Skip to main content

Genetic Approach to the Diagnosis of Autoinflammatory Diseases

  • Chapter
  • First Online:
Textbook of Autoinflammation

Abstract

Over the past 20 years, almost 30 new genes associated with autoinflammatory disorders have been identified. The genetic diagnosis is based on the identification of clearly pathogenic mutations, even in atypical cases (i.e. patients not meeting recognized clinical criteria). Therefore, genetic testing should be preferably ordered by healthcare providers who are familiar with the spectrum of clinical presentation of autoinflammatory diseases.

The constellation of clinical findings will guide the choice of genetic testing. The prerequisites that are usually asked before requesting a genetic test for suspected autoinflammatory disease are: evidence for systemic inflammation, suspicion of a monogenic trait i.e. for example early-onset disease or familial inheritance, and existence of a plausible candidate causal gene.

Sequencing approaches remain the gold-standard techniques. Sanger sequencing is a rapid, inexpensive method to test for mutations in a single gene in a single patient. However, its performance is low (10–20%) when examined in all patients tested for autoinflammatory disorders, including those who did not fulfil the criteria discussed above. The indications for Sanger sequencing should be restricted to prevalent mutations and/or mutational hot spots in a gene (e.g. extracellular domain of TNFRSF1A responsible for tumor necrosis factor receptor-associated periodic syndrome—TRAPS), or to patients with a complementary biochemical diagnosis (e.g. mevalonate kinase deficiency—MKD, deficiency of adenosine deaminase 2—DADA2).

If Sanger method is not confirmatory, large scale next generation sequencing (NGS) approaches should be contemplated. NGS allows investigations of multiple genes in multiple patients at a time. Targeted NGS sequencing of gene panels has become more time- and cost-effective and is commonly used today for phenotypically undifferentiated autoinflammatory diseases, genes known to harbour mosaic mutations (e.g. NLRP3) and oligogenism (e.g. proteasomopathies). New concepts regarding modes of inheritance and interpretation of variant pathogenicity will require a systematic review and update of genetic diagnostic strategies and new guidance on standardization and reporting of genetic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA2:

Adenosine deaminase 2

APLAID:

Autoinflammation, PLCG2-associated antibody deficiency, and immune dysregulation

CAPS:

Cryopyrin-associated periodic syndrome

CRP:

C reactive protein

DADA2:

Deficiency of adenosine deaminase 2

DSAP:

Disseminated superficial actinic porokeratosis

ESR:

Erythrocyte sedimentation rate

FMF:

Familial Mediterranean fever

ISSAID:

International Society for Systemic Autoinflammatory Diseases

LUBAC:

linear ubiquitin chain assembly complex

MAF:

Minor allele frequency

MEFV :

Mediterranean fever (gene)

MKD:

Mevalonate kinase deficiency

NGS:

Next generation sequencing

NLRP3:

NLR pyrin domain containing protein 3

NOMID/CINCA:

Neonatal-onset multisystem inflammatory disease/chronic infantile neurological cutaneous and articular syndrome

PAAND:

Pyrin-associated autoinflammation with neutrophilic dermatosis

PLAID:

PLCG2-associated antibody deficiency and immune dysregulation

PRAAS:

Proteasome-associated autoinflammatory syndromes

SAA:

Serum amyloid A

SAVI:

STING-associated vasculopathy with onset in infancy

SIFD:

Sideroblastic anemia with immunodeficiency, fevers and developmental delay

SNP:

Single nucleotide polymorphism

TRAPS:

Tumor necrosis factor receptor-associated periodic syndrome

VUS/VOUS:

Variant of unclear significance

WES:

Whole exome sequencing

WGS:

Whole genome sequencing

References

  1. The French FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell. 1997;90(4):797–807.

    Article  Google Scholar 

  2. The French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat Genet. 1997;17(1):25–31.

    Article  Google Scholar 

  3. Stoffels M, Kastner DL. Old dogs, new tricks: monogenic autoinflammatory disease unleashed. Annu Rev Genomics Hum Genet. 2016;17:245–72.

    Article  CAS  Google Scholar 

  4. Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol. 2017;18(8):832–42.

    Article  CAS  Google Scholar 

  5. Livneh A, Langevitz P, Zemer D, et al. Criteria for the diagnosis of familial Mediterranean fever. Arthritis Rheum. 1997;40(10):1879–85.

    Article  CAS  Google Scholar 

  6. Touitou I. Inheritance of autoinflammatory diseases: shifting paradigms and nomenclature. J Med Genet. 2013;50(6):349–59.

    Article  CAS  Google Scholar 

  7. Saito M, Fujisawa A, Nishikomori R, et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2005;52(11):3579–85.

    Article  CAS  Google Scholar 

  8. Saito M, Nishikomori R, Kambe N, et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood. 2008;111(4):2132–41.

    Article  CAS  Google Scholar 

  9. Arostegui JI, Lopez Saldana MD, Pascal M, et al. A somatic NLRP3 mutation as a cause of a sporadic case of chronic infantile neurologic, cutaneous, articular syndrome/neonatal-onset multisystem inflammatory disease: Novel evidence of the role of low-level mosaicism as the pathophysiologic mechanism underlying mendelian inherited diseases. Arthritis Rheum. 2010;62(4):1158–66.

    Article  CAS  Google Scholar 

  10. Tanaka N, Izawa K, Saito MK, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 2011;63(11):3625–32.

    Article  CAS  Google Scholar 

  11. Izawa K, Hijikata A, Tanaka N, et al. Detection of base substitution-type somatic mosaicism of the NLRP3 gene with >99.9% statistical confidence by massively parallel sequencing. DNA Res. 2012;19(2):143–52.

    Article  CAS  Google Scholar 

  12. Jimenez-Trevino S, Gonzalez-Roca E, Ruiz-Ortiz E, Yague J, Ramos E, Arostegui JI. First report of vertical transmission of a somatic NLRP3 mutation in cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2013;72(6):1109–10.

    Article  Google Scholar 

  13. Omoyinmi E, Melo Gomes S, Standing A, et al. Brief Report: whole-exome sequencing revealing somatic NLRP3 mosaicism in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheumatol. 2014;66(1):197–202.

    Article  CAS  Google Scholar 

  14. de Koning HD, van Gijn ME, Stoffels M, et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. 2015;135(2):561–4.

    Article  Google Scholar 

  15. Nakagawa K, Gonzalez-Roca E, Souto A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2015;74(3):603–10.

    Article  CAS  Google Scholar 

  16. Paloni G, Pastore S, Tommasini A, Lepore L, Taddio A. Delayed reactivation of chronic infantile neurologic, cutaneous, articular syndrome (CINCA) in a patient with somatic mosaicism of CIAS1/NLRP3 gene after withdrawal of anti-IL-1 beta therapy. Clin Exp Rheumatol. 2015;33(5):766.

    PubMed  Google Scholar 

  17. Zhou Q, Aksentijevich I, Wood GM, et al. Brief report: Cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthritis Rheumatol. 2015;67(9):2482–6.

    Article  CAS  Google Scholar 

  18. Eroglu FK, Kasapcopur O, Besbas N, et al. Genetic and clinical features of cryopyrin-associated periodic syndromes in Turkish children. Clin Exp Rheumatol. 2016;34(6 Suppl 102):S115–20.

    PubMed  Google Scholar 

  19. Mensa-Vilaro A, Teresa Bosque M, Magri G, et al. Brief report: late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol. 2016;68(12):3035–41.

    Article  CAS  Google Scholar 

  20. Lasiglie D, Mensa-Vilaro A, Ferrera D, et al. Cryopyrin-associated periodic syndromes in Italian patients: evaluation of the rate of somatic NLRP3 mosaicism and phenotypic characterization. J Rheumatol. 2017;44(11):1667–73.

    Article  CAS  Google Scholar 

  21. Rowczenio DM, Gomes SM, Arostegui JI, et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 Mosaicism—UK single center experience. Front Immunol. 2017;8:1410.

    Article  Google Scholar 

  22. Mensa-Vilaro A, Cham WT, Tang SP, et al. Brief report: first identification of intrafamilial recurrence of Blau syndrome due to Gonosomal NOD2 mosaicism. Arthritis Rheumatol. 2016;68(4):1039–44.

    Article  CAS  Google Scholar 

  23. Rowczenio DM, Trojer H, Omoyinmi E, et al. Brief report: Association of Tumor Necrosis Factor Receptor-Associated Periodic Syndrome With Gonosomal Mosaicism of a Novel 24-Nucleotide TNFRSF1A deletion. Arthritis Rheumatol. 2016;68(8):2044–9.

    Article  CAS  Google Scholar 

  24. Touitou I, Perez C, Dumont B, Federici L, Jorgensen C. Refractory auto-inflammatory syndrome associated with digenic transmission of low-penetrance tumour necrosis factor receptor-associated periodic syndrome and cryopyrin-associated periodic syndrome mutations. Ann Rheum Dis. 2006;65(11):1530–1.

    Article  CAS  Google Scholar 

  25. Brehm A, Liu Y, Sheikh A, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest. 2016;126(2):795.

    Article  Google Scholar 

  26. Gul A. Behcet’s disease as an autoinflammatory disorder. Curr Drug Targets Inflamm Allergy. 2005;4(1):81–3.

    Article  Google Scholar 

  27. McGonagle D, Aziz A, Dickie LJ, McDermott MF. An integrated classification of pediatric inflammatory diseases, based on the concepts of autoinflammation and the immunological disease continuum. Pediatr Res. 2009;65(5 Pt 2):38R–45R.

    Article  Google Scholar 

  28. Gattorno M, Sormani MP, D’Osualdo A, et al. A diagnostic score for molecular analysis of hereditary autoinflammatory syndromes with periodic fever in children. Arthritis Rheum. 2008;58(6):1823–32.

    Article  CAS  Google Scholar 

  29. Nakayama M, Oda H, Nakagawa K, et al. Accurate clinical genetic testing for autoinflammatory diseases using the next-generation sequencing platform MiSeq. Biochem Biophys Rep. 2017;9:146–52.

    PubMed  Google Scholar 

  30. Rusmini M, Federici S, Caroli F, et al. Next-generation sequencing and its initial applications for molecular diagnosis of systemic auto-inflammatory diseases. Ann Rheum Dis. 2015;75(8):1550–7.

    Article  Google Scholar 

  31. Omoyinmi E, Standing A, Keylock A, et al. Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis. PLoS One. 2017;12(7):e0181874.

    Article  Google Scholar 

  32. Bogaert DJ, Dullaers M, Kuehn HS, et al. Early-onset primary antibody deficiency resembling common variable immunodeficiency challenges the diagnosis of Wiedeman-Steiner and Roifman syndromes. Sci Rep. 2017;7(1):3702.

    Article  Google Scholar 

  33. Elsaid MF, Chalhoub N, Ben-Omran T, et al. Mutation in noncoding RNA RNU12 causes early onset cerebellar ataxia. Ann Neurol. 2016;81(1):68–78.

    Article  Google Scholar 

  34. Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360(23):2426–37.

    Article  CAS  Google Scholar 

  35. Zhou Q, Yang D, Ombrello AK, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370(10):911–20.

    Article  CAS  Google Scholar 

  36. Shinar Y, Obici L, Aksentijevich I, et al. Guidelines for the genetic diagnosis of hereditary recurrent fevers. Ann Rheum Dis. 2012;71(10):1599–605.

    Article  CAS  Google Scholar 

  37. Van Gijn ME, Ceccherini I, Shinar Y, et al. New workflow for classification of genetic variants’ pathogenicity applied to hereditary recurrent fevers by the International Study Group for Systemic Autoinflammatory Diseases (INSAID). J Med Genet. 2018;55(8):530–7.

