imaging and ablation. Angew Chem Int Ed 55(22):6457–6461

    CAS  Google Scholar 

  46. Yuan Y, Liu B (2017) Visualization of drug delivery processes using AIEgens. Chem Sci 8(4):2537–2546

    CAS  Google Scholar 

  47. Qian G, Wang ZY (2010) Near-infrared organic compounds and emerging applications. Chem Asian J 5(5):1006–1029

    CAS  Google Scholar 

  48. Han X et al (2015) Highly efficient solid-state near-infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light-emitting diode. Adv Funct Mater 25(48):7521–7529

    Google Scholar 

  49. Chen G et al (2015) Nanostructure formation-induced fluorescence turn-on for selectively detecting protein thiols in solutions, bacteria and live cells. Chem Commun 51(53):10758–10761

    CAS  Google Scholar 

  50. Ow SY, Dunstan DE (2014) A brief overview of amyloids and Alzheimer’s disease. Protein Sci 23(10):1315–1331

    CAS  Google Scholar 

  51. Wang H et al (2014) Self-assembly-induced far-red/near-infrared fluorescence light-up for detecting and visualizing specific protein-peptide interactions. ACS Nano 8(2):1475–1484

    CAS  Google Scholar 

  52. Raj L et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475(7355):231–234

    CAS  Google Scholar 

  53. Pu K, Shuhendler AJ, Rao J (2013) Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew Chem Int Ed 52(39):10325–10329

    CAS  Google Scholar 

  54. Zhang J et al (2017) Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv Mater 29(6):1604764

    Google Scholar 

  55. Yin C et al (2017) Organic nanoprobe cocktails for multilocal and multicolor fluorescence imaging of reactive oxygen species. Adv Funct Mater 27(23):1700493

    Google Scholar 

  56. Song Z et al (2016) Activatable fluorescent nanoprobe with aggregation-induced emission characteristics for selective in vivo imaging of elevated peroxynitrite generation. Adv Mater 28(33):7249–7256

    CAS  Google Scholar 

  57. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Google Scholar 

  58. Hemmer E, Benayas A, Légaré F, Vetrone F (2016) Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz 1(3):168–184

    CAS  Google Scholar 

  59. Antaris AL et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15(2):235–242

    CAS  Google Scholar 

  60. Qi J, Qiao W, Wang ZY (2016) Advances in organic near-infrared materials and emerging applications. Chem Rec 16(3):1531–1548

    CAS  Google Scholar 

  61. Qi J et al (2014) Panchromatic small molecules for UV-Vis-NIR photodetectors with high detectivity. J Mater Chem C 2(13):2431–2438

    CAS  Google Scholar 

  62. Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation-a new cutting edge. Nat Rev Cancer 13(9):653–662

    CAS  Google Scholar 

  63. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10(9):507–518

    CAS  Google Scholar 

  64. Liu J et al (2017) Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. Chem Sci 8(4):2782–2789

    CAS  Google Scholar 

  65. Yang Q et al (2017) Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater 29(12):1605497

    Google Scholar 

  66. Sun Y et al (2016) Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci 7(9):6203

    CAS  Google Scholar 

  67. Qi J et al (2018) Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv Mater 30(12):e1706856. https://doi.org/10.1002/adma.1706856

    Article  Google Scholar 

  68. Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44(10):1050–1060

    CAS  Google Scholar 

  69. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079

    CAS  Google Scholar 

  70. Lovell JF, Liu TWB, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110(5):2839–2857

    CAS  Google Scholar 

  71. Hu F et al (2014) Targeted bioimaging and photodynamic therapy of cancer cells with an activatable red fluorescent bioprobe. Anal Chem 86(15):7987–7995

    CAS  Google Scholar 

  72. Zhang CZ et al (2015) Image-guided combination chemotherapy and photodynamic therapy using a mitochondria-targeted molecular probe with aggregation-induced emission characteristics. Chem Sci 6(8):4580–4586

    CAS  Google Scholar 

  73. Wu W et al (2017) A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy. Adv Mater 29(33):1700548

    Google Scholar 

  74. Chen C et al (2017) AIEgen-based theranostic system: targeted imaging of cancer cells and adjuvant amplification of antitumor efficacy of paclitaxel. Chem Sci 8(3):2191–2198

    CAS  Google Scholar 

  75. Adams SR et al (2016) Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat Commun 7:13019

    CAS  Google Scholar 

  76. Eckardt A, Sinikovic B, Hofele C, Bremer M, Reuter C (2007) Preoperative paclitaxel/carboplatin radiochemotherapy for stage III/IV resectable oral and oropharyngeal cancer: seven-year follow-up of a phase II trial. Oncology 73(3–4):198–203

    CAS  Google Scholar 

  77. Yu CYY et al (2017) Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation. Adv Mater 29(15):1606167

    Google Scholar 

  78. Lovell JF et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10(4):324–332

    CAS  Google Scholar 

  79. Cheng L et al (2014) PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater 26(12):1886–1893

    CAS  Google Scholar 

  80. Huynh E et al (2015) In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 10(4):325–332

    CAS  Google Scholar 

  81. Zhang J et al (2015) In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials 42:103–111

    CAS  Google Scholar 

  82. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462

    CAS  Google Scholar 

  83. Zhang HF, Maslov K, Stoica G, Wang LV (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24(7):848–851

    CAS  Google Scholar 

  84. Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43(18):6570–6597

    CAS  Google Scholar 

  85. Feng G, Liu B (2016) Multifunctional AIEgens for future theranostics. Small 12(47):6528–6535

    CAS  Google Scholar 

  86. Qi J et al (2017) Highly stable organic small molecular nanoparticles as an advanced and biocompatible phototheranostic agent of tumor in living mice. ACS Nano 11(7):7177–7188

    CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge financial support provided by the National Natural Science Foundation of China (51622305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, D. (2019). Aggregation-Induced Emission Luminogens for Biomedical Applications. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_19

Download citation

Publish with us

Policies and ethics