Skip to main content

Sinai’s Work on Markov Partitions and SRB Measures

  • Chapter
  • First Online:
The Abel Prize 2013-2017

Part of the book series: The Abel Prize ((AP))

Abstract

Some principal contributions of Ya. Sinai to hyperbolic theory of dynamical systems, focusing mainly on constructions of Markov partitions and of Sinai–Ruelle–Bowen measures, are discussed. Some further developments in these directions stemming from Sinai’s work, are described.

The author was partially supported by NSF grant DMS–1400027.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After Alekseev’s untimely death in 1980, the seminar was run by Sinai only.

  2. 2.

    This term was first used in works of Chirikov, Ford and Yorke.

  3. 3.

    In fact, the dependence in x is Hölder continuous.

  4. 4.

    One can show that the dependence in x is Hölder continuous.

  5. 5.

    We use here the fact that the set Λ is locally maximal.

  6. 6.

    In other words, θ identifies the rectangle R with the product R ∩ V (s)(x) × R ∩ V (u)(x).

  7. 7.

    In [14], Bowen used a method similar to the original Sinai method known as the method of successive approximations. In [15] he used a different approach based on pseudo-orbits.

  8. 8.

    Both μ u(x) and m u(x) are probability measures.

  9. 9.

    In this paper we use the definition of SRB measure that requires that it is hyperbolic. One can weaken the hyperbolicity requirement by assuming that some (but not necessarily all) Lyapunov exponents are non-zero (with at least one positive). It was proved by Ledrappier and Young [43, 44] that within the class of such measures, SRB measures are the only ones that satisfy the entropy formula.

  10. 10.

    This is a two dimensional smooth map with a hyperbolic fixed point whose stable and unstable separatrices form the eight figure. Inside each of the two loops there is a repelling fixed point.

  11. 11.

    Clearly, the set Λ is locally maximal.

  12. 12.

    The matrix A is assumed to be hyperbolic having one positive and two negative eigenvalues.

  13. 13.

    Recall that given x ∈ M, a subspace E(x) ⊂ T x M, and θ(x) > 0, the cone at x around E(x) with angle θ(x) is defined by \(K(x,E(x),\theta (x))=\{v\in T_x M\colon \angle (v,E(x))<\theta (x)\}\).

  14. 14.

    We stress that the subspaces E 1(x) and E 2(x) do note have to be invariant under df.

  15. 15.

    Indeed, consider F = f 1 × f 2, where f 1 is a topologically transitive Anosov diffeomorphism and f 2 a diffeomorphism close to the identity. Then any measure μ = μ 1 × μ 2, where μ 1 is the unique SRB-measure for f 1 and μ 2 any f 2-invariant measure, is a u-measure for F. Thus, F has a unique u-measure if and only if f 2 is uniquely ergodic. On the other hand, F is topologically mixing if and only if f 2 is topologically mixing.

References

  1. R.L. Adler and B. Weiss. Entropy, a complete metric invariant for automorphisms of the torus. Proc. Nat. Acad. Sci. U.S.A., 57:1573–1576, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  2. V.M. Alekseev. Symbolic dynamics (in Russian). In Eleventh Mathematical School (Summer School, Kolomyya, 1973), pages 5–210. Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1976.

    Google Scholar 

  3. J.F. Alves, C. Bonatti, and M. Viana. SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math., 140(2):351–398, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.F. Alves, C.L. Dias, S. Luzzatto, and V. Pinheiro. SRB measures for partially hyperbolic systems whose central direction is weakly expanding. J. Eur. Math. Soc. (JEMS), 19(10):2911–2946, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.V. Anosov. Geodesic Flows on Closed Riemann Manifolds with Negative Curvature. Number 90 in Proc. Steklov Inst. Math. American Mathematical Society, Providence, RI, 1967.

    Google Scholar 

  6. D.V. Anosov and Ya.G. Sinai. Some smooth ergodic systems. Russ. Math. Surv., 22(5):103–167, 1967.

    Article  Google Scholar 

  7. L. Barreira and Ya. Pesin. Nonuniform Hyperbolicity, volume 115 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. Dynamics of systems with nonzero Lyapunov exponents.

    Google Scholar 

  8. L. Barreira and Ya. Pesin. Introduction to Smooth Ergodic Theory, volume 148 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2013.

    Google Scholar 

  9. M. Benedicks and L. Carleson. The dynamics of the Hénon map. Ann. of Math. (2), 133(1):73–169, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Benedicks and L.-S. Young. Sinai–Bowen–Ruelle measures for certain Hénon maps. Invent. Math., 112(3):541–576, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Benedicks and L.-S. Young. Markov extensions and decay of correlations for certain Hénon maps. Astérisque, (261):xi, 13–56, 2000.

    Google Scholar 

  12. K.R. Berg. On the conjugacy problem for K-systems. PhD thesis, University of Minnesota, 1967. Also available as Entropy of Torus Automorphisms in Topological Dynamics (Symposium, Colorado State Univ., Ft. Collins, Colo.), pages 67–79, Benjamin, New York, 1968.

    Google Scholar 

  13. C. Bonatti and M. Viana. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math., 115:157–193, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Bowen. Markov partitions for Axiom A diffeomorphisms. Amer. J. Math., 92:725–747, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Bowen. Equilibrium States and the Ergodic Theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, Vol. 470, pages i+108. Springer-Verlag, Berlin-New York, 1975.

    Google Scholar 

  16. R. Bowen. Some systems with unique equilibrium states. Math. Syst. Theory, 8:193–202, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Bowen and D. Ruelle. The ergodic theory of Axiom A flows. Invent. Math., 29(3):181–202, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.I. Brin and Ya.B. Pesin. Partially hyperbolic dynamical systems (in Russian). Izv. Akad. Nauk SSSR Ser. Mat., 38:170–212, 1974.

    Google Scholar 

  19. L.A. Bunimovich, B.M. Gurevich, and Ya. Pesin, editors. Sinai’s Moscow Seminar on Dynamical Systems, volume 171 of American Mathematical Society Translations, Series 2. American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  20. L.A. Bunimovich and Ya.G. Sinai. Markov partitions for dispersed billiards. Commun. Math. Phys., 78:247–280, 1980. Erratum ibid, 107(2):357–358, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  21. L.A. Bunimovich, Ya.G. Sinai, and N.I. Chernov. Markov partitions for two-dimensional hyperbolic billiards. Russ. Math. Surv., 45(3):105–152, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Burns, D. Dolgopyat, Ya. Pesin, and M. Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. J. Mod. Dyn., 2(1):63–81, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Cao. Non-zero Lyapunov exponents and uniform hyperbolicity. Nonlinearity, 16(4):1473–1479, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Cao, S. Luzzatto, and I. Rios. A minimum principle for Lyapunov exponents and a higher-dimensional version of a theorem of Mañé. Qual. Theory Dyn. Syst., 5(2):261–273, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Chen, H. Hu, and Ya. Pesin. The essential coexistence phenomenon in dynamics. Dyn. Syst., 28(3):453–472, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Chen, H. Hu, and Ya. Pesin. A volume preserving flow with essential coexistence of zero and non-zero Lyapunov exponents. Ergodic Theory Dynam. Systems, 33(6):1748–1785, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Chernov. Invariant measures for hyperbolic dynamical systems. In Handbook of dynamical systems, Vol. 1A, pages 321–407. North-Holland, Amsterdam, 2002.

    MATH  Google Scholar 

  28. V. Climenhaga, D. Dolgopyat, and Y. Pesin. Non-stationary non-uniform hyperbolicity: SRB measures for dissipative maps. Comm. Math. Phys., 346(2):553–602, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Climenhaga, S. Luzzatto, and Ya. Pesin. Young towers for nonuniformly hyperbolic surface diffeomorphisms. Preprint, PSU, 2018.

    Google Scholar 

  30. R.L. Dobrushin. Description of a random field by means of conditional probabilities and conditions for its regularity. Theor. Probab. Appl., 13:197–224, 1968.

    Article  MathSciNet  Google Scholar 

  31. D. Dolgopyat and Ya. Pesin. Every compact manifold carries a completely hyperbolic diffeomorphism. Ergodic Theory Dynam. Systems, 22(2):409–435, 2002.

    Google Scholar 

  32. B. Gurevich. Entropy theory of dynamical systems. In H. Holden, R. Piene, editors, The Abel Prize 2013–2017, pages 221–242. Springer, 2019.

    Google Scholar 

  33. B. Hasselblatt, Ya. Pesin, and J. Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete Contin. Dyn. Syst., 34(7):2819–2827, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  34. M.W. Hirsch, C.C. Pugh, and M. Shub. Invariant Manifolds, volume 583 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1977.

    Chapter  MATH  Google Scholar 

  35. H. Hu, Ya. Pesin, and A. Talitskaya. A volume preserving diffeomorphism with essential coexistence of zero and nonzero Lyapunov exponents. Comm. Math. Phys., 319(2):331–378, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Katok. Bernoulli diffeomorphisms on surfaces. Ann. of Math. (2), 110(3):529–547, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Katok. Moscow dynamic seminars of the nineteen seventies and the early career of Yasha Pesin. Discrete Contin. Dyn. Syst., 22(1–2):1–22, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Katok. Dmitry Viktorovich Anosov: his life and mathematics. In Modern theory of dynamical systems, volume 692 of Contemp. Math., pages 1–21. Amer. Math. Soc., Providence, RI, 2017.

    Google Scholar 

  39. A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems, volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  40. O.E. Lanford, III and D. Ruelle. Observables at infinity and states with short range correlations in statistical mechanics. Comm. Math. Phys., 13:194–215, 1969.

    Article  MathSciNet  Google Scholar 

  41. F. Ledrappier. Propriétés ergodiques des mesures de Sinai. Inst. Hautes Études Sci. Publ. Math., (59):163–188, 1984.

    Article  MATH  Google Scholar 

  42. F. Ledrappier and J.-M. Strelcyn. A proof of the estimation from below in Pesin’s entropy formula. Ergodic Theory Dynam. Systems, 2(2):203–219 (1983), 1982.

    Google Scholar 

  43. F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2), 122(3):509–539, 1985.

    Google Scholar 

  44. F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. of Math. (2), 122(3):540–574, 1985.

    Google Scholar 

  45. R. Mañé. Quasi-Anosov diffeomorphisms and hyperbolic manifolds. Trans. Amer. Math. Soc., 229:351–370, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Ornstein. Bernoulli shifts with the same entropy are isomorphic. Advances in Math., 4:337–352, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  47. D.S. Ornstein. Ergodic Theory, Randomness, and Dynamical Systems, volume 5 of Yale Mathematical Monographs. Yale University Press, New Haven, Conn.-London, 1974.

    Google Scholar 

  48. D.S. Ornstein and B. Weiss. Geodesic flows are Bernoullian. Israel J. Math., 14:184–198, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  49. Ya.B. Pesin. Families of invariant manifolds that correspond to nonzero characteristic exponents. Math. USSR-Izv., 40(6):1261–1305, 1976.

    Article  MATH  Google Scholar 

  50. Ya.B. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv., 32(4):55–114, 1977.

    Article  MATH  Google Scholar 

  51. Ya.B. Pesin. Description of the π-partition of a diffeomorphism with invariant measure. Math. Notes, 22(1):506–515, 1978.

    Google Scholar 

  52. Ya.B. Pesin. Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2004.

    Google Scholar 

  53. Ya.B. Pesin and Ya.G. Sinai. Gibbs measures for partially hyperbolic attractors. Ergodic Theory Dynam. Systems, 2(3–4):417–438 (1983), 1982.

    Google Scholar 

  54. M. Ratner. Markov partitions for Anosov flows on n-dimensional manifolds. Israel J. Math., 15:92–114, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  55. F. Rodriguez Hertz, M.A. Rodriguez Hertz, A. Tahzibi, and R. Ures. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Comm. Math. Phys., 306(1):35–49, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Ruelle. A measure associated with axiom-A attractors. Amer. J. Math., 98(3):619–654, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  57. O.M. Sarig. Symbolic dynamics for surface diffeomorphisms with positive entropy. J. Amer. Math. Soc., 26(2):341–426, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  58. Ya.G. Sinai. Weak isomorphism of transformations with an invariant measure. Sov. Math., Dokl., 3:1725–1729, 1962.

    Google Scholar 

  59. Ya.G. Sinai. Construction of Markov partitions. Funct. Anal. Appl., 2:245–253, 1968.

    Article  MATH  Google Scholar 

  60. Ya.G. Sinai. Markov partitions and C-diffeomorphisms. Funct. Anal. Appl., 2:61–82, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  61. Ya.G. Sinai. Mesures invariantes des Y-systèmes. Actes Congr. Int. Math. 1970, 2, 929–940, 1971.

    Google Scholar 

  62. Ya.G. Sinai. Gibbs measures in ergodic theory. Russ. Math. Surv., 27(4):21–69, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  63. Ya.G. Sinai. Finite-dimensional randomness. Russ. Math. Surv., 46(3):177–190, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  64. Ya.G. Sinai. Hyperbolicity and chaos. In Boltzmann’s Legacy 150 Years after His Birth (Rome, 1994), volume 131 of Atti Convegni Lincei, pages 107–110. Accad. Naz. Lincei, Rome, 1997.

    Google Scholar 

  65. Ya.G. Sinai. How mathematicians study chaos (in Russian). Mat. Pros., 3(5):32–46, 2001.

    Google Scholar 

  66. S. Smale. A structurally stable differentiable homeomorphism with an infinite number of periodic points. In Qualitative Methods in the Theory of Non-Linear Vibrations (Proc. Internat. Sympos. Non-linear Vibrations, Vol. II, 1961), pages 365–366. Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1963.

    Google Scholar 

  67. S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:747–817, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Szász. Markov approximations and statistical properties of billiards. In H. Holden, R. Piene, editors The Abel Prize 2013–2017, pages 299–319. Springer, 2019.

    Google Scholar 

  69. C.H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. J. Mod. Dyn., 3(2):233–251, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Viana. Dynamics: a probabilistic and geometric perspective. In Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), number Extra Vol. I, pages 557–578, 1998.

    Google Scholar 

  71. Q. Wang and L.-S. Young. Strange attractors with one direction of instability. Comm. Math. Phys., 218(1):1–97, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  72. L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2), 147(3):585–650, 1998.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank B. Gurevich and O. Sarig who read the paper and gave me many valuable comments. I also would like to thank B. Weiss and A. Katok for their remarks on the paper. Part of the work was done when I visited ICERM (Brown University, Providence) and the Erwin Schrödinger Institute (Vienna). I would like to thank them for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Pesin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pesin, Y. (2019). Sinai’s Work on Markov Partitions and SRB Measures. In: Holden, H., Piene, R. (eds) The Abel Prize 2013-2017. The Abel Prize. Springer, Cham. https://doi.org/10.1007/978-3-319-99028-6_11

Download citation

Publish with us

Policies and ethics