Skip to main content

Temperature Sensor Faults Monitoring in a Heat Exchanger Using Evolving Fuzzy Classification

  • Conference paper
  • First Online:
Advances in Computing Systems and Applications (CSA 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 50))

Included in the following conference series:

  • 504 Accesses

Abstract

In this paper, an advanced evolving clustering strategy is used to design a fuzzy model-based sensor faults detection mechanism for a pilot parallel-type heat exchanger. The change in the process operating mode is detected by an incremental unsupervised clustering procedure based on participatory learning. Real experimental data is used to construct signals for fuzzy residual generation. The resulting residuals are then processed by the evolving classifier to supervise the heat exchanger operation. The obtained results clearly show the ability of the evolving fuzzy classifier to early detect the considered temperature sensor faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costa, B.S.J., Angelov, P.P., Guedes, L.A.: Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing 150, 289–303 (2015)

    Article  Google Scholar 

  2. Ma, H., Hu, Y., Shi, H.: Fault detection and identification based on the neighborhood standardized local outlier factor method. Ind. Eng. Chem. Res. 52(6), 2389–2402 (2013)

    Article  Google Scholar 

  3. Bezerra, C.G., Costa, B.S.J., Guedes, L.A., Angelov, P.P.: An evolving approach to unsupervised and real-time fault detection in industrial processes. Expert Syst. Appl. 63, 134–144 (2016)

    Article  Google Scholar 

  4. Yan, R., Ma, Z., Kokogiannakis, G., Zhao, Y.: A sensor fault detection strategy for air handling units using cluster analysis. Autom. Constr. 70, 77–88 (2016)

    Article  Google Scholar 

  5. Du, Z., Fan, B., Chi, J., Jin, X.: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks. Energy Build. 72, 157–166 (2014)

    Article  Google Scholar 

  6. Isermann, R.: Model-based fault-detection and diagnosis–status and applications. Annu. Rev. Control 29(1), 71–85 (2005)

    Article  Google Scholar 

  7. Beghi, L.A., Cecchinato, F., Peterle, M., Rampazzo, F., Simmini, F.: Model-based fault detection and diagnosis for centrifugal chillers. In: 3rd Conference on Control and Fault-Tolerant Systems (SysTol), pp. 158–163. IEEE (2016)

    Google Scholar 

  8. Filev, D.P., Chinnam, R.B., Tseng, F., Baruah, P.: An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics. IEEE Trans. Ind. Inform. 6(4), 767–779 (2010)

    Article  Google Scholar 

  9. Lemos, A., Caminhas, W., Gomide, F.: Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Inf. Sci. 220, 64–85 (2013)

    Article  Google Scholar 

  10. Inacio, M., Lemos, A., Caminhas, W.: Fault diagnosis with evolving fuzzy classifier based on clustering algorithm and drift detection. In: Mathematical Problems in Engineering (2015)

    Google Scholar 

  11. Dragan, D.: Fault detection of an industrial heat-exchanger: a model-based approach. Strojniški vestnik-J. Mech. Eng. 57(6), 477–484 (2011)

    Article  MathSciNet  Google Scholar 

  12. Tudón-Martínez, J.C., Morales-Menendez, R., Garza-Castañón, L.E.: Fault diagnosis in a heat exchanger using process history based-methods. Comput. Aided Chem. Eng. 28, 169–174 (2010)

    Article  Google Scholar 

  13. Habbi, H., Kidouche, M., Kouadri, A., Zelmat, M.: Design and real-time implementation of a fuzzy residual generator for process fault detection in a co-current heat exchanger. In: AIP Conference Proceedings, vol. 1107, no. 1, pp. 91–95. AIP (2009)

    Google Scholar 

  14. Yager, R.R.: A model of participatory learning. IEEE Trans. Syst. Man Cybern. 20(5), 1229–1234 (1990)

    Article  Google Scholar 

  15. Silva, L., Gomide, F., Yager, R.: Participatory learning in fuzzy clustering. In: 14th IEEE International Conference on Fuzzy Systems, FUZZ 2005, pp. 857–861. IEEE (2005)

    Google Scholar 

  16. Lemos, A.P., Caminhas, W.M., Gomide, F.A.: Fuzzy multivariable gaussian evolving approach for fault detection and diagnosis. In: IPMU, pp. 360–369 (2010)

    Google Scholar 

  17. Lemos, A., Caminhas, W., Gomide, F.: Multivariable Gaussian evolving fuzzy modeling system. IEEE Trans. Fuzzy Syst. 19(1), 91–104 (2011)

    Article  Google Scholar 

  18. Habbi, H., Kidouche, M., Zelmat, M.: Nonlinear identification and fault diagnosis using multiple-model approach. In: First International IMPACT 2010 Conference on Dynamics of Systems, Material and Structures, Djerba. Tumisia (2010)

    Google Scholar 

  19. Habbi, H., Kidouche, M., Kinnaert, M., Zelmat, M.: Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger. Int. J. Syst. Sci. 42(4), 587–599 (2011)

    Article  MathSciNet  Google Scholar 

  20. Inacio, M., Lemos, A., Caminhas, W.: Evolving fuzzy classifier based on clustering algorithm and drift detection for fault diagnosis applications. In: Annual Conference of the Prognostics of Prognostics and Health Management Society (2014)

    Google Scholar 

  21. Jianu, O., Wang, W.: A self-evolving fuzzy classifier for gear fault diagnosis. Int. J. Mech. 14(05), 90–96 (2014)

    Google Scholar 

  22. Alippi, C., Roveri, M., Trovò, F.: A self-building and cluster-based cognitive fault diagnosis system for sensor networks. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1021–1032 (2014)

    Article  Google Scholar 

  23. Rocha Filho, O.D., Oliveira Serra, G.L.: Evolving fuzzy clustering algorithm based on maximum likelihood with participatory learning. In: IEEE Conference Evolving and Adaptive Intelligent Systems (EAIS), pp. 65–72. IEEE (2016)

    Google Scholar 

  24. Maciel, L., Gomide, F., Ballini, R.: MIMO evolving participatory learning fuzzy modeling. In: IEEE International Conference on Fuzzy Systems, (FUZZ-IEEE), pp. 1–8. IEEE (2012)

    Google Scholar 

  25. Zhu, X., Shu, L., Zhang, H., Zheng, A., Han, G.: Preliminary exploration: fault diagnosis of the circulating-water heat exchangers based on sound sensor and non-destructive testing technique. In: 8th International Conference on Communications and Networking, (CHINACOM), pp. 488–492. IEEE, China (2013)

    Google Scholar 

  26. Habbi, H., Kidouche, M., Zelmat, M.: Data-driven fuzzy models for nonlinear identification of a complex heat exchanger. Appl. Math. Model. 35(3), 1470–1482 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Mouhoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mouhoun, M., Habbi, H. (2019). Temperature Sensor Faults Monitoring in a Heat Exchanger Using Evolving Fuzzy Classification. In: Demigha, O., Djamaa, B., Amamra, A. (eds) Advances in Computing Systems and Applications. CSA 2018. Lecture Notes in Networks and Systems, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-98352-3_33

Download citation

Publish with us

Policies and ethics