    Article  Google Scholar 

  38. Hentgen V, Grateau G, Stankovic-Stojanovic K, Amselem S, Jeru I. Familial Mediterranean fever in heterozygotes: are we able to accurately diagnose the disease in very young children? Arthritis Rheum. 2013;65(6):1654–62.

    Article  Google Scholar 

  39. Booty MG, Chae JJ, Masters SL, et al. Familial Mediterranean fever with a single MEFV mutation: where is the second hit? Arthritis Rheum. 2009;60(6):1851–61.

    Article  CAS  Google Scholar 

  40. Lachmann HJ, Sengul B, Yavuzsen TU, et al. Clinical and subclinical inflammation in patients with familial Mediterranean fever and in heterozygous carriers of MEFV mutations. Rheumatology (Oxford). 2006;45(6):746–50.

    Article  CAS  Google Scholar 

  41. Aksentijevich I, Pras E, Gruberg L, et al. Familial Mediterranean fever (FMF) in Moroccan Jews: demonstration of a founder effect by extended haplotype analysis. Am J Hum Genet. 1993;53(3):644–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bernot A, da Silva C, Petit JL, et al. Non-founder mutations in the MEFV gene establish this gene as the cause of familial Mediterranean fever (FMF). Hum Mol Genet. 1998;7(8):1317–25.

    Article  CAS  Google Scholar 

  43. Masters SL, Lagou V, Jeru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016;8(332):332ra345.

    Article  Google Scholar 

  44. Stoffels M, Szperl A, Simon A, et al. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease. Ann Rheum Dis. 2014;73(2):455–61.

    Article  CAS  Google Scholar 

  45. Booth DR, Gillmore JD, Lachmann HJ, et al. The genetic basis of autosomal dominant familial Mediterranean fever. QJM. 2000;93(4):217–21.

    Article  CAS  Google Scholar 

  46. Tsuchiya-Suzuki A, Yazaki M, Nakamura A, et al. Clinical and genetic features of familial Mediterranean fever in Japan. J Rheumatol. 2009;36(8):1671–6.

    Article  CAS  Google Scholar 

  47. Ryan JG, Masters SL, Booty MG, et al. Clinical features and functional significance of the P369S/R408Q variant in pyrin, the familial Mediterranean fever protein. Ann Rheum Dis. 2010;69(7):1383–8.

    Article  CAS  Google Scholar 

  48. Zhang SQ, Jiang T, Li M, et al. Exome sequencing identifies MVK mutations in disseminated superficial actinic porokeratosis. Nat Genet. 2012;44(10):1156–60.

    Article  CAS  Google Scholar 

  49. Cattan D. MEFV mutation carriers and diseases other than familial Mediterranean fever: proved and non-proved associations; putative biological advantage. Curr Drug Targets Inflamm Allergy. 2005;4(1):105–12.

    Article  CAS  Google Scholar 

  50. Uslu N, Yuce A, Demir H, et al. The association of inflammatory bowel disease and mediterranean fever gene (MEFV) mutations in Turkish children. Dig Dis Sci. 2010;55(12):3488–94.

    Article  Google Scholar 

  51. Villani AC, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet. 2009;41(1):71–6.

    Article  CAS  Google Scholar 

  52. Villani AC, Lemire M, Louis E, et al. Genetic variation in the familial Mediterranean fever gene (MEFV) and risk for Crohn’s disease and ulcerative colitis. PLoS One. 2009;4(9):e7154.

    Article  Google Scholar 

  53. Amoura Z, Dode C, Hue S, et al. Association of the R92Q TNFRSF1A mutation and extracranial deep vein thrombosis in patients with Behcet’s disease. Arthritis Rheum. 2005;52(2):608–11.

    Article  CAS  Google Scholar 

  54. Kone-Paut I, Sanchez E, Le Quellec A, Manna R, Touitou I. Autoinflammatory gene mutations in Behcet’s disease. Ann Rheum Dis. 2007;66(6):832–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Touitou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Touitou, I., Aksentijevich, I. (2019). Genetic Approach to the Diagnosis of Autoinflammatory Diseases. In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics