Skip to main content

Some Open Problems in Polyomino Tilings

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11088))

Included in the following conference series:

Abstract

The author surveys 15 open problems regarding the algorithmic, structural, and existential properties of polyomino tilings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notion of periodic is actually more nuanced than this; see Sect. 3 of [19] for further discussion.

  2. 2.

    Finding a 1-morphic polyomino is left as an exercise.

References

  1. Ammann, R., Grünbaum, B., Shephard, G.C.: Aperiodic tiles. Discrete Comput. Geom. 8, 1–25 (1992)

    Article  MathSciNet  Google Scholar 

  2. Barequet, G., Golomb, S.W., Klarner, D.A.: Polyominoes. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn. CRC Press (2017)

    Google Scholar 

  3. Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete Comput. Geom. 6, 575–592 (1991)

    Article  MathSciNet  Google Scholar 

  4. Berger, R.: The undecidability of the domino problem. Mem. Am. Math. Soc. 66, 1–72 (1966)

    MathSciNet  MATH  Google Scholar 

  5. Berglund, J.: Is there a \(k\)-anisohedral tile for \(k \ge 5\)? Am. Math. Mon. 100(6), 585–588 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Dahlke, K.A.: A heptomino of order 76. J. Comb. Theor. Ser. A 51, 127–128 (1989)

    Article  MathSciNet  Google Scholar 

  7. Dahlke, K.A.: The Y-hexomino has order 92. J. Comb. Theor. Ser. A 51, 125–126 (1989)

    Article  MathSciNet  Google Scholar 

  8. Fontaine, A., Martin, G.E.: Polymorphic prototiles. J. Comb. Theor. Ser. A 34, 119–121 (1983)

    Article  MathSciNet  Google Scholar 

  9. Fontaine, A., Martin, G.E.: Tetramorphic and pentamorphic prototile. J. Comb. Theo. Ser. A 34, 115–118 (1983)

    Article  MathSciNet  Google Scholar 

  10. Fontaine, A., Martin, G.E.: An enneamorphic prototile. J. Comb. Theo. Ser. A 37, 195–196 (1984)

    Article  MathSciNet  Google Scholar 

  11. Fontaine, A., Martin, G.E.: Polymorphic polyominoes. Math. Mag. 57(5), 275–283 (1984)

    Article  MathSciNet  Google Scholar 

  12. Frank, N.P.: A primer of substitution tilings of the Euclidean plane. Expositiones Math. 26(4), 295–326 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gambini, I., Vuillon, L.: Non-lattice-periodic tilings of \(\mathbb{R}^3\) by single polycubes. Theor. Comput. Sci. 432, 52–57 (2012)

    Article  MathSciNet  Google Scholar 

  14. Gardner, M.: More about tiling the plane: the possibilities of polyominoes, polyiamonds, and polyhexes. Sci. Am. 223, 112–115 (1975)

    Article  Google Scholar 

  15. Golomb, S.W.: Polyominoes: Puzzles, Problems, and Packings. Scribner’s, Patterns (1965)

    Google Scholar 

  16. Golomb, S.W.: Tiling with polyominoes. J. Comb. Theor. 1, 280–296 (1966)

    Article  MathSciNet  Google Scholar 

  17. Golomb, S.W.: Tiling with sets of polyominoes. J. Comb. Theor. 9(1), 60–71 (1970)

    Article  MathSciNet  Google Scholar 

  18. Golomb, S.W.: Polyominoes which tile rectangles. J. Comb. Theor. Ser. A 51, 117–124 (1989)

    Article  MathSciNet  Google Scholar 

  19. Goodman-Strauss, C.: Open questions in tiling. http://comp.uark.edu/~strauss/papers/survey.pdf. Accessed 2000

  20. Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147(1), 181–223 (1998)

    Article  MathSciNet  Google Scholar 

  21. Grünbaum, B., Shephard, G.C.: Some problems on plane tilings. In: Klarner, D.A. (ed.) The Mathematical Gardner, pp. 167–196. Springer, Boston (1981). https://doi.org/10.1007/978-1-4684-6686-7_17

    Chapter  Google Scholar 

  22. Grünbaum, B., Shephard, G.C.: Patch-determined tilings. Math. Gaz. 61(415), 31–38 (1977)

    Article  Google Scholar 

  23. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman and Co., Stuttgart (1987)

    MATH  Google Scholar 

  24. Hochberg, R., Reid, M.: Note: tiling with notched cubes. Discrete Math. 214, 255–261 (2000)

    Article  MathSciNet  Google Scholar 

  25. Klarner, D.A.: Packing a rectangle with congruent N-ominoes. J. Combin. Theor. 7, 107–115 (1969)

    Article  MathSciNet  Google Scholar 

  26. Klarner, D.A.: My life among the polyominoes. In: Klarner, D.A. (ed.) The Mathematical Gardner, pp. 243–262. Springer, Boston (1981). https://doi.org/10.1007/978-1-4684-6686-7_22

    Chapter  MATH  Google Scholar 

  27. Langerman, S., Winslow, A.: A quasilinear-time algorithm for tiling the plane isohedrally with a polyomino. In: Proceedings of the 32nd International Symposium on Computational Geometry (SoCG), Volume 51 of LIPIcs, pp. 50:1–50:15. Schloss Dagstuhl (2016)

    Google Scholar 

  28. Marshall, W.R.: Packing rectangles with congruent polyominoes. J. Comb. Theor. Ser. A 77, 181–192 (1997)

    Article  MathSciNet  Google Scholar 

  29. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput. Geom. 26(4), 573–590 (2001)

    Article  MathSciNet  Google Scholar 

  30. Myers, J.: Polyomino, polyhex and polyiamond tiling (2016). https://www.polyomino.org.uk/mathematics/polyform-tiling/. Accessed 2016

  31. Ollinger, N.: Tiling the plane with a fixed number of polyominoes. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 638–647. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2_54

    Chapter  Google Scholar 

  32. Reid, M.: Tiling rectangles and half strips with congruent polyominoes. J. Comb. Theor. Ser. A 80(1), 106–123 (1997)

    Article  MathSciNet  Google Scholar 

  33. Rhoads, G.C.: Planar tilings polyominoes, polyhexes, and polyiamonds. J. Comput. Appl. Math. 174, 329–353 (2005)

    Article  MathSciNet  Google Scholar 

  34. Schattschneider, D.: Will it tile? Try the Conway criterion!. Math. Mon. 53(4), 224–233 (1980)

    MathSciNet  MATH  Google Scholar 

  35. Socolar, J.E.S., Taylor, J.M.: An aperiodic hexagonal tile. J. Comb. Theor. Ser. A 118(8), 2207–2231 (2011)

    Article  MathSciNet  Google Scholar 

  36. Stewart, I.N., Wormstein, A.: Polyominoes of order 3 do not exist. J. Comb. Theor. Ser. A 61(1), 130–136 (1992)

    Article  MathSciNet  Google Scholar 

  37. Wijshoff, H.A.G., van Leeuwen, J.: Arbitrary versus periodic storage schemes and tessellations of the plane using one type of polyomino. Inf. Control 62, 1–25 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Winslow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Winslow, A. (2018). Some Open Problems in Polyomino Tilings. In: Hoshi, M., Seki, S. (eds) Developments in Language Theory. DLT 2018. Lecture Notes in Computer Science(), vol 11088. Springer, Cham. https://doi.org/10.1007/978-3-319-98654-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98654-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98653-1

  • Online ISBN: 978-3-319-98654-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics